On Using Storage and Genset for Mitigating Power Grid Failures

Sahil Singla ISS4E lab University of Waterloo

Collaborators: S. Keshav, Y. Ghiassi-Farrokhfal

< □ > < @ > < 클 > < 클 > · 클 ≥ 의 의 이 Q ↔ 1/27

Background

Unreliable grid

Off-grid

Conclusions

Outline

Introduction

Background

Unreliable grid

Off-grid

Conclusions

<ロ> < 部> < 書> < 書> < 書) と 書) = のへの 1/27

Background

Unreliable grid

Off-grid

Conclusions

Outline

Introduction

Background

Unreliable grid

Off-grid

Conclusions

< □ > < @ > < 클 > < 클 > · 클 > · 크 = · 의 = · 이 Q () 1/27 Background

Unreliable grid

Off-gri

Conclusions

Power outages

- Developing countries:
 - * Large demand-supply gap
 - Two-to-four hours daily outage is common¹

¹Tongia et al., India Power Supply Position 2010. Centre for Study of Science, Technology, and Policy CSTEP, Aug 2010

Background

Unreliable grid

Off-gri

Conclusions

Power outages

- Developing countries:
 - * Large demand-supply gap
 - * Two-to-four hours daily outage is common¹
- Developed countries:
 - * Storms, lightning strikes, equipment failures
 - * Eg. Sandy

¹Tongia et al., India Power Supply Position 2010. Centre for Study of Science, Technology, and Policy CSTEP, Aug 2010

- A residential neighbourhood augments grid power
- Usually from a diesel generator (genset)

- A residential neighbourhood augments grid power
- Usually from a diesel generator (genset)

• High carbon footprint!

Storage battery

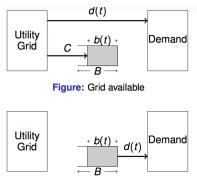


Figure: Power outage

<ロト < 部 > < 言 > < 言 > 三日 の Q () 4/27

Storage battery

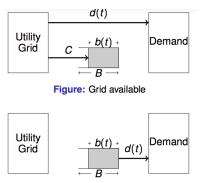


Figure: Power outage

• What if the battery goes empty during an outage?

Storage battery

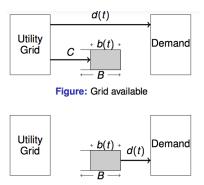


Figure: Power outage

- What if the battery goes empty during an outage?
- Storage is expensive!

Background

Jnreliable grid

Off-grid

Conclusions

Battery-genset hybrid system

- Use battery to meet demand
- If battery goes empty, turn on genset
- Both benefits

We wish to study:

(a) Minimum battery size to eliminate the use of genset

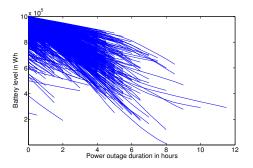
We wish to study:

- (a) Minimum battery size to eliminate the use of genset
- (b) Trade-off between battery size and carbon footprint

We wish to study:

- (a) Minimum battery size to eliminate the use of genset
- (b) Trade-off between battery size and carbon footprint
- (c) Scheduling power between battery and genset

Introduction	Background	Unreliable grid	Off-grid	Conclusions	
Outline					

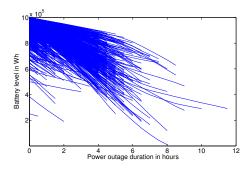

Background

Unreliable grid

Off-grid

Conclusions

Factors


Figure: Battery trajectories

Unreliable grid

Off-gri

Conclusions

Factors

Figure: Battery trajectories

- Battery size
- Charging rate
- Demand during outage
- Outage duration
- Inter-outage duration

- Mostly empirical
 - * Both sizing and scheduling

²Wang et al., A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid. IEEE-JSAG

- Mostly empirical
 - * Both sizing and scheduling
- Analytical work usually assumes stationarity of demand

- Mostly empirical
 - * Both sizing and scheduling
- Analytical work usually assumes stationarity of demand
- No analytical work on battery sizing vs carbon trade-off

²Wang et al., A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid. IEEE-JSAG → 4 E → 4 E → 2 = - つへつ

Related Work

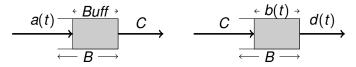
- Mostly empirical
 - * Both sizing and scheduling
- Analytical work usually assumes stationarity of demand
- No analytical work on battery sizing vs carbon trade-off
- Wang et al.² do battery sizing for renewables do not model grid unreliability

²Wang et al., A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid. IEEE_JSAG + (E) (E) (E)

Introduction	Background	Unreliable grid	Off-grid	Conclusions	
Notation					

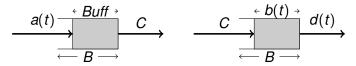
• Discrete time model

Introduction	Background	Unreliable grid	Off-grid	Conclusions
		Notation		


- Discrete time model
- *a*(*t*) is arrival in time slot *t*
- A(s, t) is arrival in time s to t

- Discrete time model
- *a*(*t*) is arrival in time slot *t*
- A(s, t) is arrival in time s to t

Name	Description
В	Battery storage capacity
С	Battery charging rate
$\boldsymbol{x}(t)$	Grid availability 0 or 1
d(t)	Power demand
b(t)	Battery state of charge
$b^d(t)$	Battery deficit charge $= B - b(t)$
I(t)	Amount of loss of power


Analogy between loss of packet and loss of power³

³Ardakanian et al., On the use of teletraffic theory in power distribution systems. In Proceedings of e-Energy

Analogy between loss of packet and loss of power³

$$\begin{aligned} \mathsf{Pr}\{b(t) \leq \mathsf{0}\} &= \mathsf{Pr}\{b^d(t) \geq B\} \\ &= \mathsf{Pr}\{\textit{Buffer} \geq B\} = \mathsf{Pr}\{l(t) > \mathsf{0}\} \end{aligned}$$

³Ardakanian et al., On the use of teletraffic theory in power distribution systems. In Proceedings of e-Energy Background

Unreliable grid

Off-grid

Conclusions

Stochastic demand

Choices for demand model:

• Constant average demand E[d(t)]

<□ > < @ > < 분 > < 분 > 분 | = ♡ Q (* 11/27)

Stochastic demand

Choices for demand model:

- Constant average demand E[d(t)]
- Markov model
 - * Most results assume stationarity

Stochastic demand

Choices for demand model:

- Constant average demand E[d(t)]
- Markov model
 - * Most results assume stationarity
- Network calculus
 - Worst case analysis
- Stochastic network calculus

Background

Unreliable gric

Off-grid

Conclusions

Stochastic Network Calculus

- Example: Design a door
 - * Model human heights

Background

Unreliable grid

Off-grid

Conclusions

Stochastic Network Calculus

 Example: Design a door
 * Model human heights Pr{height ≤ 6ft} = p₀

Background

Unreliable grid

Off-grid

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

12/27

Conclusions

Stochastic Network Calculus

• Example: Design a door

* Model human heights

 $\Pr\{\text{height} \le 6ft\} = p_0 \\ \Pr\{\text{height} > 6ft + \sigma\} \le (1 - p_0)e^{-\lambda\sigma} = \varepsilon_g(\sigma)$

Unreliable grid

Off-grid

Conclusions

Stochastic Network Calculus

- Example: Design a door
 - ^{*} Model human heights $Pr{height \le 6ft} = p_0$ $Pr{height > 6ft + \sigma} \le (1 - p_0)e^{-\lambda\sigma} = \varepsilon_g(\sigma)$
- · Interested in modeling cumulative demand

Stochastic Network Calculus

- Example: Design a door
 - $\begin{array}{l} \text{Model human heights} \\ \Pr\{\text{height} \leq 6ft\} = p_0 \\ \Pr\{\text{height} > 6ft + \sigma\} \leq (1 p_0)e^{-\lambda\sigma} = \varepsilon_g(\sigma) \end{array}$
- · Interested in modeling cumulative demand
 - * Statistical sample path envelope

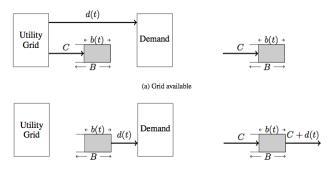
$$\Pr\left\{\sup_{s\leq t} \{A(s,t) - \mathcal{G}(t-s)\} > \sigma\right\} \leq \varepsilon_g(\sigma)$$

<ロ > < 部 > < 臣 > < 臣 > 王 = のへで 12/27

Introduction	Background	Unreliable grid	Off-grid	Conclusions
		Outline		

Background

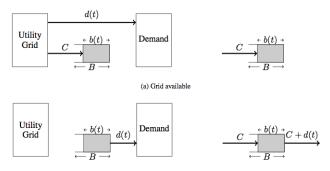
Unreliable grid


Off-grid

Conclusions

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ ∃ = の Q () 12/27

Modeling


• Transformation and effective demand

(b) Power Outage

Modeling

• Transformation and effective demand

(b) Power Outage

$$d^{e}(t) = [d(t) + C](1 - x(t))$$

= $[d(t) + C]x^{c}(t)$

<ロ> < 部> < 書> < 言> < 言> ション (の) 13/27

Sizing in absence of genset

Using an amendment of Wang et al.⁴

$$\Pr\{I(t) > 0\} \le \min\left(\Pr\{x^{c}(t) > 0\}, \varepsilon_{g}\left(B - \sup_{\tau \ge 0}(\mathcal{G}(\tau) - C\tau)\right)\right)$$

⁴Wang et al., A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid. IEEEJSAG > (2) (2) (2) (2)

Sizing in absence of genset

Using an amendment of Wang et al.⁴

$$\Pr\{I(t) > 0\} \le \min\left(\Pr\{x^{c}(t) > 0\}, \varepsilon_{g}\left(B - \sup_{\tau \ge 0}(\mathcal{G}(\tau) - C\tau)\right)\right)$$

Sizing in absence of genset

Using an amendment of Wang et al.⁴

$$\Pr\{I(t) > 0\} \le \min\left(\Pr\{x^{c}(t) > 0\}, \varepsilon_{g}\left(B - \sup_{\tau \ge 0}(\mathcal{G}(\tau) - C\tau)\right)\right)$$

 Goal is to size battery such that probability of loss of power is at most e^{*}, thus

$$\min\left(\Pr\{x^{c}(t) > 0\}, \varepsilon_{g}\left(B - \sup_{\tau \ge 0}(\mathcal{G}(\tau) - C\tau)\right)\right) \le \epsilon^{*}$$
$$\implies B \ge \left(\sup_{\tau \ge 0}(\mathcal{G}(\tau) - C\tau) + \varepsilon_{g}^{-1}(\epsilon^{*})\right) I_{(\Pr\{x^{c}(t) = 1\} > \epsilon^{*})}$$

14/27

Sizing in presence of genset

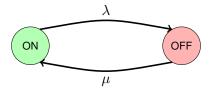
- Reduce carbon footprint
- For large gensets

carbon emission
$$\sim \sum_{t} l(t)$$

Scheduling becomes trivial (we'll come back later)

Sizing in presence of genset (contd.)

· Goal is to estimate expected total loss (carbon emission)



- · Goal is to estimate expected total loss (carbon emission)
- Under some assumptions:

$$E\left[\sum_{t=1}^{T} I(t)\right] \approx \min\left(\sum_{t=1}^{T} E\left[d(t)x^{c}(t)\right],\right.$$
$$\Pr\{\max\left(\left[D^{e}(s,t) - C(t-s) - B\right]_{+}\right) > 0\}.\sum_{t=1}^{T} E[d(t)]\right)$$

Introduction	Background	Unreliable grid	Off-grid	Conclusions
		Data set		

- 4500 Irish homes
- Randomly selected 100 homes
- Two-state on-off Markov model for outage

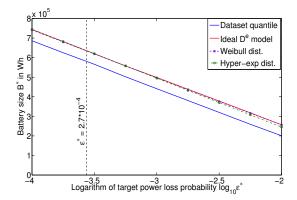
Use data set to compute 'best' parameters:

• Envelope $\mathcal{G} = \sigma + \rho t$

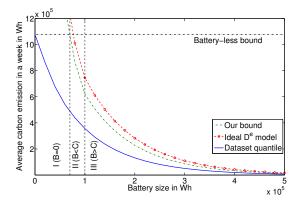
Use data set to compute 'best' parameters:

- Envelope $\mathcal{G} = \sigma + \rho t$
- Exponential distribution to model ε_g fails

Use data set to compute 'best' parameters:


- Envelope $\mathcal{G} = \sigma + \rho t$
- Exponential distribution to model ε_g fails
- Weibull distribution to model ε_g

Data Fitting


Use data set to compute 'best' parameters:

- Envelope $\mathcal{G} = \sigma + \rho t$
- Exponential distribution to model ε_g fails
- Weibull distribution to model ε_g
- Hyper-exponential distribution to model ε_g

Results (absence of genset)

Results (presence of genset)

Introduction

Background

Unreliable grid

Off-grid

Conclusions

Outline

Introduction

Background

Unreliable grid

Off-grid

Conclusions

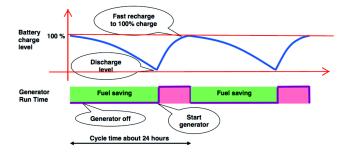
< □ > < @ > < 글 > < 글 > 로) = 의 = 의 Q (20/27

Motivation

• Off-grid industry using genset: how to improve efficiency?

Motivation

- Off-grid industry using genset: how to improve efficiency?
- For small gensets, rate of fuel consumption


 $k_1G + k_2d(t)$

Motivation

- Off-grid industry using genset: how to improve efficiency?
- For small gensets, rate of fuel consumption

$$k_1G + k_2d(t)$$

Storage battery can help!

- (a) Given a genset size, how to size battery and schedule power?
- (b) How to jointly size battery and genset?

- (a) Given a genset size, how to size battery and schedule power?
- (b) How to jointly size battery and genset?

We talk only about the former in this presentation

Offline optimal given by a mixed IP

- Offline optimal given by a mixed IP
- General offline problem NP-hard

- Offline optimal given by a mixed IP
- General offline problem NP-hard
- Online Alternate scheduling

- Offline optimal given by a mixed IP
- General offline problem NP-hard
- Online Alternate scheduling
- Competitive ratio

$$\frac{k_1\frac{G}{C}+k_2}{k_1+k_2}$$

23/27

Introduction	Background	Unreliable grid	Off-grid	Conclusions			
Savings							

• Before:

 $k_1 GT + k_2 \sum_{t=1}^{T} d(t)$

Introduction Background Unreliable grid Off-grid Conclusions
Savings

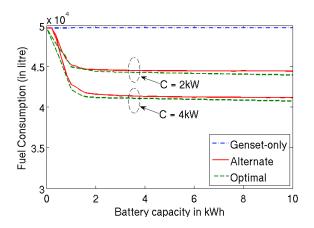
• Before:

$$k_1 GT + k_2 \sum_{t=1}^{T} d(t)$$

• After (under some assumptions):

$$k_1 GT \frac{\frac{1}{C}}{\frac{1}{C} + \frac{1}{E[d(t)]}} + k_2 \sum_{t=1}^{T} d(t)$$

Introduction Background Unreliable grid Off-grid Conclusions
Savings


$$k_1 GT + k_2 \sum_{t=1}^{l} d(t)$$

• After (under some assumptions):

$$k_1 GT \frac{\frac{1}{C}}{\frac{1}{C} + \frac{1}{E[d(t)]}} + k_2 \sum_{t=1}^{T} d(t)$$

Beyond a small value, independent of battery size!

Result

Introduction	Background	Unreliable grid	Off-grid	Conclusions		
Outline						

Introduction

Background

Unreliable grid

Off-grid

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Power grid unreliable or absent

* Genset has high carbon footprint

· Power grid unreliable or absent

- * Genset has high carbon footprint
- Storage battery expensive
 - * Reduce the size

- Power grid unreliable or absent
 - * Genset has high carbon footprint
- Storage battery expensive
 - Reduce the size
- Minimum battery size required to avoid genset

- Power grid unreliable or absent
 - * Genset has high carbon footprint
- Storage battery expensive
 - * Reduce the size
- Minimum battery size required to avoid genset
- Trade-off between battery size and genset carbon footprint

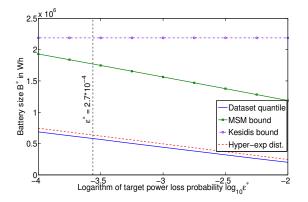
- Power grid unreliable or absent
 - * Genset has high carbon footprint
- Storage battery expensive
 - Reduce the size
- Minimum battery size required to avoid genset
- Trade-off between battery size and genset carbon footprint
- Power scheduling to improve genset efficiency

Introduction

Background

Unreliable gric

Off-gric


Conclusions

Limitations & Future Work

- Past predicts future
- Battery model: size and charging rate independent
- Lack of data from developing countries
- Technical assumptions

Appendix

Results (absence of genset)

Three modes

Three modes of battery-genset hybrid system operation:

- 1. Demand met by battery only
- 2. Demand met by genset only
- 3. Demand simultaneously met by battery and genset