
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 6: Online Algorithms

Lecturer: Sahil Singla Last updated: January 30, 2022

1 Online Algorithms

This lecture will introduce online algorithms, i.e., algorithms which have to make decisions
“online” without knowing the entire input. We’ll focus on three examples, the ski rental
problem, the list update problem, and the facility location problem.

The main measure of quality for online algorithms are their competitive ratio. For a cost
minimization problem (all problems we’ll see today are cost-minimization), we’ll say that
an online algorithm has competitive ratio C if for all inputs, the cost incurred by the online
algorithm is at most C · OPT, where OPT denotes the cost incurred by the best offline
solution that knows the entire input before making any decisions.

2 Ski Rental

We’ll first look at the Ski Rental problem. Winter is coming, and you’re trying to figure
out skiing plans and whether to buy your own skis (without your own skis, you’ll need to
rent them every time you go). The good news is that the pricing scheme is transparent:
buying your own skis will incur a one-time cost of B (and you can buy them whenever you
want). Renting skis will cost R < B per trip. The bad news is you have absolutely no idea
how often your friends will want to ski. You might buy skis today, and your friends decide
to never go again. Alternatively, you might decide to never buy and wind up renting every
weekend.

You could certainly come up with a probabilistic model of your likelihood of skiing and
figure out the solution minimizing expected cost, but this is hard and also doesn’t provide
much insight. It turns out that using the competitive ratio instead gives a simple, insightful
suggestion.

To be clear, the problem develops like so: On day 1, you decide whether to rent or buy. If
you buy, you pay B and the game ends (you now have skis for all future days). If you rent,
you pay R, and the game continues. Now, day 2 may or may not arrive. If it doesn’t, the
game ends. If it does, you must again decide whether to rent or buy. If you buy, you pay
an (additional) B and the game ends. If you rent, you pay R and the game continues. In
general, when day i comes, you decide whether to rent or buy. If you buy, you pay B and
the game ends. If you rent, you pay R and the game continues. Day i + 1 may or may not
arrive (if it doesn’t, the game ends).

Let’s first figure out what the optimal offline solution is. If you knew exactly how many
days D you were skiing, what should you do? If DR < B, then rent all D days. Otherwise,

1

2

buy immediately. So our goal will be to design a strategy that guarantees a total cost at
most C ·min{DR,B} when you ski for D days for a small C.

Let’s now also consider, for any deterministic algorithm, what the worst possible D is. Note
that deterministic algorithms can be completely described by the maximum number of days
T to rent before buying. That is, every deterministic algorithm is of the form “rent for the
first min{T,D} days, and buy on day T + 1 if D > T .” What’s the worst possible D for a
given T?

Proposition 1. The maximum ratio between any deterministic algorithm and the offline
optimum is achieved when the last day of skiing is the day the algorithm purchases skis.
That is, the maximum ratio of R ·min{T,D}+B · I(D > T) over min{DR,B} is acheived
at D = T + 1.

Proof. Note that if D > T , then every day that passes T our algorithm incurs additional
cost 0, while the optimum incurs additional cost at least 0 (maybe the optimum already
bought, in which case its 0, or they’re still renting in which case the extra cost per day
is R). So the worst case among all D > T is if your last day skiing is the same day you
buy. This makes sense: the worst outcome for you conditioned on buying is that you never
use the skis again. Now let’s think about the worst case among D ≤ T . Note that the
ratio in this regime is just DR

min{DR,B} . When DR < B, this ratio is 1. When DR > B, the

ratio is strictly increasing in D (because the numerator increases at a rate of R and the
denominator is static).

Finally, in comparing T to T + 1, note that either TR ≥ B, in which case both ratios have
the same denominator (but the numerator for T + 1 is bigger), or TR < B, in which case
the ratio for T is TR/TR = 1, whereas the ratio for T + 1 is > 1 (as TR + B > B and
TR + B > (T + 1)R). So for all T , the worst case is when you go skiing for exactly T + 1
days, and only use your purchased skis once.

Corollary 2. The competitive ratio achieved by the deterministic algorithm that purchases
skis on day T + 1 is exactly TR+B

min{(T+1)R,B} .

For simplicity, assume that B is an integer multiple of R. In this case, the best competitive
ratio is achieved when T + 1 = B/R, and the ratio is exactly (2T + 1)/(T + 1) = 2−R/B
(to prove this, again observe that if T + 1 > B/R, then decreasing T doesn’t change the

denominator, but decreases the numerator. If T + 1 < B/R, then the ratio is 1 + B/R−1
T+1 ,

which will clearly decrease if we increase T . Both claims assume B/R is an integer).1

Note that in developing the algorithm we’ve also proved that it’s the optimal deterministic
algorithm.

Randomized Algorithms. For offline algorithms, one of the major conjectures in Com-
plexity Theory is that randomization does not help, i.e., the complexity class P = RP. For
online problems, however, randomization can be easily proved to be strictly more power-
ful. For example, consider the Ski Rental problem again and assume R = 1 for simplicity.

1If B/R isn’t an integer, then the optimal competitive ratio is achieved when T + 1 ∈ (bB/Rc, dB/Re).

3

Suppose our algorithm is randomized: with probability 1/2 it rents till B − 1 and buys on
B, and with the remaining probability 1/2 it rents till day 3B

4 and buys on day 3B
4 + 1. A

simple case analysis shows that for any D the ratio of the expected cost of the algorithm
to the offline optimum (which is min{B,D}) is at most 15/8 < 2. In fact, there exist
randomized algorithms that guarantee e/(e − 1) ≈ 1.58 competitive ratio when B � 1 for
the Ski Rental problem. In one such algorithm, we purchase on day d ∈ {1, . . . , B} with

probability roughly
(
1− 1

B

)B−d · 1
B(1−1/e) (e.g., see [1]).

3 List Update

Now, imagine that you have a single linked list of elements. Every time the list is queried
for element x, you have to scan from the start of the list until you hit x. But you can edit
the list a bit as you go: after accessing x, you can pull x as far to the front of the list as
you like (keeping all other elements in the same relative order). The total cost for accessing
element x is the depth you have to scan in order to find it (moving it forwards is free). The
total cost of the algorithm is just the sum of all accesses.

Again, one could try natural probabilistic models: say that each request is for a random
element, and element x is requested with probability px. Then it’s not too hard to see
that the best solution is just to maintain the elements in decreasing order of px. But this
solution is somewhat unsatisfying: it just pushes all of the work onto estimating the values
px, which realistically won’t be independent (if you just accessed element x, you might be
more likely to access it or something related to it). A reasonable compromise might be to
use historical values of px (and bring an element up whenever its most recent access makes
its historical px larger than some elements currently in front of it). But apparently this
does poorly in practice. The competitive ratio seems to capture this fact nicely. Formally
the algorithm will be as follows, called FrequencyCount:

• Initialize C(x) = 0 for all x.

• When element x is queried, increment C(x). Then, compare C(x) to C(y) for all y
currently ahead of x. If C(x) > C(y), move C(x) ahead of C(y).

Note that FrequencyCount maintains the invariant that the list is always sorted in decreasing
order of C(·). Now we’ll show that FrequencyCount doesn’t have a competitive ratio better
than Ω(n), where n is the number of elements. Note that no algorithm can have competitive
ratio worse than n, since it does at most n scans on every query but opt does at least 1, so
this is pretty bad.

Theorem 3. The competitive ratio of FrequencyCount is Ω(n).

Proof. Consider the following sequence: First, query element i exactly i times (in that
order). This gets the list in the order n, n − 1, . . . , 1. Next, repeat the following k times
(for large k): for i = 1 to n, request the i-th element n times in a row.

Note that this will do the following to the list: the first time element i is queried, it’s all
the way in the back. Each time it’s queried (except for the first), it moves up one spot. So

4

the total cost paid to access i-th element n times is n +
∑n

j=2 j = Ω(n2). So the total cost

paid by FrequencyCount is Ω(kn3).

Now consider the optimal offline solution: whenever element i is queried for the first time
(in each of the k iterations), move it all the way to the front. Then, the total cost paid to
access i n times is 2n, and the total cost paid by the optimal offline solution is O(kn2). So
the competitive ratio of FrequencyCount is Ω(n).

It turns out that there’s a better solution with a competitive ratio of 2, called MoveToFront:
every time you access an element, move it all the way to the front. It might seem a little
surprising that this works - why should you expect that the element you just accessed is
going to be accessed again soon? (maybe in practice this makes sense, but it doesn’t show
up in the model at all). The idea is the following: if recently accessed elements aren’t
accessed again until very far in the future, then even the offline optimum can’t do anything
clever, so it’s OK if you’re a bit wasteful. But if recently accessed elements are accessed
again soon, the offline optimum can be very good, so you better also be very good.

Theorem 4. MoveToFront achieves a competitive ratio of at most 2.

Proof. In this proof we’ll demonstrates the idea of a potential function which is useful for
many online algorithms.

Imagine running MoveToFront and the Offline Optimum side-by-side on the same input
(for which the offline optimum is optimal). At all times t (that is, after t requests have
been made), we’ll let Φ(t) denote the number of pairs (x, y) such that x is in front of y in
MoveToFront (at time t), but x is behind y in the offline optimum (at time t). Note that
Φ(0) = 0, that Φ can increase or decrease, but we will always have Φ(t) ≥ 0.

We’ll also let MTF (t) denote the cost paid by MoveToFront to access the element requested
at time t, and OPT (t) denote the cost paid by the offline optimum to access the element
requested at time t. We’ll show that for every t,

MTF (t) + (Φ(t)− Φ(t− 1)) ≤ 2OPT (t).

If we can prove this, then we can sum over all t to get that the cost of MTF is at most
twice the cost of the offline optimum, because Φ is always non-negative.

So now let’s prove the claim: Consider at time t the request to element x. Say that
MoveToFront pays p to access x, and that k elements in front of x (before moving x to
the front) are also in front of x in the offline optimum (before accessing x and potentially
moving it). Then MTF (t) = p, and OPT (t) ≥ k + 1.

Now, let’s look at the potential. First, consider the intermediate case where the offline
optimum hasn’t yet moved x. Then x is moved in front of k elements that were also in front
of it in the offline optimum, so Φ goes up by k. But x is also moved in front of p − k − 1
elements that should have been behind x in the offline optimum, so Φ also goes down by
p− k− 1. So at this point, we have that Φ goes up by exactly 2k− p+ 1. Finally, from this
point, note that the offline optimum might also move x closer to the front. However, these
changes will only decrease Φ: x is in front of everything in the MoveToFront list, so every

5

element that x gets moved in front of by the offline optimum makes the lists agree on one
additional pair. So we get that:

MTF (t) = p

OPT (t) ≥ k + 1

Φ(t)− Φ(t− 1) ≤ 2k − p + 1

⇒MTF (t) + Φ(t)− Φ(t− 1) ≤ 2 ·OPT (t).

4 Facility Location

In the Online Facility Location problem we are given a graph G = (V,E), a metric d :
V × V → R≥0 (i.e., pairwise distances satisfying triangle inequality), and a scalar f ∈ R≥0
denoting the cost of opening a facility. A sequence of T ≤ n requests s1, s2, . . . , sT ∈ V are
revealed to the algorithm one-by-one which have to be immediately satisfied. The online
algorithm maintains a set of open facilities O ⊆ V: on arrival of request st the algorithm can
either satisfy it by opening a facility at st and paying a cost of f (this updates O = O∪{st}),
or by assigning st to the closest open facility by paying a cost mino∈O d(st, o) (which is
defined to be infinity for O = ∅). The goal of the algorithm is to minimize its total cost:
the sum of facility opening and assignment costs.

Facility Location is a classic NP-hard problem in the offline setting (in fact, it’s known to
be APX-hard, i.e., there exists a constant c > 1 such that it’s impossible to obtain a better
than c approximation in polytime, assuming P 6= NP). Later in the course we will see an
O(1) approximation algorithm for this problem.

We will now see a simple randomized O(log n)-competitive algorithm algorithm for online
facility location due to Meyerson [2]. The randomized-greedy algorithm does the following:
on arrival of request st it opens a facility at st w.p. min{1,mino∈O d(st, o)/f} (i.e., directly
proportional to the distance of closest open facility), and otherwise assigns it to the closest
open facility in O.

Theorem 5. The randomized greedy algorithm for online facility location returns a solution
with expected cost that is O(log n)-competitive.

Proof. For i ≥ 1, let C∗i denote the clusters in the offline optimum solution where a point
p ∈ C∗i has distance d∗p to the center. Let r∗i :=

∑
p∈C∗

i
d∗p/|C∗i | denote the average distance

of all points in C∗i to the center. We will now argue that for every i the expected cost of our
algorithm for the requests in C∗i will be at most O(log n)

∑
p∈C∗

i
d∗p. The following simple

but powerful claim will be applied several times.

Claim 6. For any fixed subset A of requests, the expected assignment cost paid by the
randomized-greedy algorithm before opening a facility in A is at most f .

Proof of Claim 6. Let us relabel the points in A so that they are requested in the sequence
a1, a2, Let ct denote the cost of request at to the closest open facility. If either of the

6

ct ≥ f then the algorithm has definitely opened a facility by this time. So, we can assume
that ct < f for all at ∈ A. (Alternatively, the smallest set A that violates the claim has the
property ct < f .)

Now consider a game where you are presented a sequence of lotteries: in the t-th lottery
you can either choose to skip the lottery and get no reward/cost or you can participate
by paying a cost ct in which case you receive a reward of f w.p. ct/f and 0 otherwise.
Note that any algorithm is indifferent between the two choices (participate or not) since
the expected “gain” (reward-cost) is 0 for both our choices. Hence, an online algorithm
that decides to participate in these lotteries until it sees receives the first reward f and
then skips all lotteries has total expected gain 0. (If you are familiar with the language of
Optimal Stopping Theory, this process forms a Martingale.) Since on stopping the reward
exactly equals f , this implies the expected total cost equals f since the gain is 0.

Finally, the total cost of the above lottery game is an upper bound on the total assignment
cost of our randomized-greedy algorithm, which proves the claim.

For k ≥ 1, we define Sk ⊆ C∗i denote the points p ∈ C∗i with d∗p ∈ [2k−1r∗i , 2
kr∗i). The first

observation is that Sk = ∅ for k > log n since the distance of such a point to the center
will already be more than

∑
p∈C∗

i
d∗p. So, let S0 denote the remaining points p ∈ C∗i with

d∗p < r∗i . The following claims will immediately prove the theorem.

Claim 7. The expected cost of the algorithm (both opening plus assignment) to meet the
requests in S0 is O(f +

∑
p∈C∗

i
d∗p)

Proof of Claim. Let us first consider k = 0, i.e., points with d∗p < r∗i . Applying Claim 6 on
S0, we know that the expected cost paid before a facility is opened in S0 is f . Once this
facility is opened, any following request p ∈ S0 is reachable to this facility within distance

at most r∗i + d∗p. Hence the expected cost of this request p is at most
r∗i +d∗p

f · f + (r∗i +
d∗p) ≤ 2(r∗i + d∗p). This gives that the total cost to meet the requests in S0 is at most
f + 2

∑
p∈S∗

0
(r∗i + d∗p) ≤ f + 4

∑
p∈C∗

i
d∗p.

Claim 8. For each k ∈ {1, . . . , log n}, the expected cost of the algorithm (both opening plus
assignment) to meet the requests in S∗k is O(f +

∑
p∈S∗

k
d∗p)

Proof of Claim. By Claim 6 on Sk, we know the expected total cost before opening a facility
in Sk is at most f . Once this facility is opened, each p ∈ Sk is reachable to this facility
within distance 2kr∗i +d∗p ≤ 3d∗p since d∗p ≥ 2k−1r∗i . Hence the expected cost to meet request

p is at most
3d∗p
f ·f +(3d∗p) = 6d∗p. Summing up over all points p in Sk, we get the claim.

Given the last two claims, by linearity of expectation we have the expected cost of the
algorithm to meet requests in C∗i is O(f +

∑
p∈C∗

i
d∗p) · log n. Summing over all clusters C∗i ,

we get the competitive-ratio is O(log n).

We won’t prove this but the smallest possible competitive-ratio (both upper and lower
bounds) for online facility location is known to be Θ(logn

loglogn) [3], which is slightly better
than our O(log n) upper bound.

7

Notes

Lecture notes partly based on Avrim Blum’s notes2 and COS 521 notes from Princeton.

References

[1] Karlin, Anna R., Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgement
and other stories about e/(e-1). Proceedings of the thirty-third annual ACM symposium
on Theory of computing. 2001.

[2] Meyerson, A. (2001, October). Online facility location. In Proceedings 42nd IEEE Sym-
posium on Foundations of Computer Science (pp. 426-431). IEEE.

[3] Fotakis, D. (2008). On the competitive ratio for online facility location. Algorithmica,
50(1), 1-57.

2http://www.cs.cmu.edu/ avrim/Approx00/lectures/lect0301

http://www.cs.cmu.edu/~avrim/Approx00/lectures/lect0301

	Online Algorithms
	Ski Rental
	List Update
	Facility Location

