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Power outages

e Developing countries:
* Large demand-supply gap
* Two-to-four hours daily outage
is common'’

'Tongia et al., India Power Supply Position 2010. Centre for Study of
Science, Technology, and Policy CSTEP, Aug 2010
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Power outages

e Developing countries:
* Large demand-supply gap
* Two-to-four hours daily outage
is common’

e Developed countries:

* Storms, lightning strikes,
equipment failures
* Eg. Sandy

"Tongia et al., India Power Supply Position 2010. Centre for Study of
Science, Technology, and Policy CSTEP, Aug 2010
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Diesel generator

¢ A residential neighbourhood augments grid power
e Usually from a diesel generator (genset)

e High carbon footprint!
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e What if the battery goes empty during an outage?
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Battery-genset hybrid system

e Use battery to meet demand
o |f battery goes empty, turn on genset
¢ Both benefits
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(b) Trade-off between battery size and carbon footprint
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Related Work

e Mostly empirical
* Both sizing and scheduling

2Wang et al., A Stochastic Power Network Calculus for Integrating
Renewable Energy Sources into the Power Grid. IEEE JSAC
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Background

Related Work

Mostly empirical
* Both sizing and scheduling

Analytical work usually assumes stationarity of demand

No analytical work on battery sizing vs carbon trade-off

Wang et al.? do battery sizing for renewables — do not
model grid unreliability

2Wang et al., A Stochastic Power Network Calculus for Integrating
Renewable Energy Sources into the Power Grid. IEEE JSAC
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Background

Notation

¢ Discrete time model
e a(t) is arrival in time slot ¢
e A(s,t)is arrival in time s to ¢

Name | Description

B Battery storage capacity

C Battery charging rate

x(t) | Grid availability 0 or 1

d(t) | Power demand

b(t) | Battery state of charge

t) | Battery deficit charge = B — b(t)
) | Amount of loss of power
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« Analogy between loss of packet and loss of power®

<« Buff » « b(t) -
a(t) “ c C ) a(t)
—_— > >

W

SArdakanian et al., On the use of teletraffic theory in power distribution
systems. In Proceedings of e-Energy
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« Analogy between loss of packet and loss of power®

< B ff N « b t) »
at) B4 o c 20 g
—) > >

W

Pr{b(t) < 0} = Pr{b%(t) > B}
= Pr{Buffer > B} = Pr{I(t) > 0}

SArdakanian et al., On the use of teletraffic theory in power distribution
systems. In Proceedings of e-Energy
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Background

Stochastic demand

Choices for demand model:

o Constant average demand E[d(t)]

e Markov model
* Most results assume stationarity

¢ Network calculus
* Worst case analysis

e Stochastic network calculus
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Stochastic Network Calculus

e Example: Design a door

* Model human heights
Pr{height < 6ft} = po
Pr{height > 6ft + 0} < (1 — pg)e™*7 = g4(0)

e Interested in modeling cumulative demand
* Statistical sample path envelope

Pr {sup{A(s, H—-G(t—s)} > a} < gg4(o)

s<t
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Modeling

e Transformation and effective demand

d(t)
Utility
. « b(t) » Demand < b(t) »
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(a) Grid available
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e Transformation and effective demand

Utility
Grid

Utility
Grid

« b(t) » Demand
Lo

(a) Grid available

< b(t) » Demand

(b) Power Outage

« b(t) »
<
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d®(t) = [d(t) + C](1 — x(1))
= [d(t) + C]x(t)
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Sizing in absence of genset

Using an amendment of Wang et al.*

Pr{l(t) > 0} < min <Pr{x"(t) > 0}, g (B —sup(G(7) — CT)))
>0

“Wang et al., A Stochastic Power Network Calculus for Integrating
Renewable Energy Sources into the Power Grid. IEEE JSAC
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Unreliable grid

Sizing in absence of genset

Using an amendment of Wang et al.*
Pr{I(t) > 0} < min <Pr{x°(t) > 0}, eg (B —sup(g(r) — CT)))
>0

e Goal is to size battery such that probability of loss of power
is at most ¢*, thus

min <Pr{x°(t) > 0}, g9 (B —sup(G(7) — Cr))) <€

>0

— B> (sup(g(r) —C7)+ eg‘1 (e*)) lprixe(t)=1}>e)

7>0

“Wang et al., A Stochastic Power Network Calculus for Integrating
Renewable Energy Sources into the Power Grid. IEEE JSAC
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Sizing in presence of genset

e Reduce carbon footprint
e For large gensets

carbon emission ~ » " (t)
t

e Scheduling becomes trivial (we’ll come back later)

15/27



Introduction Background Unreliable grid Off-grid Conclusions

Sizing in presence of genset (contd.)

e Goal is to estimate expected total loss (carbon emission)
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Sizing in presence of genset (contd.)

e Goal is to estimate expected total loss (carbon emission)

e Under some assumptions:

E

> /(t)] ~ min(z E [d(t)x°(1)] ,

t=1 t=1

]
Pr{max ([D%(s, ) - C(t - s) - Bl+) > 0}. 3" E[d(1)])
t=1
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Unreliable grid

Data set

e 4500 Irish homes
¢ Randomly selected 100 homes
¢ Two-state on-off Markov model for outage
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Data Fitting

Use data set to compute ‘best’ parameters:

e Envelope G = o + pt
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Unreliable grid

Data Fitting

Use data set to compute ‘best’ parameters:

Envelope G = o + pt

Exponential distribution to model ¢4 fails

Weibull distribution to model ¢4

Hyper-exponential distribution to model ¢4
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Results (absence of genset)

— Dataset quantile
—Ideal D® model
-=-Weibull dist.

- Hyper—exp dist.
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Results (presence of genset)
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Motivation

o Off-grid industry using genset: how to improve efficiency?
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Motivation

o Off-grid industry using genset: how to improve efficiency?
o For small gensets, rate of fuel consumption

k1G + kad(t)
o Storage battery can help!

Fast recharge
to 100% charge
Battery
charge 100%
level
Discharge
level

Generator Fuel saving I l Fuel saving I I
Run Time
generator

Cycle time about 24 hours

I
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Problems

(a) Given a genset size, how to size battery and schedule
power?

(b) How to jointly size battery and genset?
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Off-grid

Problems

(a) Given a genset size, how to size battery and schedule
power?

(b) How to jointly size battery and genset?

We talk only about the former in this presentation
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Off-grid

Battery usage

Theorem: Problem same as minimizing genset operation time

Offline optimal given by a mixed IP

General offline problem NP-hard

Online Alternate scheduling

Competitive ratio
ki + ko
ki + ko
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Savings

e Before:
-

KiGT + ko Y d(t)

t=1
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Off-grid

Savings

e Before:
-

KiGT + k2 Y d(t)
t=1
e After (under some assumptions):
kGT+—S—+ ke Z d(t
+ ECO)

Beyond a small value, independent of battery size!
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Fuel Consumption (in litre)

Off-grid

Result
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Summary

e Power grid unreliable or absent
* Genset has high carbon footprint
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Conclusions

Summary

Power grid unreliable or absent
* Genset has high carbon footprint

Storage battery expensive
* Reduce the size

Minimum battery size required to avoid genset
Trade-off between battery size and genset carbon footprint
Power scheduling to improve genset efficiency
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Limitations & Future Work

Past predicts future

Battery model: size and charging rate independent
Lack of data from developing countries

Technical assumptions

Conclusions
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Battery size B* in Wh

Results (absence of genset)
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Three modes

Three modes of battery-genset hybrid system operation:

1. Demand met by battery only
2. Demand met by genset only
3. Demand simultaneously met by battery and genset

27127
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