
Maximum Matching in the Online Batch-Arrival Model

Euiwoong Lee and Sahil Singla

Computer Science Department,
Carnegie Mellon University, USA

{euiwoonl,ssingla}@cs.cmu.com

Abstract. Consider a two-stage matching problem, where edges of an input
graph are revealed in two stages (batches) and in each stage we have to immedi-
ately and irrevocably extend our matching using the edges from that stage. The
natural greedy algorithm is half competitive. Even though there is a huge liter-
ature on online matching in adversarial vertex arrival model, no positive results
were previously known in adversarial edge arrival model.
For two-stage bipartite matching problem, we show that the optimal competitive
ratio is exactly 2/3 in both the fractional and the randomized-integral models.
Furthermore, our algorithm for fractional bipartite matching is instance optimal—
achieves the best competitive ratio for any given first stage graph. We also study
natural extensions of this problem to general graphs and to s stages, and present
randomized-integral algorithms with competitive ratio 1

2 + 2�O(s).
Our algorithms use a novel LP and combine graph decomposition techniques
with online primal-dual analysis.

Keywords: Online Algorithms; Matching; Primal-Dual Analysis; Edmonds-Gallai
Decomposition; Competitive Ratio; Semi-Streaming

1 Introduction

The field of online algorithms has had tremendous success in modeling optimization
problems under uncertain input (see books [3,11,26]). The framework involves an un-
derlying optimization problem (e.g., max matching), where the input arrives in stages
(e.g., edges or vertices of a graph) and we have to make immediate and irrevocable
decisions at the end of each stage (e.g., whether to match the vertex or edge). The goal
is to design online algorithms with high competitive ratio—for the worst possible input
instance the expected ratio of the online algorithm to the best algorithm in hindsight.

Most prior works on competitive analysis have only considered “single” element
arrival in each stage. Since the amount of information revealed in each stage is small,
the interesting regime is when the number of stages are large (linear in input size). Al-
though powerful, this model often becomes too pessimistic and algorithms with good
competitive ratios cannot be obtained. Here we consider the alternate online batch ar-
rival model, where a “large” portion of the input (batch) arrives in each stage and the
algorithm makes an irrevocable decision at the end of each stage. For a single stage
this model captures the offline optimization problem and for a linear number of stages
it captures the standard online model. Can we obtain competitive ratios better than the
standard online model for a “small” number of stages, say even two stages?

2 Lecture Notes in Computer Science: Authors’ Instructions

The motivation to study online batch arrival model is based on the fact that in many
scenarios that involve decision making under uncertainty, it is conceivable that instead
of making an irrevocable decision for each arrival, the decision-maker prefers to gather
some information for a certain amount of time and make a collective decision based
on it. Indeed, multistage and especially two-stage robust/ stochastic optimization prob-
lems have been actively studied in both computer science and operations research (see
recent paper of Golovin et al. [14] and references therein, or a survey of Swamy and
Shmoys [30]).

In this paper we study the online matching problem in the batch arrival model,
where edges of a graph arrive in s stages/ batches. For the basic online model where
edges arrive one-by-one, its competitive ratio is not well understood. In particular, it is
still open that the competitive ratio is strictly bigger than 1/2 or not, which is achieved
by a simple greedy algorithm. We prove that in our online batch arrival model, the
competitive ratio is strictly bigger than 1/2 for any fixed number of stages. In particular,
when s = 2, the tight competitive ratio is exactly 2/3. For s = 2, we also present a new
LP relaxation that guarantees instance optimality, which means that our algorithm’s
decision in the first stage is optimal over the arbitrary choice of the second batch.

Our algorithms use classical tools from matching theory, such as Edmonds-Gallai
decomposition and TDIness of the matching polytope, combined with carefully chosen
parameters to prove large competitive ratios (some inequalities are computer-assisted).
These positive results imply that our online batch arrival model allows interesting algo-
rithmic ideas to work, and may not be as pessimistic as the original online model.

1.1 Our Model and Results

Online matching in the vertex-arrival model started with the seminal work of Karp et
al. [19]. In this setting, vertices on one side of a bipartite graph are revealed one-by-
one along with their edges to the other side, and the problem is to immediately and
irrevocably match this vertex. Since this problem occupies a central position in on-
line algorithms and has many applications in online advertisement, many of its variants
have been studied in great depth (see survey [26]). This includes problems like Ad-
Words [28,4,5], vertex-weighted [1,6], edge-weighted [22,16], stochastic matching [10,27,25,29],
random vertex arrival [13,24,18], and vertex arrival on both sides [32,2].

Even though there is a long list of work in the vertex arrival model, no non-trivial
algorithms are known in the equally natural edge-arrival model. Here edges of a (bi-
partite) graph are revealed one-by-one and the online problem is to immediately and
irrevocably decide whether to pick the revealed edge into a matching. The best known
algorithm is greedy, which picks an edge whenever possible and is half-competitive.
Even when edges incident to a vertex are revealed together, it already captures online
bipartite matching with vertex arrival on both sides, where nothing more than half is
known [8,32].

The two-stage (fractional) bipartite matching problem is formally defined as fol-
lows. Edges of a bipartite graph G = ((U1, U2), E) are revealed in two stages: Stage 1

reveals a subgraph G(1)
= ((U1, U2), E

(1)
) of G and we need to immediately and irre-

vocably decide which of its edges to pick into a (fractional) matching X(1), without any

Maximum Matching in the Online Batch-Arrival Model 3

knowledge of the remaining edges. Unmatched Stage 1 edges then disappear. Stage 2 re-
veals the remaining edges E(2)

= E\E(1) of G as a subgraph G(2)
= ((U1, U2), E

(2)
),

and we (fractionally) pick a subset X(2) of them while ensuring that X(1)
[X(2) forms a

(fractional) matching. This paper gives randomized algorithms that maximize the com-
petitive ratio for this problem, i.e. ratio of the expected size of (fractional) matching
obtained by the algorithm to the size of the maximum matching in G. In the integral
version, the algorithm is allowed to use internal randomness, since otherwise the opti-
mal competitive ratio is half. Note that the optimal competitive ratio for the fractional
version is at least that of the integral version.

Our first main result is for the two-stage fractional bipartite matching problem. We
say an algorithm is instance optimal if given the first stage graph G(1), it outputs a
fractional matching X(1) that achieves the optimal competitive ratio over the adversarial
choice of G(2).

Theorem 1. There exists an instance optimal algorithm for the two-stage fractional
bipartite matching problem.

Although the above algorithm is instance optimal, it does not prove that for any G(1)

the competitive ratio is more than half. Also, it does not work if one can only select an
integral matching in G(1). We show that a 2/3-competitive algorithm is always possible
and that this ratio cannot be improved. Indeed, our result is on a generalization to mul-
tiple stages. In the s-stage general matching problem, edges of a graph G are revealed
in s stages. At the end of each stage, we immediately and irrevocably decide which of
that stage’s edges to pick into a matching, while the other edges disappear. The greedy
algorithm is still half competitive and a simple example shows that for s � 3 the opti-
mal competitive ratio is strictly less than 2/3 (see §A). We show that one can still beat
half for a small number of stages.

Theorem 2. There exists a (

1
2 +

1
2s+1�2)-competitive algorithm for the s-stage inte-

gral bipartite matching problem. The competitive ratio 2
3 for s = 2 is information-

theoretically tight.

We also prove similar results for general graphs.

Theorem 3. There exists a (

1
2 +

1
2O(s))-competitive algorithm for the s-stage integral

general matching problem. For the two-stage fractional general matching problem,
there exists a 0.6-competitive algorithm.

Our proofs for bipartite matching results extend to corresponding multistage bipar-
tite vertex cover results1. We describe the problem and prove these corollaries in §B.

1.2 Our Techniques

Consider a simple example where Stage 1 reveals a single edge (u, v). Should our al-
gorithm pick this edge irrevocably? Suppose it does not, then no edge might appear in

1 For general graphs, approximating vertex cover more than half is UGC hard even when the
entire graph is given [20].

4 Lecture Notes in Computer Science: Authors’ Instructions

Stage 2, which makes the competitive ratio 0. On the other hand, if it picks (u, v) then
Stage 2 might reveal two edges (u0, u) and (v, v0), where u0

6= v0. Now the max-
imum matching has size two, but the algorithm only picks a single edge, which is
half-competitive. This example already shows that no deterministic algorithm can be
more than half competitive and that no randomized algorithm can be more than 2/3
competitive—picking (u, v) with probability 2/3 is optimal.

A natural extension of the above algorithm is to pick a (carefully chosen) maximum
matching with probability 2/3. In §A, we give an illustrative example where picking
a maximum matching with probability � for any � 2 (0, 1) fails to achieve a 2/3-
competitive ratio, regardless of how the maximum matching is chosen. This establishes
the fact that different parts of the graph must use “different local distributions” to sample
a matching. On the other hand, another important consideration is to avoid matching one
vertex too much, since otherwise the adversary can ensure that the optimal edge indeed
appears in Stage 2. Intuitively, the vertices should somehow be “uniformly matched”.
Our algorithms balance the above two seemingly contradictory objects by exploiting
graph decomposition techniques and carefully chosen probability distributions.

We construct an online primal-dual algorithm, which finds online both a random
matching X(1) and a dual solution Y (1) (vertex-cover) such that for any G(2) we can
pick X(2)

✓ E(2) and a dual solution Y (2) (where X(1)
[X(2) is a matching) that

satisfy the following two properties:
(i) `1 norm of Y := Y (1)

+Y (2) is the same as the cardinality of set X := X(1)
[X(2).

(ii) In expectation the dual solution Y := Y (1)
+ Y (2) approximately satisfies every

dual constraint, i.e., covers every edge of G by at least 2/3.
Relaxed complementary slackness conditions now imply that the algorithm is 2/3 com-
petitive [31].

We view our technical contribution in two categories. The instance optimal algo-
rithm for two-stage fractional bipartite matching uses a novel LP that computes both
a matching and a vertex-cover (dual) simultaneously in the primal linear program. The
LP allows both the algorithm and the adversary to interpret their optimal strategies. On
the other hand, to prove concrete competitive ratios for various models, our technical
contribution lies in the design of algorithms themselves, which are based on graph de-
composition techniques and carefully chosen probability distributions to ensure Prop-
erties (i) and (ii). We believe these ideas to be useful for future research on online
matching. In the following, we give brief overview of our results in more details.

Fractional Bipartite Matching: Instance optimality using a new LP. We write a linear
program on G(1) to solve two-stage fractional bipartite matching problem. Our contri-
bution in proving Theorem 1 is a new technique that strengthens the linear program for
an online problem by moving the dual constraints (approximate edge-coverage) to the
primal linear program. We believe that this technique might be of independent inter-
est and will have other applications. Since our solutions are fractional, we use lower
case letters x and y instead of X and Y . We maximize the competitive ratio ↵ such
that there exists a fractional matching x(1) in E(1) and a fractional vertex cover dual
y(1) that satisfies: (a) `1 norms of x(1) and y(1) are equal and (b) every edge in E(1) is
↵-approximately covered by y(1). It turns out that these constraints are necessary but

Maximum Matching in the Online Batch-Arrival Model 5

not sufficient by themselves. This means that for the optimal ratio ↵⇤ of the linear pro-
gram, one can provide a Stage 2 graph G(2) where the algorithm cannot be more than
↵⇤ competitive; however, there might be graphs where ↵⇤ is not achievable by the al-
gorithm. To further strengthen this linear program and prove our theorem, we add new
constraints that force the dual y to cover “highly-matched” vertices in Stage 1.

Integral Bipartite Matching: Using Bipartite Matching Skeleton of [12]. For two-
stage integral bipartite matching problem, the natural approach of rounding the instance
optimal fractional matching solution fails. This has been also observed in previous on-
line matching results [32]. In §A we give an example where going from fractional to
integral setting strictly decreases the competitive ratio. Our first observation is that in
the special case where E(1) contains a perfect matching, the algorithm that selects a
perfect matching in E(1) w.p. 2/3, and no edge otherwise, is 2/3 competitive. To prove
this we construct Y (1) by giving every matched vertex a value of 1/2 (in expectation
1/3). With simple case analysis, we show that for any G(2) we can always find X(2)

and Y (2) that satisfy Properties (i) and (ii).
To obtain a 2/3-competitive algorithm for any bipartite graph, we use a decomposi-

tion into bipartite matching skeleton due to Goel et al. [12]. It partitions the vertices of
G(1) into disjoint expanding pairs (Sj , Tj) that satisfy ↵j · |N(S) \ Tj | � |S| for any
S ✓ Sj ; here j is an integer, 0 < ↵j  1, and N(S) denotes the set of neighbors of
S in G(1) (see §2). For each expanding pair (Sj , Tj), our online primal-dual algorithm
finds a probability �j with which it picks a random maximum matching in (Sj , Tj), with
some correlation between different pairs, and no edge in (Sj , Tj) otherwise. Moreover,
we find ✏j that tells us how to distribute the mass of any picked edge between its ver-
tices in the dual solution y(1). Some careful case analysis allows us to show that for any
E(2) one can obtain both X(2) and y(2) that satisfy Properties (i) and (ii).

Integral General Matching: Using a new General Matching Skeleton. To beat half for
two-stage general graph matching, we rely on Edmonds-Gallai decomposition. It gives
us a characterization of any maximum matching in G(1) by partitioning the vertices
of G(1) into three sets C,A, and D (see §2.2), where vertices in A form a “bridge”
between vertices in D and C (see Figure 1) and the subgraph G(1)

(C) of G(1) induced
on C contains a perfect matching. For G(1)

(C), as above, our algorithm again picks
a perfect matching in C w.p. 2/3, and no edge otherwise, while distributing the duals
equally to all the vertices in C. Most of our effort goes in designing an algorithm for
the induced subgraph G(1)

(A [D).
The crucial difference between bipartite and general matching is that D is no longer

independent and any maximum matching contains edges inside D. We choose D0
✓ D

and apply our bipartite matching algorithm to the bipartite graph induced by A [D0

(ignoring edges inside A). Finally, we match edges inside D and construct duals to
satisfy Properties (i) and (ii). Special care is taken for vertices in D0 since they may be
matched by both procedures. Analysis involves more technical work since the number
of dual variables for general graph matching is exponential.

6 Lecture Notes in Computer Science: Authors’ Instructions

1.3 Further Related Works

Online matching has been also studied by the streaming community [9,12,17,21]. In-
stead of irrevocably choosing an edge into the matching, the algorithm is given O(n)
space2. It can use this space to store a subset of edges (the graph might have O(n2

)

edges) and in the end outputs a matching from the set of stored edges. A major open
question in both online and streaming community is whether we can beat half for the
adversarial edge arrival model [7,15,17,21]. Here the edges of an adversarial graph are
revealed in an adversarial order. Whenever an edge is revealed, the algorithm has to
immediately and irrevocably decide whether to pick/ store the edge. Adversarial edge
arrival easily captures adversarial vertex arrival if we show all edges incident to a vertex
together.

For edge arrival, the best known lower bound in the online setting is 0.57 [7] and in
the streaming setting is 1 �

1
e [17]. On the positive side, for the random edge arrival

model, where edges of an adversarial graph are revealed in a uniformly random order,
algorithms that beat half are known both in the streaming [21] and online settings [15].
The only known positive result for adversarial edge arrival is of Goel et al. [12]. They
study two-stage matching problem in the streaming model, i.e., where the algorithm
can store any O(n) edges after first stage, and show tight matching upper and lower
bounds of 2/3. Our Theorem 2 can be seen as extending their result from streaming to
the online setting; thereby showing that streaming setting does not give any additional
power for the worst case graphs.

We note that since the decisions are irrevocable in the online setting, algorithmic
results often become much harder going from streaming to online setting, while prov-
ing hardness results becomes easier. The 2/3 lower bound of [12] is based on Ruzsa-
Szemerédi graph and involves nontrivial technical work, whereas in §1 we saw a simple
example that gives 2/3 hardness for the online setting. On the other hand, we need
several new ideas to design a 2/3 competitive algorithm for the online setting.

1.4 Organization

§2 contains preliminaries and describes the graph decomposition results used in this
work. §3 gives our instance optimal algorithm for two-stage fractional bipartite match-
ing, proving Theorem 1. §4 proves Theorem 2 for bipartite matching. §4.1 first presents
an algorithm that achieves 2/3-competitive ratio for two-stage integral matching, and
§4.2 generalizes this algorithm to show that achieves 1

2 +

1
2s+1�2 -competitive ratio for

s-stage integral matching. §5 proves Theorem 3 for general matching. §5.1 constructs
our matching skeleton for general graphs. §5.2 presents an algorithm that achieves 0.6-
competitive ratio for two-stage fractional matching, and §5.3 gives an algorithm that
achieves 1

2 + 2

O(�s)-competitive ratio for s-stage integral matching. §B proves Corol-
lary 1 and 2 for vertex cover.

2 This setting is often called “semi-streaming” in the literature, while “streaming” means
O(polylog n) space. Since this is not our focus, we do not distinguish between the two set-
tings.

Maximum Matching in the Online Batch-Arrival Model 7

A

Dodd components

Ceven components

Fig. 1. Edmonds-Gallai decomposition

2 Preliminaries and Notation

In the s-stage matching problem, for each Stage i (1  i  s), the graph G(i)
=

(V,E(i)
) is given. Let (G(1)

[· · · [G(i)
) denote the graph (V,E(1)

[· · · [E(i)
).

For the integral matching problem, in stage i, the algorithm is supposed to return
X(i)

✓ E(i) such that X(1)
[· · ·[X(i) is a matching in G(1)

[· · ·[G(i). The algorithm
is allowed to use internal randomness. For the fractional matching problem, in stage i,
the algorithm is supposed to return x(i)

2 [0, 1]E
(i)

such that x(1)
+ · · · + x(i) is in

the matching polytope of G(1)
[· · · [G(i). By definition, the competitive ratio for the

integral matching problem is at most that of the fractional matching problem.

2.1 Notation

Let G = (V,E) be an arbitrary graph. For S ✓ V , let G(S) be the subgraph induced by
S and let N(S) := {v 2 V \ S : (u, v) 2 E for some u 2 S}. Let G \ S := G(V \ S).
Let E(S) be the set of edges of G(S). Let o(G) be the number of odd components in
G. Call an odd component S ✓ V factor-critical if for any s 2 S, the induced subgraph
G(S \ {s}) has a perfect matching. For i 2 {1, 2}, we denote 3� i by .

2.2 Graph Decompositions

We first state the classical Edmonds-Gallai decomposition of a general graph.

Lemma 1 (Theorem 3.2.1 in [23]). Let G = (V,E) be an undirected simple graph.
Partition V into union of sets D,A,C, where D = {v 2 V | 9 a max matching in G missing v},
A = N(D), C = V \ (D [A). Then,
1. C(G) consists of even components and has a perfect matching.
2. D(G) consists of odd components and every component is factor-critical.

8 Lecture Notes in Computer Science: Authors’ Instructions

3. For every maximum matching of G, (1) every vertex in C is matched with another
vertex in C, (2) every vertex in A is matched with another vertex in D, and (3) each
odd component of G(D) has at most one vertex matched to A.

For bipartite graphs, one can obtain stronger properties from the decomposition due to
Goel et al. [12].

⇥

⇥

S0

T0

SbTa

TbSa

U1

U2

Fig. 2. Bipartite matching skeleton [12]. Solid edges can exist but not dashed edges.

Lemma 2 (Bipartite matching skeleton [12]). Let G = ((U1, U2), E) be a bipartite
with no isolated vertex. There exists a partition of the vertices (see Figure 2) into pairs
of subsets {(Sj , Tj)}j , where j is an integer in the interval [a, b] for integers a  0  b,
such that
1. Sj ✓ U1 and Tj ✓ U2 for j � 0, and vice versa for j < 0.
2. |Tj | =

1
↵j

|Sj | and for any P ✓ Sj , one has |N(P) \ Tj | �
1
↵j

|P |.
3. ↵a < ↵a+1 · · · < ↵0 = 1 > · · · > ↵b�1 > ↵b.
4. There exists a fractional matching between Sj and Tj such that vertices in Sj are

perfectly matched and vertices in Tj are exactly ↵j matched. Call (Sj , Tj) an ↵j-
expanding pair.

5. There is no edge of G between vertices in Sj and Tk for j, k where ↵j > ↵k.
6. There is no edge of G between vertices in Tj and Tk for any j, k.

3 Instance Optimal Two-stage Fractional Bipartite Matching

In this section, we present a polynomial time instance optimal algorithm for the two-
stage fractional bipartite matching, proving Theorem 1. Recall that an algorithm is in-
stance optimal if for every G(1), it is guaranteed to achieve the optimal competitive
ratio given G(1).

Theorem 4. For any bipartite G(1), the following LP computes the optimal competi-
tive ratio given G(1).

max ↵

s.t. fu =

P
v2N1(u)

x
(1)
u,v 8u 2 V

fu  1, 8u 2 V

Maximum Matching in the Online Batch-Arrival Model 9

P
(u,v)2E(1) x

(1)
u,v�

P
u y

(1)
u ,

y(1)u + y(1)v � ↵, 8(u, v) 2 E(1) (1)

y(1)u � fu � (1� ↵), 8u 2 V (2)

x(1)
u,v, y

(1)
u � 0, 8u, v 2 V

We prove sufficiency and necessity directions in Lemma 3 and Lemma 4, respectively.

Lemma 3. LP ensures that we can find a fractional matching x and fractional vertex
cover certificate y, both of the same value, such that every edge appearing in first or
second stage can be covered by at least ↵.

Proof. Consider any 2nd stage extension LP for a given first stage solution x(1). Also,
consider its dual.

max

X

(u,v)2E(2)

x(2)
u,v

s.t.
P

v2N2(u)
x
(2)
u,v  1� fu, 8u 2 V

x(2)
u,v � 0, 8u, v 2 V

min

X

u

y0u(1� fu)

s.t. y0u + y0v � 1, 8(u, v) 2 E(2)

(3)

y0u � 0, 8u 2 V

For any vertex u, define second stage vertex cover y(2)u to be y0u(1� fu). Hence the
fractional vertex cover y is defined as yu := y

(1)
u + y

(2)
u = y

(1)
u + y0u(1� fu). It can be

easily verified that kyk1 is the same as the obtained fraction matching. Eq. (1) tells that
any first stage edge is ↵ covered by y. We next show that any second stage edge (u, v)
is also ↵ covered by y. This is because yu + yv

= y(1)u + y(1)v + y0u(1� fu) + y0v(1� fv)

� y(1)u + y(1)v + (y0u + y0v)(1�max{fu, fv})

� �(1� ↵) + 1 = ↵ (using Eq. (3) and Eq. (2)).

Lemma 4. LP is tight, i.e. we can produce a Stage 2 graph s.t. no algorithm can be
better than ↵ competitive.

Proof. We prove by contradiction and consider any decision x⇤ at the end of the first
stage (this also fixes f⇤

u) by an optimal algorithm with competitive ratio � > ↵. We note
that the optimal value of the following LP is greater than

P
x⇤
u,v as otherwise we get

a feasible solution to LP with value �, and this is a contradiction that ↵ is the optimal
value of LP.

min

X

u

y0u

s.t. y0u + y0v � ↵, 8(u, v) 2 E(1)

y0u � f⇤
u � (1� ↵), 8u 2 V1

10 Lecture Notes in Computer Science: Authors’ Instructions

y0u � 0, 8u 2 V

Also, consider its dual linear program.

max

X

(u,v)2E(1)

↵Zu,v +

X

u

(f⇤
u � (1� ↵))Yu

s.t.
P

v2N1(u)
Zu,v + Yu  1, 8u 2 V1 (4)

Zu,v, Yu � 0, 8u, v 2 V1

Proposition 1. The above dual linear program has an optimal integral solution.

Proof. Given an instance of the dual LP, consider the instance of the maximum weight
matching where each edge (u, v) 2 E(1) has weight ↵ and each for each vertex u 2 V ,
we create a new vertex u0 and an edge (u, u0

) with weight f⇤
u�(1�↵). There is one-to-

one correspondence between feasible solutions of the two problems. Since maximum
weight matching always has an optimal integral solution, so does the above dual LP.

Given the solution to the above dual LP, the second stage graph consists
P

Yu

disjoint edges, each adjacent to exactly one vertex with Yu = 1. Note that due to Eq. (4),
edges with Zu,v = 1 can never be adjacent to a vertex with Yu = 1. Hence the optimum
matching for this two stage graph is at least

P
u Yu +

P
(u,v)2E(1) Zu,v . On the other

hand, the two stage algorithm’s value is
P

u x
⇤
u,v +

P
u Yu (1� f⇤

u). Combining,

↵OPT� ALG � ↵ (

P
u Yu +

P
(u,v)2E(1) Zu,v)�

⇣P
u,v x

⇤
u,v +

P
u Yu (1� f⇤

u)

⌘

=

⇣P
(u,v)2E(1) ↵Zu,v +

P
u(f

⇤
u � (1� ↵))Yu

⌘
�

P
u,v x

⇤
u,v > 0.

4 Bipartite Matching

In this section, we prove Theorem 2 for bipartite matching. §4.1 first presents an al-
gorithm that achieves 2/3-competitive ratio for two-stage integral matching, and §4.2
generalizes this algorithm to show that achieves 1

2 +

1
2s+1�2 -competitive ratio for s-

stage integral matching.

4.1 Two-stage Integral Bipartite Matching

We show that the optimal competitive ratio for two-stage integral bipartite matching is
exactly 2/3, proving Theorem 2 for s = 2. We already know from §1 that no algorithm
can be better than 2/3-competitive for two-stage integral bipartite matching problem.
To prove the other direction, the idea is to find matching X(1) in a way that we have
a corresponding fractional dual solution Y (1) such that for any Stage 2 graph G(2), we
can find a matching X(2) and dual Y (2) where in expectation Y (1)

+ Y (2) covers every
edge in G by 2/3.

Maximum Matching in the Online Batch-Arrival Model 11

Warmup: G(1) Contains a Perfect Matching Consider a simple algorithm that picks
the perfect matching into X(1) w.p. 2/3, and no edge otherwise. In Stage 2, the algo-
rithm picks the maximum possible matching X(2)

2 E(2) such that X(1)
[X(2) is a

matching. This is equivalent to finding a maximum matching in G(2) after ignoring the
vertices matched in X(1).

To prove that this algorithm is 2/3 competitive, for any vertex u we set Y (1)
u = 1/2

whenever it’s matched. For Stage 2, since bipartite maximum matching is equivalent
to bipartite vertex cover, it also gives us integral vertex dual Y (2) such that |Y (2)

| =

|X(2)
| and every edge in G(2), with none of its vertices matched in X(1), is covered

by Y (2). To prove that the algorithm is 2/3 competitive, we show that for any edge
(u, v) 2 E(1)

[E(2),

E[Yu] + E[Yv] = E[Y (1)
u] + E[Y (1)

v] + E[Y (2)
u] + E[Y (2)

v] � 2/3.

For (u, v) 2 E(1), the above equation is simply true because E[Y
(1)
u] + E[Y

(1)
v] =

Pr[Perfect matching picked] · (12 +

1
2) =

2
3 (

1
2 +

1
2) =

2
3 .

Now, consider an edge (u, v) 2 E(2). Consider first the case where both u and v

have an edge incident to them in Stage 1. Then, similar to above, we have E[Y
(1)
u] +

E[Y
(1)
v] =

2
3 (

1
2 +

1
2) =

2
3 . So WLOG assume v has no edge incident to it in E(1). Now,

E[Yu] + E[Yv] =Pr[u is matched in X(1)
] · E[Y (1)

u + Y (1)
v | u is matched in X(1)

]+

Pr[u is not matched in X(1)
] · E[Y (2)

u + Y (2)
v | u is not matched in X(1)

]

= Pr[u is matched in X(1)
] ·

1

2

+ Pr[u is not matched in X(1)
] · 1

=

2

3

(because Pr[u is matched in X(1)
] = 2/3).

Any Bipartite Graph G(1)

Algorithm and construction of duals. The algorithm starts by constructing a matching
skeleton for G(1) as described in §2.2. For j 2 {a, . . . ,�1, 0, 1, . . . , b}, let (Sj , Tj)

denote the obtained expanding pair with expansion ↵j between 0 and 1. We define

�j :=
3� ↵j

3

and ✏j :=
2� ↵j

3� ↵j
.

The algorithm chooses a uniformly random r between [0, 1] and picks a random max-
imum matching between all (Sj , Tj) with ↵j < r. Note that picking a matching in
(Sj , Tj) implies every vertex in Sj is matched w.p. 1 and each vertex in Tj is matched
w.p. probability ↵j (not independently). The dual variables Y (1) are given values in
a natural way: for any edge (u, v) in (Sj , Tj) picked into matching X(1), we assign
Y

(1)
u = ✏j and Y

(1)
v = 1� ✏j . This clearly satisfies kY (1)

k1 = |X(1)
|.

In Stage 2, the algorithm picks the maximum possible matching X(2)
2 E(2) such

that X(1)
[X(2) is a matching. This is equivalent to finding a maximum matching in

G(2) after ignoring the vertices matched in X(1). Since bipartite maximum matching is
equivalent to bipartite vertex cover, this step also gives us integral vertex dual Y (2) with

12 Lecture Notes in Computer Science: Authors’ Instructions

Algorithm 1 Two-stage Integeral Bipartite Matching Algorithm
Stage 1

1: Construct a matching skeleton with expanding pairs (Sj , Tj) and expansion ↵j .
2: Define �j :=

3�↵j

3 and generate a uniformly random real r 2 [0, 1].
3: for each j do
4: if �j < r then
5: Pick a random maximum matching between (Sj , Tj) that matches all vertices of Sj

w.p. 1 and each vertex of Tj w.p. exactly ↵j .
6: end if
7: end for

8: Stage 2 Pick the optimal matching extension in G(2).

|Y (2)
| = |X(2)

| and every edge in G(2), with none of its vertices matched in X(1), is
covered by Y (2). In fact, the next section shows that for any edge (u, v) 2 E(1)

[E(2),
we have

E[Yu] + E[Yv] = E[Y (1)
u] + E[Y (1)

v] + E[Y (2)
u] + E[Y (2)

v] � 2/3.

Analysis of the online primal-dual algorithm. We show E[Y] covers every edge in
E(1)
[E(2) by 2/3. First, consider any Stage 1 edge (u, v). The only possible cases due

to Lemma 2 are: (a) u 2 Sj and v 2 Tk for ↵j  ↵k, and (b) u 2 Sj and v 2 Sk.
(a) u 2 Sj and v 2 Tk for ↵j  ↵k: Using linearity of expectation and noting that v is

matched w.p. �k↵k,
E[Y (1)

u] + E[Y (1)
v] = �j✏j + �k↵k(1� ✏k) � �j✏j + �j↵j(1� ✏j) = 2/3,

where the inequality is because �↵(1� ✏) = ↵
3 decreases with decrease in ↵.

(b) u 2 Sj and v 2 Sk: Using linearity of expectation,

E[Y (1)
u] + E[Y (1)

v] = �j✏j + �k✏k � 2 �0✏0 = 2/3, because �✏ is minimum for ↵ = 1.

Next, consider any Stage 2 edge (u, v). Since Lemma 2 does not apply to Stage 2

edges, we need to consider all the following cases: (a) u 2 Sj and v 2 Tk, (b) u 2 Sj

and v 2 Sk, (c) u 2 Tj and v 2 Tk, and (d) u 2 Sj and v new, (e) u new and v 2 Tk.
We only discuss Case (c) here, and refer to §4.2 for others.

Case (c) (u 2 Tj and v 2 Tk): WLOG assume ↵j � ↵k. We note that in Stage 1

vertex u is matched w.p. �j↵j and vertex v w.p. �k↵k. Using linearity of expectation,

E[Y (1)
u] + E[Y (1)

v] = �j↵j(1� ✏j) + �k↵k(1� ✏k) = ↵j/3 + ↵k/3. (5)
Also, Stage 2 dual gets value 1 if r > �k, or v is not matched for r 2 [�j , �k], or both
u, v not matched for r < �j .

E[Y (2)
u] + E[Y (2)

v] = (1� �k) + (�k � �j)(1� ↵k) + �j(1� ↵j)(1� ↵k). (6)
Summing (5) and (6), and substituting for �j and �k gives,

E[Yu] + E[Yv] = E[Y (1)
u + Y (2)

u] + E[Y (1)
v + Y (2)

v]

=

1

3

�
2 + (1� ↵j � ↵k)

2
+ ↵j↵k(1� ↵j)

�
� 2/3.

Maximum Matching in the Online Batch-Arrival Model 13

Algorithm 2 s-stage Integeral Bipartite Matching Algorithm
1: for each stage s do
2: Construct a matching skeleton with expanding pairs (Sj , Tj) and expansion ↵j .
3: Define �j :=

p�↵j(p�q)

p+↵j(1�p) and generate a uniformly random real r 2 [0, 1].
4: for each j do
5: if �j < r then
6: Pick a random maximum matching between (Sj , Tj) that matches all vertices of

Sj w.p. 1 and each vertex of Tj w.p. exactly ↵j .
7: end if
8: end for
9: end for

4.2 s-stage Fractional and Integral Bipartite Matching

We generalize the algorithm from the previous section to prove Theorem 2 by induc-
tion on the number of stages, which implies the theorem is true for fractional bipartite
matching. The idea is to match vertices in a way such that we have a corresponding
fractional dual solution that for any next stage graph can be extended to violate each
dual constraint by a small amount. The base case is trivially true for s = 1 since we can
just pick the maximum matching. Suppose our algorithm can guarantee in expectation p
competitive ratio for s�1 stages. We show that for s stages the algorithm can guarantee
q :=

2p
2p+1 competitive ratio, which proves the induction step. Note that both p and q

are functions of s.

Algorithm The algorithm starts by constructing a matching skeleton for Stage 1 bi-
partite graph G(1) as described in §2.2. For j 2 {. . . ,�2,�1, 0, 1, 2, . . .}, let (Sj , Tj)

denote the obtained expanding pair with expansion ↵j  1. We define

�j :=
p� ↵j(p� q)

p+ ↵j(1� p)
.

We choose a uniformly random r between [0, 1] and pick a random maximum matching
between all (Sj , Tj) with ↵j < r. Note that picking a matching in (Sj , Tj) implies
every vertex in Sj is matched w.p. 1 and each vertex in Tj is matched w.p. probability
↵j (not independently). The dual variables Y (1) are given values in a natural way:
for any edge (u, v) in (Sj , Tj) picked into matching X(1), we assign Y

(1)
u = ✏j and

Y
(1)
v = 1� ✏j . This clearly satisfies kY (1)

k1 = |X(1)
|.

For the remaining s � 1 stages, the algorithm operates recursively on the obtained
graph.

Analysis of the Induction Step Let x denote the indicator variable for the matching
obtained by the above algorithm. We construct a dual solution y such that

P
u yu =P

e xe. Moreover, for every edge (u, v) in the graph,
E[yu] + E[yv] � q, (7)

14 Lecture Notes in Computer Science: Authors’ Instructions

where the expectation is over random choices of the algorithm. To define how the dual
variables behave, for every expanding pair (Sj , Tj) we define

✏j :=
pq � ↵j(p� q)

p� ↵j(p� q)

The dual variables are given values in a natural way: for any edge (u, v) picked in
(Sj , Tj), we assign yu = ✏j and yv = 1� ✏j . We show Eq. (7) holds for any stage edge
(u, v) 2 E using the following simple fact.

Fact 5 For any j, if ↵j decreases then the following expressions increase:

�↵j , �j , ✏j , ✏j�j , �j(1� ✏j), �↵j(1� ✏j), �↵j�j(1� ✏j).

Fact 6 For all j

�j✏j + �j↵j(1� ✏j) = q

�j↵j(1� ✏j) = (1� �j)p

�j✏j = q � (1� �j)p

Proof. Simple algebra using the definitions.

Fact 7 For all j
1� �k � ↵k(�k � q) � 0

Proof. To simplify notation we remove subscripts.

1� � � ↵(� � q) = ↵

✓
(1� q)� (p� ↵(p� q)� q(p+ ↵(1� p)))

p+ ↵(1� p)

◆

= ↵

✓
(1� q)(1� p) + ↵p(1� q)

p+ ↵(1� p)

◆
� 0.

Fact 8 For all j, k

3� �j(1 + ↵j)� �k(1 + ↵k) + q↵j↵k � 2(1� q)

() 1 + 2q � �j(1 + ↵j)� �k(1 + ↵k) + q↵j↵k � 0

Proof. On simplifying, it gives denominator of (1 + 2p)(�↵j � p+ ↵jp)(�↵k � p+
↵kp) � 0 and numerator
(�1 + ↵k)

2p2(�1 + 2p) + ↵2
jp(2↵

2
k(�1 + p)2 + p(�1 + 2p) + ↵k(�1 + 5p� 4p2))+

↵j(2(1� 2p)p2 � ↵2
kp(1� 5p+ 4p2) + ↵k(1� 7p2 + 8p3))

This is verified as Case 0 of §C.

Stage 1 edges We first argue for any Stage 1 edge (u, v). The only possible cases due
to Lemma 2 are the following.
(a) u 2 Sj and v 2 Tk for ↵j  ↵k: The expected dual is

�j✏j + �k↵k(1� ✏k)

� �j✏j + �j↵j(1� ✏j) = q. (using Fact 5 and Fact 6)

Maximum Matching in the Online Batch-Arrival Model 15

(b) u 2 Sj and v 2 Sk: The expected dual is
�j✏j + �k✏k

� 2 �0✏0 (Fact 5 gives �✏ is min for ↵ = 1)

= 2 (pq � (p� q)) � q. (by definition)

Stage 2 edges Next, consider any edge (u, v) that appears in Stage 2. Since Lemma 2
does not apply to Stage 2 edges, we consider all the following cases.
(a) u 2 Sj and v 2 Tk: The expected dual for the case ↵j  ↵k is

�k (✏j + (1� ✏k)↵k) + (1� �j) · p+ (�j � �k)✏j

� �k (✏k + (1� ✏k)↵k) (✏j � ✏k using Fact 5)
= q (using Fact 6)

The expected dual for the other case ↵j > ↵k is
�j (✏j + (1� ✏k)↵k) + (1� �k) · p+ (�k � �j) ((1� ↵k) · p+ ↵k(1� ✏k))

= (�k✏k + �k(1� ✏k)↵k) + (1� �k) · p+ (�k � �j)(1� ↵k) · p� (�k✏k � �j✏j)

= q + p(1� �k↵k � �j + �j↵k)� (�k✏k � �j✏j) (using Fact 6)
= q + p(1� �k � ↵k(�k � �j)) (using Fact 6)
� q + p(1� �k � ↵k(�k � q)) (�j � q)

� q (using Fact 7)

(b) u 2 Sj and v 2 Sk: WLOG assume ↵j � ↵k. The expected dual is
�j (✏j + ✏k) + (1� �k) · p+ (�k � �j)✏k

� 2 �0✏0 (Fact 5 gives �✏ is min for ↵ = 1)

= 2 (pq � (p� q)) � q. (by definition)

(c) u 2 Tj and v 2 Tk: WLOG assume ↵j � ↵k. The expected dual is
�j (↵j(1� ✏j) + ↵k(1� ✏k) + (1� ↵j)(1� ↵k) · p)+

(1� �k) · p+ (�k � �j) (↵k(1� ✏k) + (1� ↵k) · p)

= q + p(1� �k � ↵k(�k � �j)) + �j(↵j(1� ✏j) + (1� ↵j)(1� ↵k) · p� ✏j)

(using Case (a))

= p (3� �j(1 + ↵j)� �k(1 + ↵k) + �j↵j↵k)

� p (3� �j(1 + ↵j)� �k(1 + ↵k) + q↵j↵k) (using �j � q)

� p(2(1� q)) = q. (using Fact 8)

(d) u 2 Sj and v new, or u new and v 2 Tk: The expected dual values are at least as
much as previous cases.

Stage � 3 edges Here we are already done because induction hypothesis gives that
these edges are covered by p � q.

16 Lecture Notes in Computer Science: Authors’ Instructions

5 General Matching

In this section, we prove Theorem 3 for general matching. §5.1 constructs our matching
skeleton for general graphs. §5.2 presents an algorithm that achieves 0.6-competitive
ratio for two-stage fractional matching, and §5.3 gives an algorithm that achieves 1

2 +

2

O(�s)-competitive ratio for s-stage integral matching.

5.1 General Matching Skeleton

We introduce our general matching skeleton for general graphs. It is based on the
Edmonds-Gallai decomposition (Lemma 1) and the bipartite matching skeleton due to
Goel et al. (Lemma 2).

Given G(1)
= (V,E(1)

), let V (1)
✓ V be the vertices incident to at least one edge

in E(1). First apply the Edmonds-Gallai decomposition (Lemma 1) to partition V (1)

into three subsets D,A,C. Further partition D to Ds and Dl such that G(1)
(Ds) is the

set of isolated vertices, and G(1)
(Dl) is the union of odd components whose size is

at least three. Let ˆDl be the set of such odd components of size at least three (so thatS
U2D̂l

U = Dl).
Fix a maximum matching M ✓ E(1). For each odd component U 2 ˆDl, at most one

vertex is matched to A. Let r(U) be the vertex in U matched to A in M . If no vertex is
matched to A, let r(U) := ⇤ (assume ⇤ /2 V). Let D0

= Ds[{r(U) : r(U) 6= ⇤}U2D̂l
.

Consider the bipartite graph G(1)
(A,D0

), where the set of vertices is A [D0 and
the set of edges is {(u, v) 2 E : u 2 A, v 2 D0

}. By definition of D0, M induces a
matching in G(1)

(A,D0
) that matches every vertex in A. (See Figure 3 for an example.)

We use the bipartite matching skeleton of G(1)
(A,D0

) to have S0, . . . , Sa ✓ A and
T0, . . . , Ta ✓ D0 with 1 � ↵0 > · · · > ↵b. Since there exists a matching in G0 that
matches every vertex in A, all Si’s are contained in A and all Ti’s are contained in D0.
See [12, Lemma 3.2] for details.

5.2 Two-stage Fractional General Matching

We present a two-stage fractional bipartite matching algorithm that achieves a 0.6-
competitive ratio. Given the first graph G(1)

= (V,E(1)
), Algorithm 3 describes how

to construct a fractional matching {x
(1)
u,v}u,v . Given Edmonds-Gallai decomposition

(C,A,D) for G(1), the algorithm selects 0.6 times a perfect matching within C. Our
previous algorithm for bipartite graphs is run on the bipartite graph between A and D0

(ignoring edges inside A), with slightly different parameters. Finally, for large odd com-
ponents U ✓ Dl, we choose a fractional matching within U . Some additional care must
be taken when r(U) 2 Tj for some Tj , since it may be already fractionally matched.

An important property of Algorithm 3 is that every vertex is fractionally matched
with at least (and close to) 0.6 unless it forms a singleton component in G(1)

(D). Dual
variables {y(1)u }u are constructed in the following way: y(1)u ↵j � 0.4↵2

j if u forms
a singleton component in G(D) and u 2 Tj . Let y(1)v 0.3 for all other v 2 V (1). The
following proposition shows that kx(1)

k1 = ky(1)k1.

Maximum Matching in the Online Batch-Arrival Model 17

A

Dodd components

Ceven components

Fig. 3. Edmonds-Gallai decomposition for general matching. The shaded region represents
G(1)(A,D0) where we apply our bipartite matching algorithm. The dashed edges are never
picked by our algorithm.

Proposition 2. After Algorithm 3 terminates, kx(1)
k1 :=

P
(u,v)2E(1) x

(1)
u,v = ky(1)k1 :=

P
v2V y

(1)
v .

Proof. We check each of 5 locations that we change x(1) and y(1).
(a) Line 7: kx(1)

k1 is increased by 0.3(↵j+1)
↵j

|Sj |. ky(1)k1 is increased by 0.3|Sj | from

Sj , and 0.3|Tj | = 0.3
|Sj |
↵j

from Tj . Therefore, ky(1)k1 is also increased by 0.3(↵j+1)
↵j

|Sj |.
(b) Line 9: kx(1)

k1 is increased by (1 � 0.4↵)|Sj |. ky(1)k1 is increased by (0.6 �
0.4↵)|Sj | from Sj , and 0.4↵|Tj | = 0.4|Sj | from Tj . Therefore, ky(1)k1 is also
increased by (1� 0.4↵)|Sj |.

(c) Line 15: kx(1)
k1 is increased by 0.6

|U |�1 ·

|U |(|U |�1)
2 = 0.3|U |. ky(1)k1 is also in-

creased by 0.3|U |.
(d) Line 19: kx(1)

k1 is increased by 0.8↵ |U |�1
2 +

0.6�0.8↵
|U |�1 ·

|U |(|U |�1)
2 = 0.3|U |�0.4↵.

y
(1)
r(U) is increased by 0.3� 0.4↵, and y

(1)
u for u 2 U \ {r(U)} is increased by 0.3.

Therefore, ky(1)k1 is also increased by 0.3|U |� 0.4↵.
(e) Line 21: kxk1 is increased by 0.6 · (|U |�1)

2 = 0.3(|U |� 1). kyk1 is also increased
by 0.3(|U |� 1).

It remains to verify whether x(1) is in the matching polytope. It will be proved later
when we discuss Stage 2 edges.

For u 2 V , let fu =

P
(u,v)2E(1) x

(1)
u,v and fU =

P
(u,v)2E(1)(U) x

(1)
u,v . Given the

second graph G(2)
= (V,E(2)

), the maximum fractional matching is computed by the
following LP.

max

P

(u,v)2E(2)

x
(2)
u,v

18 Lecture Notes in Computer Science: Authors’ Instructions

Algorithm 3 Two-stage Fractional Matching Algorithm
Stage 1

1: Compute the Edmonds-Gallai decomposition (C,A,D) of G(1).
2: Let MC be a perfect matching for G(1)(C). Let x(1)

e 0.6 for all e 2MC , and let y(1)
u

0.3 for all u 2 C.
3: Construct the matching skeleton with expanding pairs {(Sj , Tj)} and expansion ↵j for G0

defined above.
4: for each j do
5: Pick a fractional matching z between (Sj , Tj) that matches all vertices of Sj with value

1 and each vertex of Tj with value exactly ↵j .
6: if ↵j � 3

4 then
7: x(1) x(1)+

0.3(↵j+1)

↵j
z for (u, v) 2 E(1)(Sj , Tj). y(1)

u 0.3 for all u 2 Sj[Tj .
8: else
9: x(1) x(1) + (1 � 0.4↵j)zu,v . y(1)

u 0.6 � 0.4↵ for u 2 Sj . y(1)
u 0.4↵ for

u 2 Tj .
10: end if
11: end for
12: for each odd component U 2 D̂l do
13: For v 2 U , let zv be a perfect matching in G(U \ v).
14: if r(U) = ⇤ then
15: x(1) x(1) + 0.6

|U|�1

P
v2U zv . y(1)

u 0.3 for all u 2 U \ {r(U)}.
16: else
17: Let j be such that r(U) 2 Tj for some j.
18: if ↵j < 3

4 then
19: x(1) x(1) + 0.8↵zr(U) + 0.6�0.8↵

|U|�1

P
v z

v . y(1)
u 0.3 for all u 2 U .

20: else
21: x(1) x(1) + 0.6zr(U). y(1)

u 0.3 for all u 2 U \ {r(U)}.
22: end if
23: end if
24: end for

25: Stage 2 Pick the optimal fractional matching extension in G(2).

s.t.
P

v2N(u) x
(2)
u,v  1� fu 8u 2 V

P
(u,v)2E(2)(U) x

(2)
u,v 

|U |�1
2 � fU 8|U | odd

x(1)
u,v � 0 8u, v 2 V

min

P
u
y0u(1� fu) +

P

|U | odd
y0U

⇣
|U |�1

2 � fU

⌘

s.t. y0u + y0v � 1 8(u, v) 2 E

y0u � 0 8u 2 V

y0U � 0 8U ✓ V, |U |odd.

Maximum Matching in the Online Batch-Arrival Model 19

Let x(2) and y0 be the optimal primal and dual solutions, respectively. Since the
matching polytope is Totally Dual Integral (TDI), we assume that y0 is integral. Let y
be the final dual solution defined by yu = y

(1)
u + y0u(1 � fu) for u 2 V and yU =

y0U

⇣
1�

fU
(|U |�1)/2

⌘
for an odd set U ✓ V . We have

P
v yv +

P
U yU

⇣
|U |�1

2

⌘
=

P
v y

(1)
v +

P
v y

0
v(1� fv) +

P
U y0U

⇣
|U |�1

2 � fU

⌘

=

P

(u,v)2E(1)

x
(1)
u,v +

P

(u,v)2E(2)

x
(2)
u,v,

which is the total amount of the fractional matching. Our goal is to show that for every
edge (u, v) 2 E(1)

[E(2),
yu + yv +

P

U :{u,v}✓U,|U | odd
yU � 0.6, (8)

which would imply that the fractional matching x(1)
+ x(2) is at least 0.6 times the

offline maximum matching.

Stage 1 edges. We prove Eq. (8) for edges e = (u, v) 2 E(1). Indeed, we prove that
y
(1)
u + y

(1)
v � 0.6, where {y

(1)
u } are the dual variables computed in the first stage. By

construction of y(1), y(1)v = 0.3 unless v is an isolated vertex of G(1)
(D). Therefore, if

none of u and v is an isolated vertex of G(1)
(D), y(1)u +y

(1)
v = 0.6. The only remaining

case is when u 2 A and v is an isolated vertex of G(1)
(D). In other words, u 2 Si

and v 2 Tj for some i and j. Recall that i � j and ↵i < ↵j by Lemma 2. Then
y
(1)
u + y

(1)
v = (0.6� 0.4↵i) + 0.4↵j � 0.6.

Stage 2 edges. Assume towards contradiction that there is an edge e = (u, v) 2 E(2)

such that Eq. (8) is violated. Since y0 is {0, 1}-valued,

y(1)u + y(1)v + y0u(1� fu) + y0v(1� fv) +
P
U

y0U

⇣
|U |�1

2 � fU

⌘
< 0.6

=) y(1)u + y(1)v +min

U
(1� fu, 1� fv, (|U |� 1)/2� fU) < 0.6.

Therefore, either y(1)u + y
(1)
v + (1� fu) < 0.6, y(1)u + y

(1)
v + (1� fv) < 0.6, or there

exists U such that y(1)u + y
(1)
v + (

|U |�1
2 � fU) < 0.6. In particular, if x(1) is not in a

matching polytope (i.e., fu > 1 for some u or fU > |U |�1
2 for some odd set U), since

y
(1)
u  0.3 for all u 2 V , at least one such case must happen. Ruling out these cases

proves both the competitive ratio and the fact that x(1) is in a matching polytope.
For the first case, suppose that y(1)u + y

(1)
v + (1� fu) < 0.6 (the case y(1)u + y

(1)
v +

(1 � fv) < 0.6 is handled similarly). We show that y(1)u + (1 � fu) � 0.6 for every
u 2 V , so that this case cannot occur.

Lemma 5. For every v 2 V , y(1)u + (1� fu) � 0.6() fu � y
(1)
u  0.4.

Proof. 1. v 2 C: y(1)v = 0.3, fu = 0.6.
2. v ✓ A: v 2 Sj for some j. If ↵j �

3
4 , y(1)v = 0.3, fv =

0.3(↵j+1)
↵j

 0.7.

Otherwise, y(1)v = 0.6� 0.4↵ and fv = 1� 0.4↵.

20 Lecture Notes in Computer Science: Authors’ Instructions

3. v is an isolated vertex in D(G(1)
): v 2 Tj for some j. If ↵j �

3
4 , y(1)v = 0.3,

fv = 0.3(↵j+1)  0.6. Otherwise, y(1)v = 0.4↵ and fv = ↵�0.4↵2, so fv�y
(1)
v =

0.6↵� 0.4↵2
 0.6.

4. v 2 U for an odd component U 2 ˆDl, but not v 6= r(U): y(1)v = 0.3 and fv = 0.6.
5. v = r(U) for an odd component U 2 ˆDl: v 2 Tj for some j. If ↵j �

3
4 , y(1)v = 0.3,

fv = 0.3(↵j+1)  0.6. Otherwise, y(1)v = 0.3 and fv = ↵�0.4↵2
+0.6�0.8↵ =

�0.4↵2
+ 0.2↵+ 0.6  0.625.

Finally, suppose that there exist two vertices u, v 2 V and U such that {u, v} ✓ U ,
|U | is odd, and y

(1)
u + y

(1)
v + (

|U |�1
2 � fU) < 0.6. Among all such triples (u, v, U),

take one triple that minimizes |U |. The following two lemmas show that indeed such U
must be contained in one expanding pair (Sj , Tj).

Lemma 6. U cannot be partitioned into U1, U2, {u} or U1, U2, {v} such that |U1|, |U2|

are odd and there is no edge (a, b) 2 U1 ⇥ U2 with x
(1)
a,b > 0.

Proof. Assume towards contradiction that U is partitioned into U1, U2, {u} such that
every edge (a, b) 2 U1 ⇥ U2 has x(1)

a,b = 0. This implies that

fU = fU1 + fU2 + fu 
|U1|� 1

2

+

|U2|� 1

2

+ fu =

|U |� 1

2

+ fu � 1.

Therefore,

y(1)u + y(1)v + (

|U |� 1

2

� fU) < 0.6

=) y(1)u +

|U |� 1

2

� fU < 0.6

=) y(1)u + (1� fu) < 0.6,

which contradicts Lemma 5. The case that U is partitioned into U1, U2, {v} follows
from the same proof.

Lemma 7. There exists j such that U ✓ Sj [Tj .

Proof. Let Ex ✓ E(1) be such that (a, b) 2 Ex if and only if x
(1)
a,b > 0, and let

Gx = (V,Ex).

Proposition 3. Gx(U) is connected.

Proof. First, assume there exists a connected component U1 (U that contains neither
u nor v. Since U1 is disconnected from the rest of U , fU = fU1 + fU2 . Consider
U2 = U \ U1. If |U1| is even and |U2| is odd,

y(1)u + y(1)v +

|U2|� 1

2

� fU2  y(1)u + y(1)v +

|U2|� 1

2

� fU2 +

|U1|

2

� fU1

= y(1)u + y(1)v +

|U |� 1

2

� fU < 0.6,

contradicting the minimality of |U |. If |U1| is odd and |U2| is even,

y(1)u + y(1)v +

|U2|

2

� fU2  y(1)u + y(1)v +

|U2|

2

� fU2 +

|U1|� 1

2

� fU1

Maximum Matching in the Online Batch-Arrival Model 21

= y(1)u + y(1)v +

|U |� 1

2

� fU < 0.6.

If |U2| = {u, v}, this implies y(1)u +1� fu < 0.6, contradicting Lemma 5. If |U2| � 4,
let U3 ✓ U2 such that {u, v} ✓ U3 and |U3| = |U2|� 1. Since fU2  fU3 + 1,

y(1)u + y(1)v +

|U3|� 1

2

� fU3  y(1)u + y(1)v +

|U2|

2

� fU2 < 0.6,

contradicting the minimality of |U |.
Finally, assume that Gx(U) has two connected components U1 and U2 such that

u 2 U1 and v 2 U2. Without loss of generality, suppose |U1| is even. Then U is
partitioned into U1 \{u}, U2, {u} such that |U1 \{u}|, |U2| are odd and there is no edge
(a, b) 2 U1 ⇥ U2 such that x(1)

a,b > 0. This contradicts Lemma 6.

By the design of Algorithm 3, the only connected components of Gx, besides iso-
lated vertices, are

– Isolated edges (u, v) where u, v 2 C.
– Odd component W 2 ˆDl with r(W) = ⇤.
– For each j = 1, Sj [Tj [([W2D̂l:r(S)2Tj

W).

If u, v are in C or in W 2

ˆDl, we have y
(1)
u = y

(1)
v = 0.3, so y

(1)
u + y

(1)
v � 0.6.

Therefore, the first two cases cannot occur and there must exist j such that {u, v} ✓
U ✓ Sj [Tj [([W2D̂l:r(S)2Tj

W). The design of Algorithm 3 also ensures that y(1)u =

y
(1)
v = 0.3 when ↵j �

3
4 , so we can assume that ↵j < 3

4 . Furthermore, at least one
of u and v is in Ds, as y(1)w = 0.3 for all w 2 Dl. Without loss of generality, suppose
u 2 Ds.

Suppose there exists W 2

ˆDl such that r(W) 2 Tj and UW := U \ (W \

{r(W)}) 6= ;. If r(W) /2 U , UW and U \ UW are disconnected (u 2 U \ UW so both
sets are nonempty), contradicting Proposition 3. If v 2 UW , let v r(W). This can be
done without loss of generality, since y

(1)
v = y

(1)
R(W) = 0.3. In particular, (u, v, U) still

satisfies y(1)u + y
(1)
v + (

|U |�1
2 � fU) < 0.6. We analyze the following two cases.

– Suppose v = r(W). If |UW | is odd, U is partitioned into UW , U \ ({v}[UW), {v}
such that both |UW |, |U \ ({v}[UW)| are odd and there is no edge (a, b) 2 UW ⇥�
U \ ({v} [UW)

�
with x

(1)
a,b > 0. This contradicts Lemma 6. If |UW | is even,

consider U \ UW . Since fU = fU\UW
+ fUW[{v} and fUW[{v} 

|UW |
2 , we have

y(1)u + y(1)v +

|U \ UW |� 1

2

� fU\UW
 y(1)u + y(1)v +

|U |� 1

2

� fU < 0.6,

contradicting the minimality of |U |.
– v /2 UW [{r(W)}. If |UW | is even, U \ UW contradicts the minimality of |U | as

above. If |UW | is odd, consider U \ (UW [{r(W)}. Since fU  fU\(UW[{v}) +

fUW
+ 1 and fUW



|UW |�1
2 ,

y(1)u + y(1)v +

|U \ (UW [{r(W)})|� 1

2

� fU\(UW[{r(W)})

 y(1)u + y(1)v +

|U |� 1

2

� fU < 0.6,

22 Lecture Notes in Computer Science: Authors’ Instructions

contradicting the minimality of |U |.

Therefore, every odd component W 2 ˆDl intersects with U only in Tj .

Let s := |U \ Sj | and t := |U \ Tj |. As above we can assume u 2 Ds \ Tj

(otherwise y
(1)
u + y

(1)
v � 0.6), so that t � 1. Even if t = 1, v 2 Sj and y

(1)
u + y

(1)
v =

0.4↵ + (0.6 � 0.4↵) = 0.6. Therefore, t � 2 and u, v 2 Tj . Since fU  min(s(1 �
0.4↵), t(↵� 0.4↵2

)),
y(1)u + y(1)v + ((|U � 1|)/2� fS) < 0.6

=) 0.4↵+ 0.4↵+

�
(s+ t� 1)/2�min(s(1� 0.4↵), t(↵� 0.4↵2

))

�
< 0.6.

The following lemma shows that the final inequality cannot be satisfied for every
integer s � 1, t � 2, and ↵ 2 (0, 3

4).

Lemma 8. For any integers s � 1, t � 2 and ↵ 2 (0, 3
4),

0.4↵+ 0.4↵+

✓
s+ t� 1

2

�min(s(1� 0.4↵), t(↵� 0.4↵2
))

◆
� 0.6.

Proof. Let Q be the LHS of the inequality. Note that s(1 � 0.4↵) � t(↵ � 0.4↵2
) if

and only if s � t↵. We consider the following three small cases.

1. s = 1, t = 2, ↵  0.5: Q = 0.4↵+0.4↵+(1�2(↵�0.4↵2
)) = 1�1.2↵+0.8↵2

�

0.6.
2. s = 1, t = 2, ↵ > 0.5: Q = 0.4↵+ 0.4↵+ (1� (1� 0.4↵)) = 1.2↵ > 0.6.
3. s = 2, t = 2: For all ↵, s(1� 0.4↵) � t(↵� 0.4↵2

), and
Q = 0.4↵+ 0.4↵+ (1.5� 2(↵� 0.4↵2

)) = 1.5� 1.2↵+ 0.8↵2 > 1.

For general s and t, if s � t↵,

Q = 0.4↵+0.4↵+

✓
t↵+ t� 1

2

� t(↵� 0.4↵2
)

◆
= 0.8↵+

t

2

(1�↵+0.8↵2
)�0.5.

When t = 2, Q � 0.6 by Case 1. above. If t � 3, for any ↵ 2 [0, 1], t
2 (1�↵+0.8↵2

) �

1.1.
If s < t↵,

Q = 0.4↵+0.4↵+

✓
s+ s

↵ � 1

2

� s(1� 0.4↵)

◆
= 0.8↵+

s

2

✓
1

↵
� 1 + 0.8↵

◆
�0.5.

When s = 1, 2, we have Q � 0.6 by Cases 2 and 3 above. If s � 3, for any ↵ 2 [0, 1],
s
2

�
1
↵ � 1 + 0.8↵

�
� 1.1.

Therefore, there is no e 2 E(2) such that Eq. (8) is violated and our algorithm
guarantees 0.6 competitive ratio.

5.3 s-stage Integral General Matching

In this section, we prove Theorem 3 for s-stage. Let p1 := 1 and ps :=
1
2 +

(ps�1� 1
2)

20 =

1
2 +

1
2·20s�1 . Algorithm 4 presents our algorithm for s-stage integral matching for gen-

eral graphs with the competitive ratio ps.

Maximum Matching in the Online Batch-Arrival Model 23

Algorithm 4 s-stage Integral Matching Algorithm
1: Compute the Edmonds-Gallai decomposition (C,A,D). Let X ;.
2: Let MC be a perfect matching for G(1)(C). Let X X [MC with probability q. Let

yu q
2 for all u 2 C

3: Construct the matching skeleton with expanding pairs {(Sj , Tj)} and expansion ↵j for G0

defined above
4: Let p ps�1, and q ps.
5:
6: for each j do
7: Let Dj be a distribution over matchings between (Sj , Tj) that matches all vertices of Sj

with probability 1 and each vertex of Tj with probability ↵j

8: Independently generate a uniformly random real cj 2 [0, 1]
9: if ↵j � pq

2p�q�pq
then

10: if cj  q(↵j+1)

2↵j
then

11: Independently sample a random matching Mj from Dj .
12: X X [Mj .
13: end if
14: yu q

2 for all u 2 Sj [Tj

15: else
16: Let �j :=

p�↵j(p�q)

p+↵j(1�p) , ✏j =
pq�↵j(p�q)

p�↵j(p�q) .
17: if cj  �j then
18: Independently sample a random matching Mj from Dj .
19: X X [Mj .
20: end if
21: yu �j✏j for all u 2 Sj

22: yu �j(1� ✏j)↵j for all u 2 Tj

23: end if
24: end for
25:
26: for each odd component U 2 D̂l do
27: For v 2 U , let Mv be a perfect matching in G(U \ v)
28: Independently generate a uniformly random real cU 2 [0, 1]
29: if r(U) = ⇤ then
30: if cU  q|U|

2(|U|�1) then Sample a random v 2 U and X X [Mv end if
31: else
32: Let j be such that r(U) 2 Tj for some j.
33: if ↵j � pq

2p�q�pq
then

34: if cU  q|U|
2(|U|�1) then X X [Mr(U) end if

35: else
36: if r(U) is matched then X X [Mr(U).
37: else
38: if cU 2 [0,

q�2�j↵j(1�✏j)

1��j↵j
] then Sample a random v 2 U \ r(U) and X

X [Mv end if

39: if cU 2 [
q�2�j↵j(1�✏j)

1��j↵j
,
q��j↵j+

q�2�j↵j(1�✏j)

|U|�1

1��j↵j
] then X X [Mr(U) end

if
40: end if
41: end if
42: end if
43: yu q

2 for all u 2 U .
44: end for

24 Lecture Notes in Computer Science: Authors’ Instructions

Our algorithm is only stated for the first stage. In stage t, we view it as the first stage
of the (s�t+1)-stage problem. As for bipartite matching, we use induction to prove our
competitive ratios. Consider s � 2 and suppose that the competitive ratio for (s � 1)-
stage matching is at least p := ps�1 > 0.5. Given a s-stage graph G = (V,E(1)

[

· · ·[E(s)
), let X(1) be the random matching we choose in the first stage and X 0 be the

random matching we choose in the later (s�1) stages. In addition to the matching X(1),
the algorithm also constructs dual solution {y

(1)
v }v2V such that E[|X(1)

|] =

P
v y

(1)
v .

Let E0
:= E(2)

[· · ·[E(s). Applying the competitive ratio of p to the last (s�1)-stage
graph G0

:= (V,E0
)\X(1), there exist an integral dual solution {y0v}v2V [{y

0
S}|S| odd

such that
P

v y
0
v +

P
S y0S

|S|�1
2 = |X 0

| and y0u + y0v +

P
S:{u,v}✓S y0S � p for every

edge (u, v) 2 G0. As in the bipartite case, we construct the final dual solution y as
y := y(1) + E[y0].
X

v

yv+
X

S

yS ·
|S|� 1

2

=

X

v

y(1)v +

X

v

E[y0v]+
X

S

E[y0S
|S|� 1

2

] = E[|X(1)
|+|X 0

|].

Let q := ps. The following lemma finishes the proof that the competitive ratio for
s-stage integral matching is at least q.

Lemma 9. For every edge (u, v) 2 E, yu + yv +
P

S:{u,v}✓S yS � q.

Proof. For any (u, v) 2 E(1), unless one of them is Ds, yu = yv =

q
2 . Therefore, one

of them (say u) must be in Ds. Let j be such that u 2 Ds \ Tj . Since (u, v) 2 E(1),
v 2 Si for some i � j and
yu + yv = �i✏i + �j(1� ✏j)↵j

=

pq � ↵i(p� q)

p+ ↵i(1� p)
+

(p� pq)↵j

p+ ↵j(1� p)
�

pq � ↵j(p� q)

p+ ↵j(1� p)
+

(p� pq)↵j

p+ ↵j(1� p)
= q.

Consider (u, v) 2 E0. First, assume that both u and v are in V (1). By construction
of y(1), at least one of them (say u) must be in Ds \Tj for some j with ↵j <

pq
2p�q�pq .

We consider the following cases.

– v 2 C or v 2 U for some odd component U 2 ˆDl with r(U) /2 Sj : In this case,
yv =

q
2 , and the event v is matched by X(1) is independent from whether u is

matched or not. For v 2 C or v 6= r(U), Pr[v is matched] = q. Therefore,

yu + yv +
X

S

yS

� yu + yv + p · Pr[neither u nor v is matched]

=

q

2

+

(p� pq)↵j

p+ ↵j(1� p)
+ p(1� q)

1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� p)

!

� q.

The last inequality is verified as the Case 1 of §C.
If v = r(U) 2 Si for some i 6= j,

Pr[v is matched] = q � 2�i↵i(1� ✏i) + �i↵i = q � �i(↵i)(1� 2✏i)

= q �
↵i(p+ ↵i(p� q)� 2pq)

p+ ↵i(1� p)
.

Maximum Matching in the Online Batch-Arrival Model 25

Therefore,
yu + yv +

X

S

yS

� yu + yv + p · Pr[neither u nor v is matched]

=

q

2

+

(p� pq)↵j

p+ ↵j(1� p)
+ p

✓
1� q +

↵i(p+ ↵i(p� q)� 2pq)

p+ ↵i(1� p)

◆
1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� p)

!

� q.

The last inequality is verified as Case 2 in §C.

– v 2 Si for i 6= j: Note that the case i � j is already covered, so we can assume
i < j. Still v and u are matched independently. If ↵i �

pq
2p�q�pq , yv =

q
2 and

Pr[v is matched]  2p�q
2p (maximized when ↵j =

pq
2p�q�pq), so

yu + yv +
X

S

yS

� yu + yv + p · Pr[neither u nor v is matched]

=

q

2

+

(p� pq)↵j

p+ ↵j(1� p)
+ p

✓
1�

2p� q

2p

◆
1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� p)

!

� q.

The last inequality is verified as the Case 3 of §C. If ↵i <
pq

2p�q�pq yv =

pq�↵i(p�q)
p+↵i(1�p)

and Pr[v is matched] = �i =
p�↵i(p�q)
p+↵i(1�p) , so

yu + yv +
X

S

yS

� yu + yv + p · Pr[neither u nor v is matched]

=

pq � ↵i(p� q)

p+ ↵i(1� p)
+

(p� pq)↵j

p+ ↵j(1� p)
+ p(1�

p� ↵i(p� q)

p+ ↵i(1� p)
)(1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� p)
)

� q.

The last inequality is verified as the Case 4 of §C.

– v 2 Tj \Ds: yv = yu = �j(1� ✏j)↵j =
(p�pq)↵j

p+↵j(1�p) . If cj > �j =
p�↵j(p�q)
p+↵j(1�p) , both

u and v are unmatched. Given that cj 
p�↵j(p�q)
p+↵j(1�p) , Pr[v or u is matched]  2↵j

by union bound. Therefore,

yu + yv +
X

S

yS

�

2(p� pq)↵j

p+ ↵j(1� p)
+ p

✓
1�

p� ↵j(p� q)

p+ ↵j(1� p)

◆
+

✓
p� ↵j(p� q)

p+ ↵j(1� p)

◆
max{0, 1� 2↵j}

� q.

The last inequality is verified as the Case 5 of §C.

– v 2 U for some odd component U 2 ˆDl with r(U) 2 Sj : yv =

q
2 . Let Fr, Fu be the

event that r(U), u is matched by (Sj , Tj) respectively. Pr[Fr] = Pr[Fu] = �j↵j =

26 Lecture Notes in Computer Science: Authors’ Instructions

↵jp�↵2
j (p�q)

p+↵j(1�p) . The design of Algorithm 4 ensures that v is matched whenever r(U)

is matched. Given Fr, v and u are matched independently, and

Pr[Fu|Fr] 
�j↵j

1� �j↵j
=

↵jp�↵2
j (p�q)

p+↵j(1�p)

1�

↵jp�↵2
j (p�q)

p+↵j(1�p)

=

↵jp� ↵2
j (p� q)

p+ ↵j(1� 2p) + ↵2
j (p� q)

.

If v = r(U),

Pr[v is matched|Fr] =
q � 2�j(1� ✏j)↵j

1� �j↵j
=

q � 2

↵jp�↵jpq
p+↵j(1�p)

1�

↵jp�↵2
j (p�q)

p+↵j(1�p)

=

pq + ↵j(q � 2p+ pq)

p+ ↵j(1� 2p) + ↵2
j (p� q)

,

and
yu + yv +

X

S

yS

� yu + yv + p · Pr[Fr](1� Pr[Fu|Fr])(1� Pr[v is matched|Fr])

�

q

2

+

(p� pq)↵j

p+ ↵j(1� p)
+

p ·

1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� p)

!
·

1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� 2p) + ↵2
j (p� q)

!
·

1�

pq + ↵j(q � 2p+ pq)

p+ ↵j(1� 2p) + ↵2
j (p� q)

!

� q.

The last inequality is verified as the Case 6 of §C.

If v 6= r(U), Pr[v is matched|Fr] =
q��j↵j

1��j↵j
=

q�
↵jp�↵2

j (p�q)

p+↵j(1�p)

1�
↵jp�↵2

j
(p�q)

p+↵j(1�p)

=

pq+↵j(q�p�pq)+↵2
j (p�q)

p+↵j(1�2p)+↵2
j (p�q)

,

and
yu + yv +

X

S

yS

� yu + yv + p · Pr[Fr](1� Pr[Fu|Fr])(1� Pr[v is matched|Fr])

�

q

2

+

(p� pq)↵j

p+ ↵j(1� p)
+

p ·

1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� p)

!
·

1�

↵jp� ↵2
j (p� q)

p+ ↵j(1� 2p) + ↵2
j (p� q)

!
·

1�

pq + ↵j(q � p� pq) + ↵2
j (p� q)

p+ ↵j(1� 2p) + ↵2
j (p� q)

!

� q.

The last inequality is verified as the Case 6 of §C.

Maximum Matching in the Online Batch-Arrival Model 27

If one of them (say u) is not incident on any edge of E(1) and thus not in V (1), it is
a special case of one of Case 1, 2, 3, and 4 with ↵j = 0.

References

1. G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite matching
and single-bid budgeted allocations. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1253–1264. SIAM, 2011.

2. A. Blum, T. Sandholm, and M. Zinkevich. Online algorithms for market clearing. Journal
of the ACM (JACM), 53(5):845–879, 2006.

3. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. cambridge
university press, 2005.

4. N. Buchbinder, K. Jain, and J. S. Naor. Online primal-dual algorithms for maximizing ad-
auctions revenue. In European Symposium on Algorithms, pages 253–264. Springer, 2007.

5. N. R. Devanur and T. P. Hayes. The adwords problem: online keyword matching with bud-
geted bidders under random permutations. In Proceedings of the 10th ACM conference on
Electronic commerce, pages 71–78. ACM, 2009.

6. N. R. Devanur, K. Jain, and R. D. Kleinberg. Randomized primal-dual analysis of rank-
ing for online bipartite matching. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 101–107, 2013.

7. L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for
weighted matching in the semi-streaming model. SIAM Journal on Discrete Mathematics,
25(3):1251–1265, 2011.

8. L. Epstein, A. Levin, D. Segev, and O. Weimann. Improved bounds for online preemptive
matching. In 30th International Symposium on Theoretical Aspects of Computer Science,
pages 389–399, 2013.

9. J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a
semi-streaming model. Elsevier Theoretical Computer Science, 348(2):207–216, 2005.

10. J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan. Online stochastic matching:
Beating 1-1/e. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on, pages 117–126. IEEE, 2009.

11. A. Fiat. Online algorithms: The state of the art (lecture notes in computer science). 1998.
12. A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming complexity of

maximum bipartite matching. In Proceedings of the twenty-third annual ACM-SIAM sympo-
sium on Discrete Algorithms, pages 468–485. SIAM, 2012.

13. G. Goel and A. Mehta. Online budgeted matching in random input models with applications
to adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 982–991. Society for Industrial and Applied Mathematics, 2008.

14. D. Golovin, V. Goyal, V. Polishchuk, R. Ravi, and M. Sysikaski. Improved approximations
for two-stage min-cut and shortest path problems under uncertainty. Mathematical Program-
ming, 149(1-2):167–194, 2015.

15. G. P. Guruganesh and S. Singla. Online Matroid Intersection: Beating Half for Random
Arrival. arXiv preprint arXiv:1512.06271, 2015.

16. B. Haeupler, V. S. Mirrokni, and M. Zadimoghaddam. Online stochastic weighted matching:
Improved approximation algorithms. In International Workshop on Internet and Network
Economics, pages 170–181. Springer, 2011.

17. M. Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1679–1697.
SIAM, 2013.

28 Lecture Notes in Computer Science: Authors’ Instructions

18. C. Karande, A. Mehta, and P. Tripathi. Online bipartite matching with unknown distributions.
In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, pages
587–596. ACM, 2011.

19. R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pages 352–358, 1990.

20. S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2- ". Journal of
Computer and System Sciences, 74(3):335–349, 2008.

21. C. Konrad, F. Magniez, and C. Mathieu. Maximum matching in semi-streaming with few
passes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 231–242. Springer, 2012.

22. N. Korula and M. Pál. Algorithms for secretary problems on graphs and hypergraphs.
In International Colloquium on Automata, Languages and Programming, pages 508–520.
Springer, 2009.

23. L. Lovász and M. D. Plummer. Matching Theory. Ann. Discrete Math, 29, 1986.
24. M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: an approach based

on strongly factor-revealing lps. In Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, pages 597–606, 2011.

25. V. H. Manshadi, S. O. Gharan, and A. Saberi. Online stochastic matching: Online actions
based on offline statistics. Mathematics of Operations Research, 37(4):559–573, 2012.

26. A. Mehta. Online matching and ad allocation. Theoretical Computer Science, 8(4):265–368,
2012.

27. A. Mehta and D. Panigrahi. Online matching with stochastic rewards. In Foundations of
Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages 728–737. IEEE,
2012.

28. A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching.
Journal of the ACM (JACM), 54(5):22, 2007.

29. A. Mehta, B. Waggoner, and M. Zadimoghaddam. Online stochastic matching with unequal
probabilities. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1388–1404. SIAM, 2015.

30. C. Swamy and D. B. Shmoys. Approximation algorithms for 2-stage stochastic optimization
problems. ACM SIGACT News, 37(1):33–46, 2006.

31. V. V. Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.
32. Y. Wang and S. C.-w. Wong. Two-sided online bipartite matching and vertex cover: Beating

the greedy algorithm. In International Colloquium on Automata, Languages, and Program-
ming, pages 1070–1081. Springer, 2015.

A Illustrative Examples

Theorem 9. For two-stage fractional (thus integral) bipartite matching, there exists a
graph where picking a maximum matching with probability � for any � 2 (0, 1) fails to
achieve competitive ratio 2

3 regardless how the maximum matching is chosen.

Proof. We first consider the graph G(1)
= K2,3, where {u1, u2} form the left side and

{v1, v2, v3} form the right side. We consider the following LP from Theorem 4 exactly
captures the competitive ratio.

max ↵

Maximum Matching in the Online Batch-Arrival Model 29

s.t. fu =

X

v2N1(u)

x(1)
u,v 8u 2 V

fu  1, 8u 2 V
X

(u,v)2E(1)

x(1)
u,v �

X

u

y(1)u ,

y(1)u + y(1)v � ↵, 8(u, v) 2 E(1) (9)

y(1)u � fu � (1� ↵), 8u 2 V (10)

x(1)
u,v, y

(1)
u � 0, 8u, v 2 V

Suppose that in the first stage, the algorithm outputs a maximum matching with prob-
ability exactly 2

3 . Let p1, p2, p3 be the probability that the algorithm outputs a maxi-
mum matching missing v1, v2, v3 respectively. p1 + p2 + p3 =

2
3 . Since every maxi-

mum matching involves exactly two edges matching u1 and u2,
P

u,v2E(1) x
(1)
u,v =

4
3 ,

fu1 = fu2 =

2
3 , and fv1 + fv2 + fv3 =

4
3 .

We now show that it is impossible to construct y(1) that satisfies (9) and (10).
From (9), yvi �

2
3�min(yu1 , yu2) for all i. Summing over i and using min(yu1 , yu2) 

yu1+yu2
2 ,

X

i

yvi � 2� 3 ·

yu1 + yu2

2

() 3 ·

yu1 + yu2

2

+

X

i

yvi � 2.

On the other hand,
X

u

yu +

X

v

yv 
X

e

xe =
4

3

.

This is only possible when yu1 + yu2 =

4
3 . and yv1 = yv2 = yv3 = 0. However, since

fv1 + fv2 + fv3 =

4
3 , there exists i such that fvi �

4
9 . For that i, (10) is violated.

To finish the proof of the theorem, consider G(1) with disjoint K2,3 and a single
edge. For the single edge, the only possible strategy is to match with probability 2

3 , but
it does not work for K2,3 to achieve the competitive ratio of 2

3 .

Theorem 10. Three-stage fractional (thus integral) matching has competitive ratio strictly
less than 2/3.

Proof. The first stage graph G(1) consists of two disjoint edges e1 = (u1, v1) and
e2 = (u2, v2). In order to achieve the competitive ratio 2

3 , the only strategy is to match
both of them with value 2

3 . The second stage graph G(2) introduces a new vertex v3 and
two edges e3 = (u1, v3) and e4 = (u2, v3). Given the fixed strategy for the first stage
and G(2), the following LP from Theorem 4 exactly captures the competitive ratio.

max ↵

30 Lecture Notes in Computer Science: Authors’ Instructions

s.t. fu =

X

v2N2(u)

xu,v 8u 2 V

fu  1, 8u 2 V

xe1 + xe2 + xe3 + xe4 �

X

u

yu, (11)

yu + yv � ↵, 8(u, v) 2 E(2) (12)
yu � fu � (1� ↵), 8u 2 V (13)

xe1 = xe2 =

1

3

,

xu,v, yu � 0, 8u, v 2 V

Suppose (x, y) is a feasible solution that achieves ↵ =

2
3 . (13) implies that yv1 �

1
3 and

yv2 �
1
3 , and yu1 �

1
3 + xe3 , yu2 �

1
3 + xe4 . Since

yv1 + yv2 + yu1 + yu2 �

2

3

+ xe3 + xe4 = xe1 + xe2 + xe3 + xe4 �

X

u

yu,

(the last ineqaulity implies by (11)) every inequality above must hold as an equality.
In particular, yv3 = 0. for e3 and e4 implies that yu1 , yu2 �

2
3 , which implies that

xe3 , xe4 �
1
3 . This implies that fv3 �

2
3 . (13) is violated for v3, contradicting that

(x, y) is feasible for ↵ =

2
3 .

Theorem 11. For two-stage integral matching in general graphs, no algorithm can be
2/3-competitive.

Proof. First, we consider a simpler case when G(1) consists two edges e1 = (u, v1)
and e2 = (u, v2).
Lemma 10. To achieve the competitive ratio 2

3 , the only possible strategy is to match
both edges w.p. exactly 1

3 .

Proof. Let xi be the probability that ei is matched. Without loss of generality, assume
x1 � x2. If x1 + x2 < 2

3 , having G(2) as an empty graph makes the competitive ratio
is less than 2

3 . If x1 + x2 > 2
3 , let G(2) have two edges e3 = (v1, v2) and e4 = (u,w)

for a new vertex w. G(1)
[G(2) has a matching of size 2, but the expected value of

our strategy is x1 + x2 + 2 ⇥ (1 � x1 + x2) = 2 � x1 � x2 < 2
3 · 2. Therefore

x1 + x2 =

2
3 . Finally, suppose x1 > 1

3 > x2. let G(2) have one edge e3 = (v1, w)

for a new vertex w. G(1)
[G(2) has a matching of size 2, but the expected value of our

strategy is x1 + x2 + (1� x1) = 1 + x2 < 2
3 · 2. Therefore, x1 = x2 =

1
3 .

To prove the theorem, G(1) consists of two disjoint copies of the same graph above.
Formally it has 4 edges (u1, v1), (u1, v2), (u2, v3), (u2, v4). From the above lemma,
every edge must be matched with probability exactly 1

3 . No matter how we corre-
late these four edges, there always exist i 2 {1, 2} and j 2 {3, 4} such that � :=

Pr[ei, ej are both picked] < 1
3 . The second stage graph G(2) consists (vi, vj). G(1)

[

G(2) has a matching of size 3. The probability that we can increase the matching size
by 1 in the second stage is

Pr[None of ei, ej is picked] = 1�

✓
2

3

� �

◆
<

2

3

.

Maximum Matching in the Online Batch-Arrival Model 31

Therefore, the expected size of the matching is less than 2.

Theorem 12. There is a gap between two-stage fractional bipartite matching and two-
stage integral bipartite matching. That is not all two-stage bipartite graphs admit the
same competitive ratio for both two-stage fractional and integral bipartite matching
problem.

Proof. Consider G(1) to be a bipartite graph on vertices ({u1, u2, u3}, {v1, v2, v3}).
The edges are (u3, v1), (u3, v2), (v3, u1), and (v3, u2). Using our LP from Theo-
rem 4, we get that for two-stage fractional matching, the optimal competitive ratio is
5/7 ⇡ 0.71. On the other hand, for two-stage integral matching one can show that
every algorithm is strictly less than 5/7 competitive. This is because G(2) could be
empty, or G(2) could consist of, along with edges (u3, v4) and (u4, v3), either edges
{(u1, v1), (u2, v2)} or edges {(u1, v2), (u2, v1)}. The integral algorithm has no way to
differentiate between the two cases and has to guess randomly. Considering all possible
cases shows that a randomized integral algorithm can never match the performance of
fractional matching, and is always less than 0.7 competitive.

B Online Bipartite Vertex Cover

The two-stage online bipartite vertex cover problem reveals edges of a bipartite graph
G = ((U1, U2), E) in two stages E(1) and E(2). At the end of Stage 1, the algorithm
has to irrevocably pick a (fractional) vertex cover. Then edges E(2) are revealed and
the algorithm, which is not allowed to drop (decrease) picked vertices, has to pick a
minimum vertex cover of E(1)

[E(2).
The proof of the following theorem is similar to that of Theorem 4 for two-stage

bipartite matching.

Theorem 13. The following linear program exactly captures two-stage fractional ver-
tex cover.

min �

s.t.
X

v2N1(u)

xu,v  yu + � � 1, 8u 2 V (14)

X

(u,v)2E(1)

xu,v �

X

u

yu, (15)

yu + yv � 1, 8(u, v) 2 E(1) (16)
xu,v, yu � 0, 8u, v 2 V (17)

The above theorem directly implies the following lemma.

Corollary 1. There exists an instance optimal algorithm for the two-stage fractional
bipartite vertex cover problem.

We can also extend our s-stage bipartite matching result to s-stage bipartite vertex
cover.

32 Lecture Notes in Computer Science: Authors’ Instructions

Corollary 2. There exists a 1
2 +

1
2s+1�2 competitive algorithm for the s-stage bipartite

vertex cover problem.

Proof. We note that in the proof of Theorem 2 for s-stage bipartite matching, we con-
structed an online fractional vertex cover solution in parallel. Unlike matching, there is
a rounding scheme that converts any given algorithm for online fractional vertex cover
to an algorithm for online vertex cover in bipartite graphs [32].

C Missing Inequalities
We verify 8 inequalities using Mathematica :

Case 0 is for Section 4 and Cases 1 - 7 are for Section 5. They are verifie d using Reduce []

function . We can easily check from the output that each expression is

nonnegative in the desired region and becomes 0 only at the boundaries .

Case 0 (for Section 4)
c0 = (-1 + b)^2 * p^2 * (-1 + 2 p) +

a^2 * p * 2 b^2 (-1 + p)^2 + p (-1 + 2 p) + b -1 + 5 p - 4 p^2 +
a 2 (1 - 2 p) p^2 - b^2 * p * 1 - 5 p + 4 p^2 + b 1 - 7 p^2 + 8 p^3

(-1 + b)2 p2 (-1 + 2 p) + a2 p 2 b2 (-1 + p)2 + p (-1 + 2 p) + b -1 + 5 p - 4 p2 +

a 2 (1 - 2 p) p2 - b2 p 1 - 5 p + 4 p2 + b 1 - 7 p2 + 8 p3

Reduce[c0 ≤ 0 && a ≥ 0 && a ≤ 1 && b ≥ 0 && b ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, b, p}, Reals]

a ⩵ 0 && 0 ≤ b < 1 && p ⩵
1

2
|| b ⩵ 1 &&

1

2
≤ p ≤ 1 ||

0 < a < 1 && b ⩵ 0 && p ⩵
1

2
|| (b ⩵ 1 - a && p ⩵ 1) || a ⩵ 1 && b ⩵ 0 &&

1

2
≤ p ≤ 1

Cases 1 - 7 (for Section 5)
q = 1 / 2 + (p - (1 / 2)) / 20

1

2
+

1

20
-
1

2
+ p

Case 1
c1 = q / 2 + ((p - p * q) * a) / (p + a * (1 - p)) +

p * (1 - q) * 1 - a * p - a^2 * (p - q)  (p + a * (1 - p))

1

2

1

2
+

1

20
-
1

2
+ p +

a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+

1

2
+

1

20

1

2
- p p 1 -

a p - a2 - 1
2
+ 1

20
 1
2
- p + p

a (1 - p) + p

Simplify[c1 - q]

19 a2 p 21 - 44 p + 4 p2 + 20 p 19 - 40 p + 4 p2 - 20 a -19 + 101 p - 90 p2 + 8 p3 
(1600 (a (-1 + p) - p))

Reduce[c1 - q ≤ 0 && a ≥ 0 && a ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, p}, Reals]

a ⩵ 0 && p ⩵
1

2

Printed by Wolfram Mathematica Student Edition

Plot3D[c1 - q, {a, 0, 1}, {p, 0.5, 1}] 1

Case 2
c2 = q / 2 + ((p - p * q) * a) / (p + a * (1 - p)) +

p * (1 - q + (b (p + b (p - q) - 2 p * q)) / (p + b (1 - p))) *
1 - a * p - a^2 * (p - q)  (p + a * (1 - p))

1

2

1

2
+

1

20
-
1

2
+ p +

a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+ p 1 -

a p - a2 - 1
2
+ 1

20
 1
2
- p + p

a (1 - p) + p

1

2
+

1

20

1

2
- p +

b p - 2  1
2
+ 1

20
- 1

2
+ p p + b - 1

2
+ 1

20
 1
2
- p + p

b (1 - p) + p

Simplify[c2 - q]

1

1600

-380 - 40 p +
40 a p (-21 + 2 p)

a (-1 + p) - p
- p a (40 - 80 p) + 40 p + 19 a2 (-1 + 2 p) b2 (19 - 38 p) +

p (-21 + 2 p) + b -21 + 21 p + 2 p2  ((a (-1 + p) - p) (b (-1 + p) - p))

Reduce[c2 - q ≤ 0 && a ≥ 0 && a ≤ 1 && b ≥ 0 && b ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, b, p}, Reals]

a ⩵ 0 && 0 ≤ b ≤ 1 && p ⩵
1

2

Case 3

2 Online Matching_Final.nb

Printed by Wolfram Mathematica Student Edition

c3 = q / 2 + ((p - p * q) * a) / (p + a * (1 - p)) +
p * (1 - (2 p - q) / (2 p)) * 1 - a * p - a^2 * (p - q)  (p + a * (1 - p))

1

2

1

2
+

1

20
-
1

2
+ p +

a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+

p 1 -
- 1

2
+ 1

20
 1
2
- p + 2 p

2 p
1 -

a p - a2 - 1
2
+ 1

20
 1
2
- p + p

a (1 - p) + p

Simplify[c3 - q]

a 40 p (-23 + 6 p) - 19 a -19 + 36 p + 4 p2

3200 (a (-1 + p) - p)

Reduce[c3 - q ≤ 0 && a ≥ 0 && a ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, p}, Reals]

a ⩵ 0 &&
1

2
≤ p ≤ 1

Plot3D[c3 - q, {a, 0, 1}, {p, 0.5, 1}]

Case 4
c4 = (p * q - b (p - q)) / (p + b (1 - p)) + ((p - p * q) * a) / (p + a * (1 - p)) +

p * (1 - (p - b (p - q)) / (p + b (1 - p))) * 1 - a * p - a^2 * (p - q)  (p + a * (1 - p))

a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+
 1
2
+ 1

20
- 1

2
+ p p - b - 1

2
+ 1

20
 1
2
- p + p

b (1 - p) + p
+

p 1 -
a p - a2 - 1

2
+ 1

20
 1
2
- p + p

a (1 - p) + p
1 -

p - b - 1
2
+ 1

20
 1
2
- p + p

b (1 - p) + p

Online Matching_Final.nb 3

Printed by Wolfram Mathematica Student Edition

Simplify[c4 - q]

-
a p (-21 + 2 p) (40 p + (-40 + 19 a) b (-1 + 2 p))

1600 (a (-1 + p) - p) (b (-1 + p) - p)

Reduce[c4 - q ≤ 0 && a ≥ 0 && a ≤ 1 && p ≥ 1 / 2 && p ≤ 1 && b ≥ 0 && b ≤ 1, {a, b, p}, Reals]

a ⩵ 0 && 0 ≤ b ≤ 1 &&
1

2
≤ p ≤ 1

Case 5
c5 = 2 * ((p - p * q) * a) / (p + a * (1 - p)) +

p * (1 - (p - a (p - q)) / (p + a (1 - p))) + p * (p - a (p - q)) / (p + a (1 - p)) * Max[0, 1 - 2 a]

2 a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+ p 1 -

p - a - 1
2
+ 1

20
 1
2
- p + p

a (1 - p) + p
+

p p - a - 1
2
+ 1

20
 1
2
- p + p Max[0, 1 - 2 a]

a (1 - p) + p

Simplify[c5 - q]

p (19 + 2 p) + a 19 - 80 p + 4 p2 + p (-40 p + 19 a (-1 + 2 p)) Max[0, 1 - 2 a] 
(40 (a (-1 + p) - p))

Reduce[c5 - q ≤ 0 && a ≥ 0 && a ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, p}, Reals]

0 ≤ a ≤
1

2
&& p ⩵

1

2

Plot3D[c5 - q, {a, 0, 1}, {p, 0.5, 1}]

4 Online Matching_Final.nb

Printed by Wolfram Mathematica Student Edition

Case 6
c6 = q / 2 + ((p - p * q) * a) / (p + a * (1 - p)) +

p * 1 - a * p - a^2 * (p - q)  (p + a * (1 - p)) *

1 - a * p - a^2 * (p - q)  p + a * (1 - 2 * p) + a^2 (p - q) *

1 - (p * q + a (q - 2 p + p * q))  p + a (1 - 2 p) + a^2 (p - q)

1

2

1

2
+

1

20
-
1

2
+ p +

a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+

p 1 -
a p - a2 - 1

2
+ 1

20
 1
2
- p + p

a (1 - p) + p
1 -

a p - a2 - 1
2
+ 1

20
 1
2
- p + p

a (1 - 2 p) + p + a2 - 1
2
+ 1

20
 1
2
- p + p

1 -
1

2
+

1

20
-
1

2
+ p p + a

1

2
+

1

20
-
1

2
+ p - 2 p +

1

2
+

1

20
-
1

2
+ p p 

a (1 - 2 p) + p + a2 -
1

2
+

1

20

1

2
- p + p

Simplify[c6 - q]

-1444 a4 (1 - 2 p)2 p + 40 p2 19 - 40 p + 4 p2 -

40 a p -38 + 179 p - 170 p2 + 8 p3 + a2 760 - 5921 p + 15320 p2 - 11348 p3 - 176 p4 +

19 a3 -19 + 261 p - 772 p2 + 644 p3 + 16 p4 

80 (a (-1 + p) - p) a (40 - 80 p) + 40 p + 19 a2 (-1 + 2 p)

Reduce[c6 - q ≤ 0 && a ≥ 0 && a ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, p}, Reals]

a ⩵ 0 && p ⩵
1

2
|| a ⩵ 1 && p ⩵

1

2

Plot3D[c6 - q, {a, 0, 1}, {p, 0.5, 1}]

Online Matching_Final.nb 5

Printed by Wolfram Mathematica Student Edition

Case 7
c7 = q / 2 + ((p - p * q) * a) / (p + a * (1 - p)) +

p * 1 - a * p - a^2 * (p - q)  (p + a * (1 - p)) *

1 - a * p - a^2 * (p - q)  p + a * (1 - 2 * p) + a^2 (p - q) *

1 - p * q + a (q - p - p * q) + a^2 (p - q)  p + a (1 - 2 p) + a^2 (p - q)

1

2

1

2
+

1

20
-
1

2
+ p +

a p -  1
2
+ 1

20
- 1

2
+ p p

a (1 - p) + p
+

p 1 -
a p - a2 - 1

2
+ 1

20
 1
2
- p + p

a (1 - p) + p
1 -

a p - a2 - 1
2
+ 1

20
 1
2
- p + p

a (1 - 2 p) + p + a2 - 1
2
+ 1

20
 1
2
- p + p

1 -
1

2
+

1

20
-
1

2
+ p p + a2 -

1

2
+

1

20

1

2
- p + p + a

1

2
+

1

20
-
1

2
+ p - p -

1

2
+

1

20
-
1

2
+ p p  a (1 - 2 p) + p + a2 -

1

2
+

1

20

1

2
- p + p

Simplify[c7 - q]

40 p2 19 - 40 p + 4 p2 - 40 a p -38 + 179 p - 174 p2 + 16 p3 -

19 a3 19 - 181 p + 380 p2 - 196 p3 + 16 p4 + a2 760 - 5921 p + 13960 p2 - 9108 p3 + 784 p4 

80 (a (-1 + p) - p) a (40 - 80 p) + 40 p + 19 a2 (-1 + 2 p)

Reduce[c7 - q ≤ 0 && a ≥ 0 && a ≤ 1 && p ≥ 1 / 2 && p ≤ 1, {a, p}, Reals]

a ⩵ 0 && p ⩵
1

2
|| a ⩵ 1 && p ⩵

1

2

6 Online Matching_Final.nb

Printed by Wolfram Mathematica Student Edition

Plot3D[c7 - q, {a, 0, 1}, {p, 0.5, 1}]

Online Matching_Final.nb 7

Printed by Wolfram Mathematica Student Edition

