Visual Perception

CS 7450 - Information Visualization January 20, 2011 John Stasko

Agenda

Visual perception

- Pre-attentive processing

- Color

– Etc.

Semiotics

- The study of symbols and how they convey meaning
- Classic book:
 - J. Bertin, 1983, The Semiology of Graphics

Spring 2011

CS 7450

Related Disciplines

- Psychophysics
 - Applying methods of physics to measuring human perceptual systems
 - How fast must light flicker until we perceive it as constant?
 - What change in brightness can we perceive?
- Cognitive psychology
 - Understanding how people think, here, how it relates to perception

CS 7450

Perceptual Processing

- Seek to better understand visual perception and visual information processing
 - Multiple theories or models exist
 - Need to understand physiology and cognitive psychology

Spring	2011

CS 7450

5

One (simple) Model

- Two stage process
 - Parallel extraction of low-level properties of scene
 - Sequential goal-directed processing

Stage 1 - Low-level, Parallel

- Neurons in eye & brain responsible for different kinds of information
 - Orientation, color, texture, movement, etc.
- Arrays of neurons work in parallel
- Occurs "automatically"
- Rapid
- Information is transitory, briefly held in iconic store
- Bottom-up data-driven model of processing
- Often called "pre-attentive" processing

Spring 2011

CS 7450

Stage 2 - Sequential, Goal-Directed

- Splits into subsystems for object recognition and for interacting with environment
- Increasing evidence supports independence of systems for symbolic object manipulation and for locomotion & action
- First subsystem then interfaces to verbal linguistic portion of brain, second interfaces to motor systems that control muscle movements

Stage 2 Attributes

- Slow serial processing
- Involves working and long-term memory
- More emphasis on arbitrary aspects of symbols
- Top-down processing

Spring 2011	CS 7450	9
Preatten	tive Process	sing
 How does limages? Some thin without the Generally movemen Seems to vision system 	human visual syste ngs seem to be done p ne need for focused at less than 200-250 ms ts take 200 msecs) be done in parallel by tem	m analyze preattentively, ttention secs (eye v low-level
		Healey article

11

Spring 2011

CS 7450

How Many 3's?

3980985845822450985645894509845098094**33**0209905959595772564675050678904567 **3**

What Kinds of Tasks?

- Target detection
 - Is something there?
- Boundary detection
 - Can the elements be grouped?
- Counting
 - How many elements of a certain type are present?

Spring 2011	CS 7450

Example

- Determine if a red circle is present
- (2 sides of the room)

CS 7450

Surrounding objects called "distractors"

Spring 2011

CS 7450

15

• Determine if a red circle is present

Shape

Can be done preattentively by people

Spring 2011 CS 7450 17

• Determine if a red circle is present

Hue and Shape

- Cannot be done preattentively
- Must perform a sequential search
- Conjuction of features (shape and hue) causes it

Spring 2011

CS 7450

19

• Is there a boundary in the display?

Fill and Shape

- Left can be done preattentively since each group contains one unique feature
- Right cannot (there is a boundary!) since the two features are mixed (fill and shape)

Spring 2011

CS 7450

21

• Is there a boundary in the display?

Hue versus Shape

Left: Boundary detected preattentively based on hue regardless of shape Right: Cannot do mixed color shapes preattentively

Spring 2011

CS 7450

23

Hue versus brightness

Left: Varying brightness seems to interfere Right: Boundary based on brightness can be done preattentively

Spring 2011

CS 7450

Example Applet

20

- Nice on-line tutorial and example applet
 - http://www.csc.ncsu.edu/faculty/healey/PP/index.html
 - Chris Healey, NC State
 - Prior pictures taken from site

Preattentive Features

- Certain visual forms lend themselves to preattentive processing
- Variety of forms seem to work

Spring 2011

CS 7450

27

Textons

 المالة
 المالة

3-D visual reality has an influence

Spring 2011

3-D Figures

CS 7450

29

CS 7450

Potential PA Features

length width size curvature number terminators intersection closure hue intensity flicker direction of motion binocular lustre stereoscopic depth 3-D depth cues lighting direction

Spring 2011

CS 7450

31

Discussion

 What role does/should preattentive processing play in information visualization?

Gestalt Laws

Background

- German psychologists, early 1900's
- Attempt to understand pattern perception
- Founded Gestalt school of psychology
- Provided clear descriptions of many basic perceptual phenomena
 - \rightarrow Gestalt Laws of Pattern Perception

Spring 2011

CS 7450

Gestalt Laws

• Proximity

Things close together are perceptually grouped together

- Similarity
 - Similar elements get grouped together
- Connectedness
 - Connecting different objects by lines unifies them
- Continuity
 - More likely to construct visual entities out of smooth, continuous visual elements

CS 7450

Gestalt Laws

- Symmetry
 - Symmetrical patterns are perceived more as a whole
- Closure
 - A closed contour is seen as an object
- Relative Size
 - Smaller components of a pattern as perceived as objects
- Figure & Ground
 - Figure is foreground, ground is behind

35

Spring 2011

CS 7450

Key Perceptual Properties

- Brightness
- Color
- Texture
- Shape

Luminance/Brightness

- Luminance
 - Measured amount of light coming from some place
- Brightness
 - Perceived amount of light coming from source

Spring ZUII

CS 7450

37

Brightness

- Perceived brightness is non-linear function of amount of light emitted by source
 - Typically a power function
 - $-S = aI^n$
 - S sensation
 - I intensity
- Very different on screen versus paper

Grayscale

- Probably not best way to encode data because of contrast issues
 - Surface orientation and surroundings matter a great deal
 - Luminance channel of visual system is so fundamental to so much of perception
 We can get by without color discrimination, but not luminance

Spring 2011	CS 7450

Color

 Sensory response to electromagnetic radiation in the spectrum between wavelengths 0.4 - 0.7 micrometers

10-6	10-1	0.5	10 ⁵	10 ⁸
gamma	ultraviolet	visible	microwave	tv

Color Models

- HVS model
 - Hue what people think of color
 - Value light/dark, ranges black<-->white
 - Saturation intensity, ranges hue<-->gray

How Not to Use Color

http://www.thedailyshow.com/video/index.jhtml?videoId=156230&title=full-color-coverage

Spring 2011

Color Categories

- Are there certain canonical colors?
 - Post & Greene '86 had people name different colors on a monitor
 - Pictured are ones with > 75% commonality

From Ware '04

43

Spring 2011

CS 7450

Using Mechanical Turk

http://blog.doloreslabs.com/2008/03/where-does-blue-end-and-red-begin/

Spring 2011

Luminance

 Important for fg-bg colors to differ in brightness

Hello, here is some text.	Can you read what it says?
Hello, here is some text.	Can you read what it says?
Hello, here is some text.	Can you read what it says?
Hello, here is some text.	Can you read what it says?

Spring 2011

CS 7450

45

Color for Categories

- Can different colors be used for categorical variables?
 - Yes (with care)
 - Ware's suggestion: 12 colors
 - red, green, yellow, blue, black, white, pink, cyan, gray, orange, brown, purple

From Ware '04

Spring 2011

Possible Color Sequences

HeatMap

Nas	daq-10	0 Webł	leatma	р				_	
Nasdaq prices valid as of Jan. 16, 2004 12:56 ET Market Open									
QQQ 0.55%									
JNPR	TLAB	JDSU	SANM	LVLT	CHKP	CSCO	CMVT	MOLX	NTAP
23.94%	13.41%	11.88%	8.16%	4.31%	4.10%	3.87%	3.74%	3.64%	3.61%
GENZ	PIXR	SYMC	CHRW	APCC	BIIB	PTEN	FHCC	IVGN	FAST
3.25%	3.12%	3.10%	2.90%	2.77%	2.77%	2.68%	2.60%	2.58%	2.55%
RYAAY	EXPD	BEAS	ESRX	ISIL	GILD	IACI	DISH	NVDA	ALTR
2.30%	2.05%	2.03%	2.02%	1.81%	1.78%	1.65%	1.57%	1.49%	1.49%
SNPS	TEVA	SBUX	SUNW	NVLS	RIMM	BMET	ATYT	MLNM	SEBL
1.47%	1.47%	1.33%	1.31%	1.22%	1.20%	1.18%	1.12%	1.05%	1.00%
PAYX	CDWC	MCHP	XLNX	AMGN	CHIR	DLTR	FLEX	ERTS	MSFT
0.93%	0.90%	0.87%	0.84%	0.81%	0.78%	0.76%	0.74%	0.70%	0.62%
MRVL	GRMN	PDC0	HSIC	LLTC	CPWR	AMAT	LRCX	LNCR	VRSN
0.58%	0.57%	0.47%	0.45%	0.45%	0.44%	0.33%	0.33%	0.24%	0.21%
BBBY	CEC0	INTU	CEPH	SIAL	CTXS	AAPL	KLAC	DELL	MEDI
0.15%	0.14%	0.14%	0.14%	0.05%	0.05%	0.04%	0.03%	0.03%	0.00%
SNDK	PSFT	CMCSA	XRAY	AP OL	MERQ	VRTS	SPOT	ADBE	BRCM
-0.01%	-0.04%	-0.08%	-0.14%	-0.21%	-0.30%	-0.40%	-0.44%	-0.52%	-0.52%
INTC	NXTL	EBAY	R0ST	SPLS	COST	QLGC	0RCL	PETM	GNTX
-0.54%	-0.56%	-0.68%	-0.73%	-0.76%	-0.78%	-0.80%	-0.81%	-0.93%	-0.94%
FISV	YH00	MXIM	AMZN	SSCC	WFMI	CTAS	QCOM	PCAR	LAMR
-1.01%	-1.02%	-1.03%	-1.12%	-1.19%	-1.22%	-1.29%	-1.54%	-1.62%	-2.29%
-23.94	23.04 % Change 23.04								
@ 2001	© 2001 Neo/Asion Hypersystems <u>www.heatmaps.com</u>						is.com		
Java Ap	ava Applet Window								

http://screening.nasdaq.com/heatmaps/heatmap 100.asp

Spring 2011

CS 7450

49

http://colorbrewer2.org/

Spring 2011

Color Purposes

- Call attention to specific data
- Increase appeal, memorability
- Increase number of dimensions for encoding data
 - Example, Ware and Beatty '88
 x,y variables 1 & 2
 amount of r,g,b variables 3, 4, & 5

Spring 2011

CS 7450

Using Color

- Modesty! Less is more
- Use blue in large regions, not thin lines
- Use red and green in the center of the field of view (edges of retina not sensitive to these)
- Use black, white, yellow in periphery
- Use adjacent colors that vary in hue & value

CS 7450

Using Color

- Do not use adjacent colors that vary in amount of blue
- Don't use high saturation, spectrally extreme colors together (causes after images)
- Use color for grouping and search
- Beware effects from adjacent color regions (my old house - example)

Spring 2011

CS 7450

Article Discussion

http://www.b-eye-network.com/newsletters/ben/2235

CS 7450

Good Color Advice

Maureen Stone's website Many references and links She frequently offers tutorials about color at conferences

http://www.stonesc.com

Spring 2011

CS 7450

55

Texture

- Appears to be combination of
 - orientation
 - scale
 - contrast
- Complex attribute to analyze

Shape, Symbol

- Can you develop a set of unique symbols that can be placed on a display and be rapidly perceived and differentiated?
- Application for maps, military, etc.
- Want to look at different preattentive aspects

Spring 2011

CS 7450

Glyph Construction

 Suppose that we use two different visual properties to encode two different variables in a discrete data set

- color, size, shape, lightness
- Will the two different properties interact so that they are more/less difficult to untangle?
 - Integral two properties are viewed holistically
 - Separable Judge each dimension independently

CS 7450

Integral-Separable

• Not one or other, but along an axis

Encodings

 When you want to communicate one type of variable, which visual property should you use?

Change Blindness

• Is the viewer able to perceive changes between two scenes?

- If so, may be distracting
- Can do things to minimize noticing changes
- Fun examples
 - Static pictures (Ron Rensink, UBC) http://www.psych.ubc.ca/~rensink/flicker/download/
 - Videos (Dan Simons, Illinois)
 http://viscog.beckman.uiuc.edu/djs_lab/demos.html

Optical Illusions

Spring 2011

CS 7450

63

Stage 2

- Missing!
- Object recognition and locomotion/action
- Maybe in the future... :^)

Great Book

Information Visualization Perception for Design 2nd edition

Colin Ware Morgan Kaufmann

Spring 2011

CS 7450

HW 1 Discussion

- What findings did you make?
- What was difficult?
- What help did you want?

CS 7450

HW 2

- Table and graph design
- Given two (Excel) data sets, design a table and graph respectively
- Due next Thursday

Spring 2011	CS 7450

Upcoming

- Cognitive Issues
 - Papers to read
 Norman book chapter
 Liu et al
- Multivariate Visual Representations

 Papers to read

Inselberg

CS 7450

Sources Used

Healey website and article

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Marti Hearst SIMS 247 lectures C. Ware, *Information Visualization*

Spring 2011

CS 7450