
Georgia Tech S’22 CS 6550/8803: Advanced Algorithms & Uncertainty

Lecture 9: Random-Order Model

Lecturer: Sahil Singla Last updated: February 5, 2022

For many online problems it’s impossible to obtain any non-trivial performance guarantees
for worst-case arrivals. Today, we will see how one could go “beyond the worst-case” and
obtain much better performance guarantees assuming a random the arrival order.

1 Motivation: Picking a Large Element

Suppose we want to pick the maximum of a collection of n numbers. At the beginning,
we know this cardinality n, but nothing about the range of numbers to arrive. We are
then presented distinct non-negative real numbers v1, v2, . . . , vn one by one; upon seeing a
number vi, we must either immediately pick it, or discard it forever. We can pick at most
one number. The goal is to maximize the expected value of the number we pick, where the
expectation is over any randomness in our algorithm. We want this expected value to be
close to the maximum value vmax := maxi∈{1,2,...,n} vi. Formally, we want to minimize the
competitive ratio, which is defined as the ratio of vmax to our expected value. Note that
this maximum vmax is independent of the order in which the elements are presented, and is
unknown to our algorithm until all the numbers have been revealed.

If we use a deterministic algorithm, our value can be arbitrarily smaller than vmax, even for
n = 2. Say the first number v1 = 1. If our deterministic algorithm picks v1, the adversary
can present v2 = M � 1; if it does not, the adversary can present v2 = 1/M � 1. Either
way, the adversary can make the competitive ratio as bad as it wants by making M large.

Using a randomized algorithm helps only a little: a näıve randomized strategy is to select
a uniformly random position i ∈ {1, . . . , n} up-front and pick the ith number vi. Since
we pick each number with probability 1/n, the expected value is

∑
i vi/n ≥ vmax/n. This

turns out to be the best we can do, as long the input sequence is controlled by an ad-
versary and the maximum value is much larger than the others. Indeed, one strategy for
the adversary is to choose a uniformly random index j, and present the request sequence
1,M,M2, . . . ,M j , 0, 0, . . . , 0—a rapidly ascending chain of j numbers followed by worthless
numbers. If M is very large, any good algorithm must pick the last number in the ascending
chain upon seeing it. But this is tantamount to guessing j, and random guessing is the best
an algorithm can do. (This can be made formal using Yao’s lemma from the last lecture.)

These bad examples show that the problem is hard for two reasons: the first reason being
the large range of the numbers involved, and the second being the adversary’s ability to
carefully design these difficult sequences. Consider the following way to mitigate the latter
effect: what if the adversary chooses the n numbers, but then the numbers are shuffled and
presented to the algorithm in a uniformly random order? This random-order version of the
problem above is commonly known as the secretary problem: the goal is to hire the best

1

2

secretary (or at least a fairly good one) if the candidates for the job appear in a random
order.

Somewhat surprisingly, randomly shuffling the numbers changes the complexity of the prob-
lem drastically. Here is the elegant 50%-algorithm:

1. Reject the first n/2 numbers, and then

2. Pick the first number after that which is bigger than all the previous numbers
(if any).

Theorem 1. The 50%-algorithm gets an expected value of at least vmax/4.

Proof. Assume for simplicity all numbers are distinct. The algorithm definitely picks vmax

if the highest number is in the second half of the random order (which happens with proba-
bility 1/2), and also the second-highest number is in the first half (which, conditioned on the
first event, happens with probability at least 1/2, the two events being positively correlated).
Hence, we get an expected value of at least vmax/4. (We get a stronger guarantee: we pick
the highest number vmax itself with probability at least 1/4, but we will not explore this
expected-value-versus-probability direction any further.)

1.1 The Model and a Discussion

The secretary problem, with the lower bounds in the worst-case setting and an elegant
algorithm for the random-order model, highlights the fact that sequential decision-making
problems are often hard in the worst-case not merely because the underlying set of requests
is hard, but also because these requests are carefully woven into a difficult-to-solve sequence.
In many situations where there is no adversary, it may be reasonable to assume that the
ordering of the requests is benign, which leads us to the random-order model. Indeed, one
can view this as a semi-random model from Chapter 9, where the input is first chosen by
an adversary and then randomly perturbed before being given to the algorithm.

Let us review the competitive analysis model for worst-case analysis of online algorithms
(also discussed in Chapter 24). Here, the adversary chooses a sequence of requests and
present them to the algorithm one by one. The algorithm must take actions to serve a
request before seeing the next request, and it cannot change past decisions. The actions
have rewards, say, and the competitive ratio is the optimal reward for the sequence (in
hindsight) divided by the algorithm’s reward. (For problems where we seek to minimize
costs instead of maximize rewards, the competitive ratio is the algorithm’s cost divided
by the optimal cost.) Since the algorithm can never out-perform the optimal choice, the
competitive ratio is always at least 1.

Now given any online problem, the random-order model (henceforth the RO model) consid-
ers the setting where the adversary first chooses a set S of requests (and not a sequence).
The elements of this set are then presented to the algorithm in a uniformly random order.
Formally, given a set S = {r1, r2, . . . , rn} of n = |S| requests, we imagine nature drawing a
uniformly random permutation π of {1, . . . , n}, and then defining the input sequence to be

3

rπ(1), rπ(2), · · · , rπ(n). As before, the online algorithm sees these requests one by one, and
has to perform its irrevocable actions for rπ(i) before seeing rπ(i+1). The length n of the
input sequence may also be revealed to the algorithm at the beginning, depending on the
problem. The competitive ratio (for maximization problems) is defined as the ratio between
the optimum value for S and the expected value of the algorithm, where the expectation is
now taken over both the randomness of the reshuffle π and that of the algorithm. (Again,
we use the convention that the competitive ratio is at least one, and hence have to flip the
ratio for minimization problems.)

A strength of the RO model is its simplicity, and that it captures other commonly considered
stochastic input models. Indeed, since the RO model does not assume the algorithm has
any prior knowledge of the underlying set of requests (except perhaps the cardinality n),
it captures situations where the input sequence consists of independent and identically
distributed (i.i.d.) random draws from some fixed and unknown distribution. Reasoning
about the RO model avoids over-fitting the algorithm to any particular properties of the
distribution, and makes the algorithms more general and robust by design.

Another motivation for the RO model is aesthetic and pragmatic: the simplicity of the
model makes it a good starting point for designing algorithms. If we want to develop an
online algorithm (or even an offline one) for some algorithmic task, a good step is to first
solve it in the RO model, and then extend the result to the worst-case setting. This can
be useful either way: in the best case, we may succeed in getting an algorithm for the
worst-case setting using the insights developed in the RO model. Else the extension may be
difficult, but still we know a good algorithm under the (mild?) assumption of random-order
arrivals.

Of course, the assumption of uniform random orderings may be unreasonable in some set-
tings, especially if the algorithm performs poorly when the random-order assumption is
violated. There have been attempts to refine the model to require less randomness from
the input stream, while still getting better-than-worst-case performance. See [1] for further
discussion.

2 The Secretary Problem

We saw the 50% algorithm based on the idea of using the first half of the random order
sequence to compute a threshold that weeds out “low” values. This idea of choosing a
good threshold will be a recurring one in this chapter. The choice of waiting for half of the
sequence was for simplicity: a right choice is to wait for 1/e ≈ 37% fraction, which gives us
the 37%-algorithm:

1. Reject the first n/e numbers, and then

2. Pick the first number after that (if any) which is bigger than all the previous
numbers.

(Although n/e is not an integer, rounding it to the nearest integer does not impact the

4

guarantees substantively.) Call a number a prefix-maximum if it is the largest among the
numbers revealed before it. Notice being the maximum is a property of just the set of
numbers, whereas being a prefix-maximum is a property of the random sequence and the
current position. A wait-and-pick algorithm is one that rejects the first m numbers, and
then picks the first prefix-maximum number.

Theorem 2. As n → ∞, the 37%-algorithm picks the highest number with probability at
least 1/e. Hence, it gets expected value at least vmax/e. Moreover, n/e is the optimal choice
of m among all wait-and-pick algorithms.

Proof. If we pick the first prefix-maximum after rejecting the first m numbers, the proba-
bility we pick the maximum is

n∑
t=m+1

Pr[vt is max] · Pr[max among first t− 1 numbers falls in first m positions]

(?)
=

n∑
t=m+1

1

n
· m

t− 1
=

m

n

(
Hn−1 −Hm−1

)
,

where Hk = 1 + 1
2 + 1

3 + . . . + 1
k is the kth harmonic number. The equality (?) uses the

uniform random order. Now using the approximation Hk ≈ ln k + 0.57 for large k, we
get the probability of picking the maximum is about m

n ln n−1
m−1 when m,n are large. This

quantity has a maximum value of 1/e if we choose m = n/e.

Next we show we can replace any strategy (in a comparison-based model) with a wait-and-
pick strategy without decreasing the probability of picking the maximum.

Theorem 3. The strategy that maximizes the probability of picking the highest number can
be assumed to be a wait-and-pick strategy.

Proof. Think of yourself as a player trying to maximize the probability of picking the
maximum number. Clearly, you should reject the next number vi if it is not prefix-maximum.
Otherwise, you should pick vi only if it is prefix-maximum and the probability of vi being
the maximum is more than the probability of you picking the maximum in the remaining
sequence. Let us calculate these probabilities.

We use Pmax to abbreviate “prefix-maximum”. For position i ∈ {1, . . . , n}, define

f(i) = Pr[vi is max | vi is Pmax]
(?)
=

Pr[vi is max]

Pr[vi is Pmax]

(??)
=

1/n

1/i
=
i

n
,

where equality (?) uses that the maximum is also a prefix-maximum, and (??) uses the
uniform random ordering. Note that f(i) increases with i.

Now consider a problem where the numbers are again being revealed in a random order but
we must reject the first i numbers. The goal is to still maximize the probability of picking
the highest of the n numbers. Let g(i) denote the probability that the optimal strategy for
this problem picks the global maximum.

The function g(i) must be a non-increasing function of i, else we could just ignore the (i+1)st

number and set g(i) to mimic the strategy for g(i + 1). Moreover, f(i) is increasing. So

5

from the discussion above, you should not pick a prefix-maximum number at any position
i where f(i) < g(i) since you can do better on the suffix. Moreover, when f(i) ≥ g(i), you
should pick vi if it is prefix-maximum, since it is worse to wait. Therefore, the approach of
waiting until f becomes greater than g and thereafter picking the first prefix-maximum is
an optimal strategy.

Theorems 2 and 3 imply for n→∞ that no algorithm can pick the maximum with proba-
bility more than 1/e. Since we placed no bounds on the number magnitudes, this can also
be used to show that for any ε > 0, there exist an n and numbers {vi}i∈{1,...,n} where every
algorithm has expected value at most (1/e+ ε) ·maxi vi.

3 Maximum-Weight Forest

Suppose the items arriving in a random order are the n edges of a (multi-)graph G = (V,E),
with edge e having a value/weight ve. The algorithm knows the graph at the beginning, but
not the weights. When the edge e arrives, its weight ve is revealed, and we decide whether
to pick the edge or not. Our goal is to pick a subset of edges with large total weight that
form a forest (i.e., do not contain a cycle). The target V ? is the total weight of a maximum-
weight forest of the graph: offline, we can solve this problem using, e.g., Kruskal’s greedy
algorithm. This graphical secretary problem generalizes the secretary problem: Imagine a
graph with two vertices and n parallel edges between them. Since any two edges form a
cycle, we can pick at most one edge, which models the single-item problem.

As a first step towards an algorithm, suppose all the edge values are either 0 or v (but we
don’t know in advance which edges have what value). A greedy algorithm is to pick the
next weight-v edge whenever possible, i.e., when it does not create cycles with previously
picked edges. This returns a max-weight forest, because the optimal solution is a maximal
forest among the subset of weight-v edges, and every maximal forest in a graph has the
same number of edges. This suggests the following algorithm for general values: if we know
some value v for which there is a subset of acyclic edges, each of value v, with total weight
≥ 1

α · V
?, then we can get an α-competitive solution by greedily picking value-v edges

whenever possible.

How do we find such a value v that gives a good approximation? The Random-Threshold
algorithm below uses two techniques: bucketing the values and (randomly) mixing a col-
lection of algorithms. We assume that all values are powers of 2; indeed, rounding values
down to the closest power of 2 loses at most a factor of 2 in the final guarantee.

1. Ignore the first n/2 items and let v̂ be their highest value.

2. Select a uniformly random r ∈ {0, . . . , log n}, and set threshold τ := v̂/2r.

3. For the second n/2 items, greedily pick any item of value at least τ that does
not create a cycle.

6

Theorem 4. The order-oblivious Random-Threshold algorithm for the graphical secretary
problem gets an expected value Ω

(
V ?

logn

)
.

Proof. What does the optimum solution S? (with value V ?) look like? Let vmax be the
maximum value of any edge/item in S?. If vmax ≥ V ?/4, we could run the single-item
order-oblivious algorithm to get an expected value of vmax/4 = Ω(V ?).

Else, define “bucket” Bi to be edges of value exactly vmax/2
i. We claim that the items in

S? that lie within buckets B0, B1, . . . , Blog2 n have total value at least V ?/2. Indeed, if not,
at least V ?/2 of S?’s value must come from items of value less than vmax/2

log2 n = vmax/n.
But there are at most n− 1 edges in the forest S?. Even if each of those edges contributes
vmax/n < V ?/(4n), we cannot get V ?/2 value from them, a contradiction. Hence, we get
that ∑logn

i=0 (vmax/2
i) · |S? ∩Bi| ≥ V ?/2. (1)

Moreover, for any of these buckets i, we could run the algorithm that picks items of value
exactly vmax/2

i, and get a value of vmax/2
i · |S? ∩Bi|.

The difficulty is that we know neither vmax, nor whether vmax ≥ V ?/4, nor which of these
buckets to choose. Hence the idea is to “mix” all the above algorithms by randomly choosing
between them.

It is easy to see that if vmax ≥ V ?/4, the single-item algorithm does well. Else, condition
on vmax is in the first half (which happens with probability 1/2), so v̂ = vmax. Moreover, for
any choice of r = i ∈ {0, . . . , log n} (which happens with probability Θ(1/logn)), the second
half contains in expectation half the elements of S? ∩Bi; now using (1), our algorithm gets
value Ω(V ?/ log n) in expectation.

3.1 An Improved Algorithm for Max-Weight Forests

The Random-Threshold algorithm above used relatively few properties of the max-weight
forest. Indeed, it extends to downward-closed set systems with the property that if all
values are 0 or v then picking the next value-v element whenever possible gives a near-
optimal solution. However, we can do better using properties of the underlying graph.
Here is a constant-competitive algorithm for graphical secretary where the main idea is to
decompose the problem into several disjoint single-item secretary problems.

1. Choose a uniformly random permutation π̂ of the vertices of the graph.

2. For each edge {u, v}, direct it from u to v if π̂(u) < π̂(v).

3. Independently for each vertex u, consider the edges directed towards u and
run the order-oblivious 50%-algorithm on these edges.

Theorem 5. The algorithm above for the graphical secretary problem is order-oblivious and
gets an expected value at least V ?/8.

7

Proof. The algorithm picks a forest, i.e., there are no cycles (in the undirected sense) among
the picked edges. Indeed, the highest numbered vertex (w.r.t. π̂) on any such cycle would
have two or more incoming edge picked, which is not possible.

However, since we restrict to picking only one incoming edge per vertex, the optimal max-
weight forest S? may no longer be feasible. Despite this, we claim there is a forest with
the one-incoming-edge-per-vertex restriction, and expected value V ?/2. (The randomness
here is over the choice of the permutation π̂, but not of the random order.) Since the
50%-algorithm gets a quarter of this value (in expectation over the random ordering), we
get the desired bound of V ?/8.

1

2

3
4

56

7

8 9

10

Figure 1: The optimal tree: the numbers on the left are those given by π̂. The grey box
numbered 4 is the root. The edges in the right are those retained in the claimed solution.

To prove the claim, root each component of S? at an arbitrary node, and associate each
non-root vertex u with the unique edge e(u) of the undirected graph on the path towards the
root. The proposed solution chooses for each vertex u, the edge e(u) = {u, v} if π̂(v) < π̂(u),
i.e., if it is directed into u (Figure 1). Since this event happens with probability 1/2, the
proof follows by linearity of expectation.

This algorithm is order-oblivious because the 50%-algorithm has the property. If we don’t
care about order-obliviousness, we can instead use the 37%-algorithm and get expected
value at least V ?/2e.

3.2 The Matroid Secretary Problem

One of the most tantalizing generalizations of the secretary problem is to matroids. (A ma-
troid defines a notion of independence for subsets of elements, generalizing linear-independence
of a collection of vectors in a vector space. E.g., if we define a subset of edges to be inde-
pendent if they are acyclic, these form a “graphic” matroid.) Suppose the n items form the
ground set elements of a known matroid, and we can pick only subsets of items that are
independent in this matroid. The weight/value V ? of the max-weight independent set can
be computed offline by the obvious generalization of Kruskal’s greedy algorithm. The open
question is to get an expected value of Ω(V ?) online in the RO model. The approach from
Theorem 4 gives expected value Ω(V ?/ log k), where k is the largest size of an independent
set (its rank). The current best algorithms (which are also order-oblivious) achieve an ex-
pected value of Ω(V ?/ log log k). Moreover, we can obtain Ω(V ?) for many special classes of
matroids by exploiting their special properties, like we did for the graphic matroid above;
see the notes for references.

8

4 Facility Location

A slightly different algorithmic intuition is used for the online facility location problem,
which is related to the k-means and k-median clustering problems. In this problem, we are
given a metric space (V, d) with point set V , and distances d : V × V → R≥0 satisfying
the triangle inequality. Let f ≥ 0 be the cost of opening a facility; the algorithm can be
extended to cases where different locations have different facility costs. Each request is
specified by a point in the metric space, and let Rt = {r1, . . . , rt} be the (multi)-set of
request points that arrive by time t. A solution at time t is a set Ft ⊆ V of “facilities”
whose opening cost is f · |Ft|, and whose connection cost is the sum of distances from every
request to its closest facility in Ft, i.e.,

∑
j∈Rt

mini∈Ft d(j, i). An open facility remains open
forever, so we require Ft−1 ⊆ Ft. We want the algorithm’s total cost (i.e., the opening plus
connection costs) at time t to be at most a constant times the optimal total cost for Rt in
the RO model. Such a result is impossible in the adversarial arrival model, where a tight
Θ(logn

log logn) worst-case competitiveness is known.

There is a tension between the two components of the cost: opening more facilities increases
the opening cost, but reduces the connection cost. Also, when request rt arrives, if its
distance to its closest facility in Ft−1 is more than f , it is definitely better (in a greedy
sense) to open a new facility at rt and pay the opening cost of f , than to pay the connection
cost more than f . This suggests the following algorithm:

When a request rt arrives:

1. Let dt := mini∈Ft−1 d(rt, i) be its distance to the closest facility in Ft−1.

2. Set Ft ← Ft−1 ∪ {rt} with probability pt := min{1, dt/f}, and Ft ← Ft−1
otherwise.

Observe that the choice of pt approximately balances the expected opening cost pt · f ≤ dt
with the expected connection cost (1 − pt)dt ≤ dt. Moreover, since the set of facilities
increases over time, a request may be reassigned to a closer facility later in the algorithm;
however, the analysis works even assuming the request rt is permanently assigned to its
closest facility in Ft.

Theorem 6. The above algorithm is O(1)-competitive in the RO model.

The insight behind the proof is a charging argument that first classifies each request as
“easy” (if they are close to a facility in the optimal solution, and hence cheap) or “difficult”
(if they are far from their facility). There are an equal number of each type, and the random
permutation ensures that easy and difficult requests are roughly interleaved. This way, each
difficult request can be paired with its preceding easy one, and this pairing can be used to
bound their cost.

Proof. (Sketch) For simplicity assume that f = 1, and all distances are at most 1, so
that min{1, dt/f} = dt. Consider some facility i∗ in the optimal solution, and let S be
the set of request indices served by it, i.e., those for which the closest facility is i∗. Let

9

d∗ := 1
|S|
∑

j∈S d(rj , i
∗) be the distance from an average request point in S to the facility i∗.

The optimal cost to open facility i∗ and serve these requests is

OPTS := f +
∑

j∈S d(rj , i
∗) = 1 + |S|d∗.

Observe that in our algorithm, each request point rt pays f = 1 with probability min(1, dt/f) =
dt, and dt otherwise. Summing these two, the expected cost for request rt is at most 2dt,
and hence it suffices to show that the algorithm’s cost for requests in S, which is

∑
j∈S dj ,

is at most O(1) ·OPTS .

Sort all requests in S in order of their distance from the facility i∗, and call the first half
the “close” requests C, and the second half the “distant” requests D. The close requests
are at distance at most 2d∗ from the facility by Markov’s inequality. Note that once we
open a facility j in C, each of the subsequent requests j′ pays at most dj′ ≤ d(j′, j) ≤
d(j′, i∗) + d(j, i∗) ≤ d(j′, i∗) + 2d∗, which sum to at most OPTS + 2d∗|S| ≤ 3OPTS . Hence,
we need to bound the cost incurred by requests that arrive before any facility is opened
inside S.

We first “charge” the distant requests to the close requests. Indeed, consider the (random)
arrival ordering: each distant request j ∈ D charges to its preceding close request j′ ∈ C
in this ordering (if any). Since j can use the same facility as j′, the distance dj ≤ dj′ +
d(rj , rj′) ≤ dj′ + d(rj , i

∗) + d(rj′ , i
∗). Now by the random ordering and the fact that

|C| = |D|, each close request j′ ∈ C only has a single distant request j ∈ D charging to it
in expectation, so summing gives that E[

∑
j∈D dj] ≤ E[

∑
j∈C dj] +O(OPTS). (The distant

requests that come before all close requests have to be charged separately as below; we skip
the details.)

Finally, it remains to bound the expected cost for the close requests before we open any
close facilities: for each request j, we pay dj and the process stops (since we open a facility)
with probability dj , else we continue. A simple calculation shows that the total expected
cost is at most 1.

To summarize: we used the random ordering to create a matching between the distant
(“difficult”) and the close (“easy”) requests, and charged the former to the latter. The
latter we bounded by the triangle inequality, and the fact that we open facilities with
probability proportional to how much we pay at each step.

Notes

The lecture is partly based on [1].

References

[1] Gupta, Anupam, and Sahil Singla. “Random-Order Models.” (2020), Chapter 11 in
Beyond the Worst-Case Analysis of Algorithms.

	Motivation: Picking a Large Element
	The Model and a Discussion

	The Secretary Problem
	Maximum-Weight Forest
	An Improved Algorithm for Max-Weight Forests
	The Matroid Secretary Problem

	Facility Location

