Multivariate Visual Representations

CS 7450 - Information Visualization Jan. 27, 2011 John Stasko

Agenda

- General representation techniques for multivariate (>3) variables per data case
 - But not lots of variables yet...

Revisit

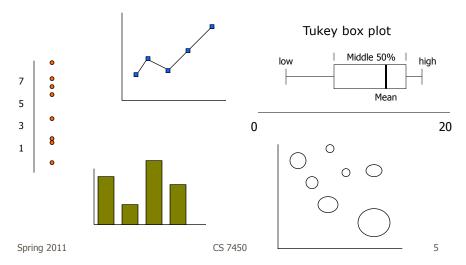
How Many Variables?

- Data sets of dimensions 1, 2, 3 are common
- Number of variables per class
 - 1 Univariate data
 - 2 Bivariate data
 - 3 Trivariate data
 - ->3 Hypervariate data Focus Today

Spring 2011 CS 7450

Earlier

- We examined a number of tried-and-true techniques/visualizations for presenting multivariate (typically <=3) data sets
 - Hinted at how to go above 3 dimensions


Spring 2011 CS 7450 4

2

Representations

Some standard ways for low-d data

Hypervariate Data

- How about 4 to 20 or so variables (for instance)?
 - Lower-dimensional hypervariate data
 - (Much higher dimensions next week)
 - Many data sets fall into this category

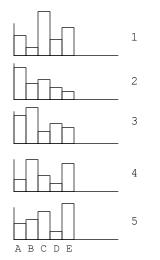
More Dimensions

- Fundamentally, we have 2 geometric (position) display dimensions
- For data sets with >2 variables, we must project data down to 2D
- Come up with visual mapping that locates each dimension into 2D plane
- Computer graphics: 3D->2D projections

Spring 2011 CS 7450 7

Wait a Second

- A spreadsheet already does that
 - Each variable is positioned into a column
 - Data cases in rows
 - This is a projection (mapping)
- What about some other techniques?
 - Already seen a couple


Multiple Views

Revisit

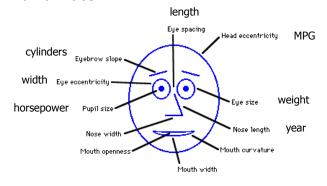
Give each variable its own display

	Α	В	С	D	Ε
1	4	1	8	3 2 4 1	5
2	6	3	4	2	1
3	5	7	2	4	3
4	2	6	3	1	5
5	3	4	5	1	7

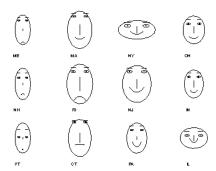

Spring 2011 CS 7450

Scatterplot Matrix

Revisit


Represent each possible pair of variables in their own 2-D scatterplot

Chernoff Faces

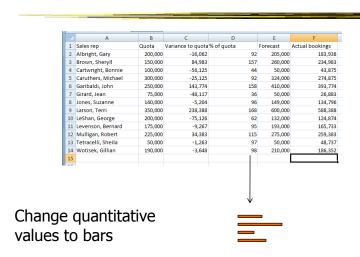

Encode different variables' values in characteristics of human face

Spring 2011 CS 7450 11

Examples

Cute applets: http://www.cs.uchicago.edu/~wiseman/chernoff/http://hesketh.com/schampeo/projects/Faces/chernoff.html

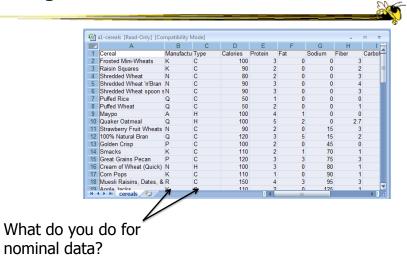
Table Lens



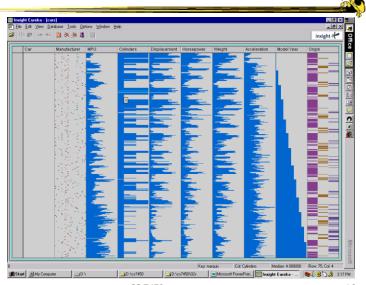
- Spreadsheet is certainly one hypervariate data presentation
- Idea: Make the text more visual and symbolic
- Just leverage basic bar chart idea

Rao & Card CHI '94

Spring 2011 CS 7450 13

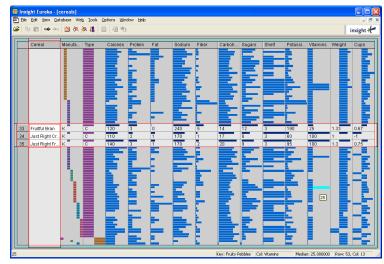

Visual Mapping

Spring 2011 CS 7450 14


7

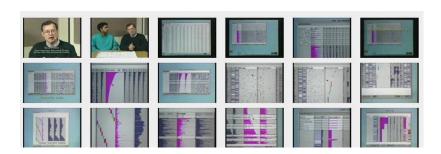
Tricky Part

Spring 2011 CS 7450 15


Instantiation

Details

Focus on item(s) while showing the context


Spring 2011

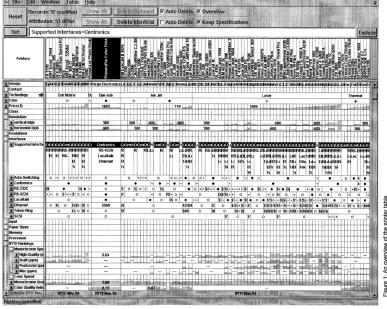
CS 7450

17

See It

http://www.open-video.org/details.php?videoid=8304

Video


FOCUS

- Feature-Oriented Catalog User Interface
- Leverages spreadsheet metaphor again
- Items in columns, attributes in rows
- Uses bars and other representations for attribute values

Spenke, Beilken, & Berlage UIST '96

Spring 2011 CS 7450 19

Spring 2011 CS 7450 20

10

Characteristics

- Can sort on any attribute (row)
- Focus on an attribute value (show only cases having that value) by doubleclicking on it
- Can type in queries on different attributes to limit what is presented too

Spring 2011 CS 7450 21

Limit by Query

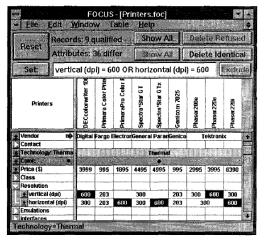
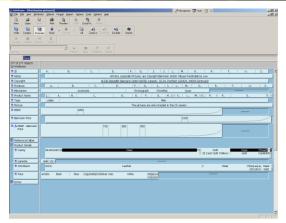



Figure 4: A disjunction.

Manifestation

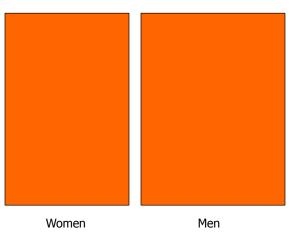
Commercial product to be demo'ed coming up

Spring 2011 CS 7450 23

Categorical data?

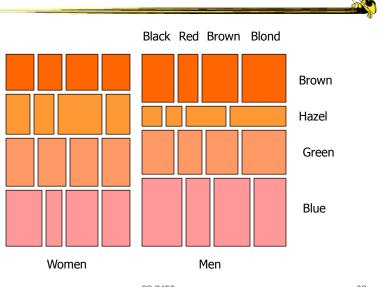
- How about multivariate categorical data?
- Students
 - Gender: Female, male
 - Eye color: Brown, blue, green, hazel
 - Hair color: Black, red, brown, blonde, gray
 - Home country: USA, China, Italy, India, ...

Mosaic Plot



Spring 2011 CS 7450 25


Mosaic Plot


Mosaic Plot

27

Mosaic Plot

Spring 2011 CS 7450 28

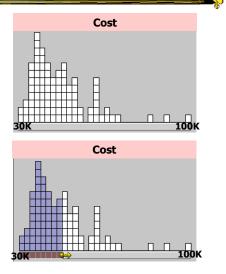
Attr Explorer

 General hypervariate data representation combined with flexible interaction

Spence & Tweedie
Inter w Computers '98

Spring 2011 CS 7450 2

Characteristics



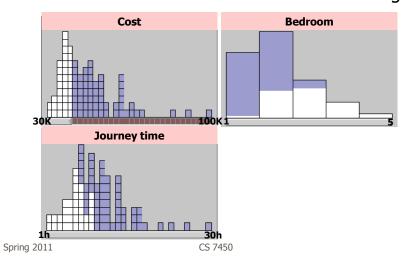
- Multiple histogram views, one per attribute (like trellis)
- Each data case represented by a square
- Square is positioned relative to that case's value on that attribute
- Selecting case in one view lights it up in others
- Query sliders for narrowing
- Use shading to indicate level of query match (darkest for full match)

Features

- Attribute histogram
- All objects on all attribute scales

 Interaction with attributes limits

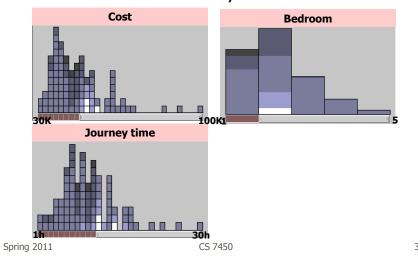
Spring 2011


CS 7450

31

Features

• Inter-relations between attributes – brushing



32

Features

Color-encoded sensitivity

Attribute Explorer

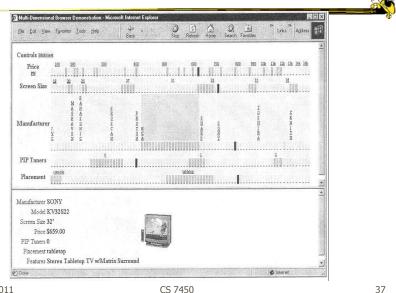
Video

http://www.open-video.org/details.php?videoid=8162

Summary

- Summary
 - Attribute histogram
 - Attribute relationship
 - Sensitivity information
 - Especially useful in "zero-hits" situations or when you are not familiar with the data at all
- Limitations
 - Limits on the number of attributes

Spring 2011 CS 7450 35


MultiNav

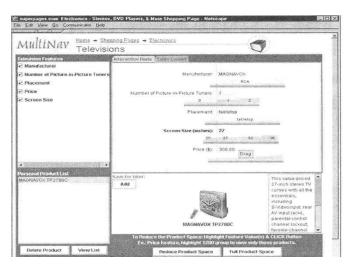
- Each different attribute is placed in a different row
- Sort the values of each row
 - Thus, a particular item is not just in one column
- Want to support browsing

Lanning et al AVI '00

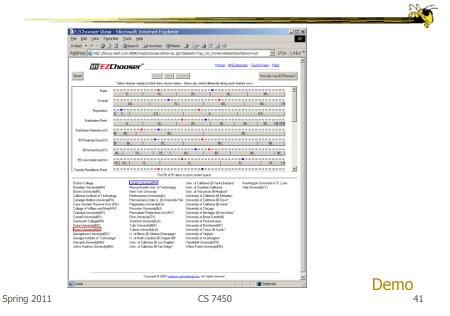
Interface

Spring 2011 CS 7450

Alternate UI


- Can slide the values in a row horizontally
- A particular data case then can be lined up in one column, but the rows are pushed unequally left and right

CS 7450 Spring 2011 38


Attributes as Sliding Rods

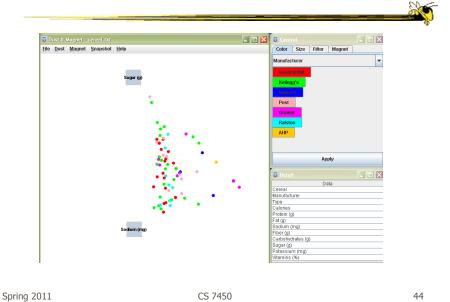
Information-Seeking Dialog

Instantiation

Limitations

- Number of cases (horizontal space)
- Nominal & textual attributes don't work quite as well

Dust & Magnet



- Altogether different metaphor
- Data cases represented as small bits of iron dust
- Different attributes given physical manifestation as magnets
- Interact with objects to explore data

Yi, Melton, Stasko & Jacko Info Vis '05

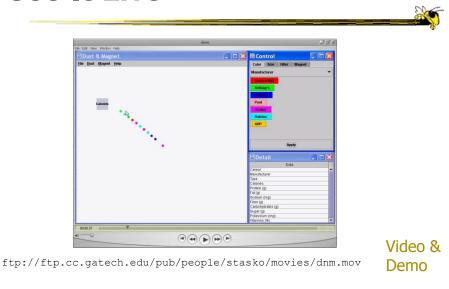
Spring 2011 CS 7450 43

Interface

22

Interaction

- Iron bits (data) are drawn toward magents (attributes) proportional to that data element's value in that attribute
 - Higher values attracted more strongly
- All magnets present on display affect position of all dust
- Individual power of magnets can be changed
- Dust's color and size can connected to attributes as well


Spring 2011 CS 7450

Interaction

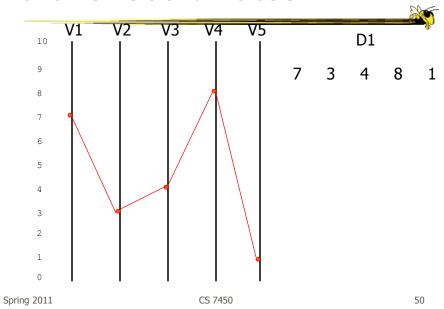
- Moving a magnet makes all the dust move
 Also command for shaking dust
- Different strategies for how to position magnets in order to explore the data

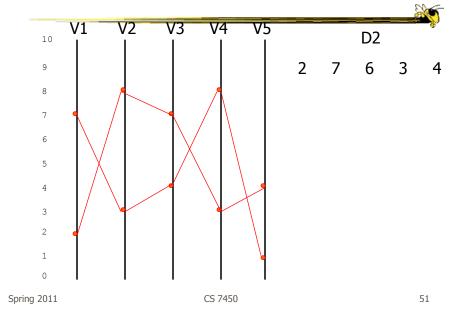
See It Live

Spring 2011 CS 7450 47

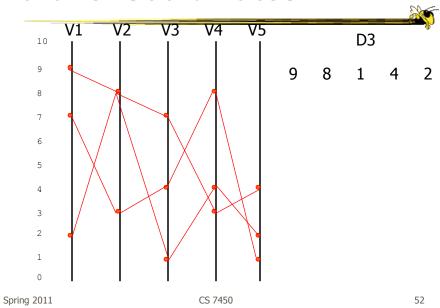
Parallel Coordinates

- What are they?
 - Explain...


Parallel Coordinates


	V1	V2	V3	V4	V5
D1	7	3	4	8	1
D2	2	7	6	3	4
D3	9	8	1	4	2

Spring 2011 CS 7450 49


Parallel Coordinates

Parallel Coordinates

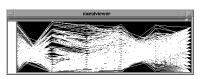
Parallel Coordinates

Parallel Coordinates

Encode variables along a horizontal row

Vertical line specifies different values that variable can take

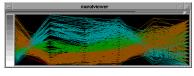
Data point represented as a polyline


Spring 2011

CS 7450

53

Parallel Coords Example



Basic

Grayscale

Color

Issue

- Different variables can have values taking on quite different ranges
- Must normalize all down (e.g., 0->1)

Spring 2011 CS 7450 55

Application

- System that uses parallel coordinates for information analysis and discovery
- Interactive tool
 - Can focus on certain data items
 - Color

Taken from:

A. Inselberg, "Multidimensional Detective" InfoVis '97, 1997.

Discuss

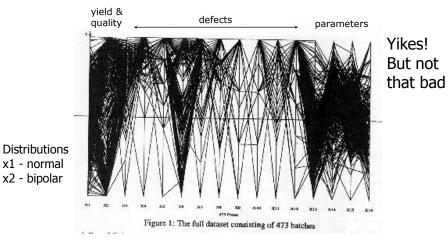
- What was their domain?
- What was their problem?
- What were their data sets?

Spring 2011 CS 7450 5

The Problem

- VLSI chip manufacture
- Want high quality chips (high speed) and a high yield batch (% of useful chips)
- Able to track defects
- Hypothesis: No defects gives desired chip types
- 473 batches of data

The Data



- 16 variables
 - X1 yield
 - X2 quality
 - X3-X12 # defects (inverted)
 - X13-X16 physical parameters

Spring 2011 CS 7450 5

Parallel Coordinate Display

Top Yield & Quality

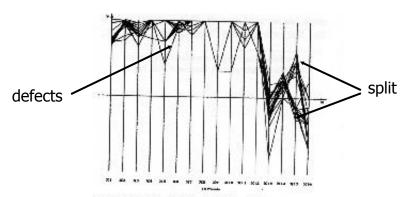


Figure 2: The batches high in Yield, X1, and Quality, X2,

Have some defects

Spring 2011 CS 7450 61

Minimal Defects

Not the highest yields and quality

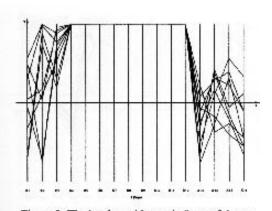


Figure 3: The batches with zero in 9 out of the ten defect types.

Best Yields

Appears that some defects are necessary to produce the best chips

Non-intuitive!

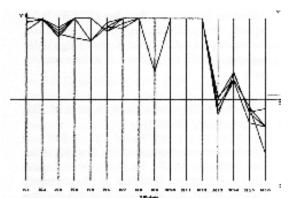
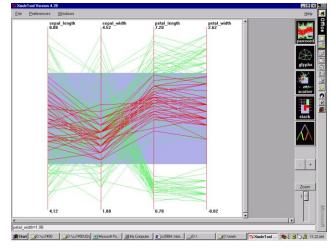
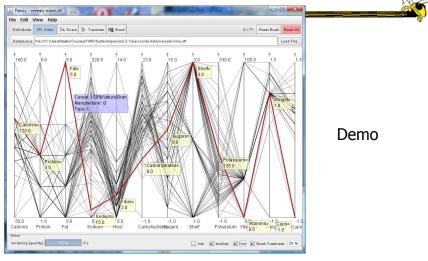


Figure 6: Batches with the highest Yields do not, have the lowest defects in X3 and X6.

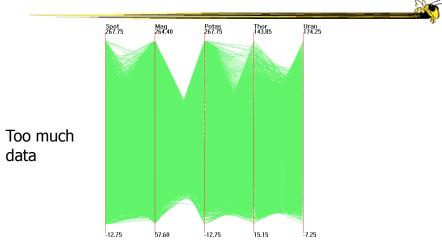

Spring 2011 CS 7450 63

XmdvTool



Toolsuite created by Matthew Ward of WPI

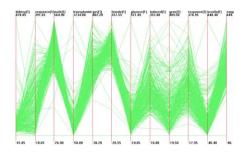
Includes parallel coordinate views

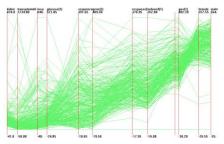

ParVis System

http://www.mediavirus.org/parvis/

Spring 2011 CS 7450 65

Challenges


Out5d dataset (5 dimensions, 16384 data items)


Spring 2011 CS 7450 (courtesy of J. Yang) 66

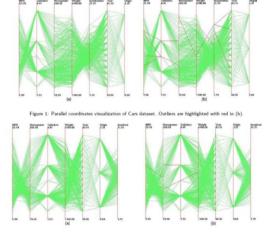
Dimensional Reordering

Which dimensions are most like each other?

Same dimensions ordered according to similarity

Yang et al InfoVis '03

Spring 2011


CS 7450

67

Dimensional Reordering

Can you reduce clutter and highlight other interesting features in data by changing order of dimensions?

Peng et al InfoVis '04

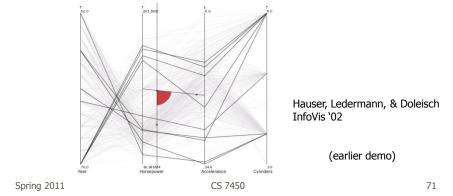
Figure 2: Parallel coordinates visualization of Cars dataset after clutter-based dimension reordering. Outliers are highlighted with red in (b

Spring 2011

CS 7450

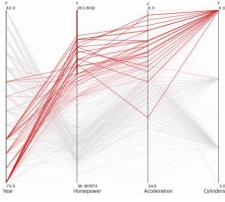
68

Improved Interaction

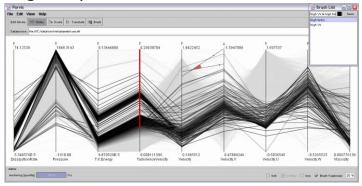


- How do we let the user select items of interest?
- Obvious notion of clicking on one of the polylines, but how about something more than that

Attribute Ratios


- Angular Brushing
 - Select subsets which exhibit a correlation along 2 axes by specifying angle of interest

Range Focus


- Smooth Brushing
 - Specify a region of interest along one axis

Combining

- Composite Brushing
 - Combine brushes and DOI functions using logical operators

Spring 2011 CS 7450 73

Video

http://www.vrvis.at/via/research/ang-brush/parvis4.mov

Spring 2011 CS 7450 74

37

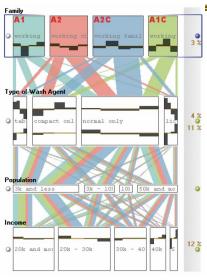
Application

http://www.syracuse.com/news/index.ssf/2010/01/data_mining_helps_new_york_cat.html

Spring 2011 CS 7450 75

Different Kinds of Data

- How about categorical data?
 - Can parallel coordinates handle that well?


Parallel Sets

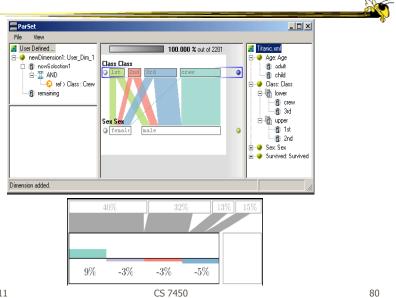
- Visualization method adopting parallel coordinates layout but uses frequencybased representation
- Visual metaphor
 - Layout similar to parallel coordinates
 - Continuous axes replaced with boxes
- Interaction
 - User-driven: User can create new classifications
 Kosara, Bendix, & Hauser TVCG '05

Spring 2011 CS 7450 77

Representation

Color used for different categories

Those values flow into the other variables


Example

Titanic passengers data set

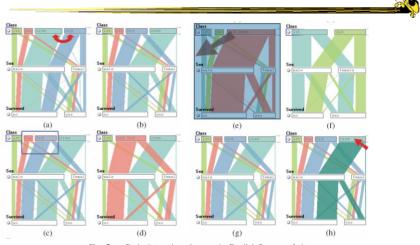
Class	S		
	female	male	
first	145 44.6%	180 55.4%	325
	30.8% 6.6%	10.4% 8.2%	14.8%
second	106 37.2%	179 62.8%	285
	22.6% 4.8%	10.4% 8.1%	12.9%
third	196 27.8%	510 72.2%	706
	41.7% 8.9%	29.5% $23.2%$	32.1%
crew	23 2.6%	862 97.4%	885
	4.9% 1.1%	49.8% 39.1%	40.2%
	470	1731	2201
	21.4%	78.6%	100%

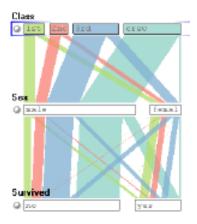
Spring 2011 CS 7450 79

Titanic Data Set

Spring 2011 CS 7450

Interactions

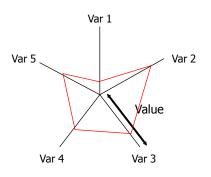



Fig. 7. Basic interaction elements in Parallel Sets: reordering categories (a,b) helps to generate a more meaningful layout; grouping categories (c,d) enables a hierarchical analysis/exploration; excluding categories from the visualization (e,f) allows for interactive filtering; and category highlighting (g,h) enables the selective investigation of high-dimensional relations.

Spring 2011

81

Video



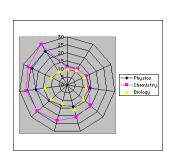
Spring 2011 CS 7450

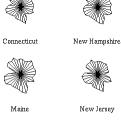
InfoVis `05

Star Plots

Space out the n variables at equal angles around a circle

Each "spoke" encodes a variable's value


Alternative Rep.


Data point is now a "shape"

Spring 2011 CS 7450 83

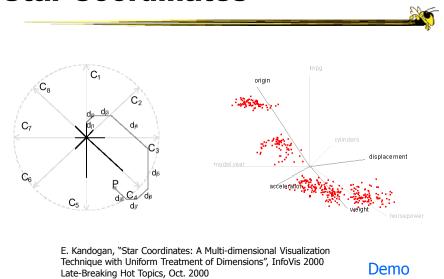
Star Plot examples

New York

Rhode Island

http://seamonkey.ed.asu.edu/~behrens/asu/reports/compre/comp1.html

Massachusetts


Star Coordinates

- Same ideas as star plot
- Rather than represent point as polyline, just accumulate values along a vector parallel to particular axis
- Data case then becomes a point

Spring 2011 CS 7450 8

Star Coordinates

Star Coordinates

- Data cases with similar values will lead to clusters of points
- (What's the problem though?)
- Multi-dimensional scaling or projection down to 2D

Spring 2011 CS 7450 8

Parallel Coordinates

- Technique
 - Strengths?
 - Weaknesses?

HW 3

- Analysis and Visual Design
 - Three datasets, choose one
 - Construct three analytic queries
 - Design visualization (sketch)
- Due Tues Feb 8

Spring 2011 CS 7450 8

Upcoming

- Overview and Detail (Focus + Context)
 - Reading:Bederson et al, '04
- Interaction (2 days)
 - Reading
 Ward chapters 10, 11
 Few chapter 4
 Yi et al, '07