Multivariate Visual Representations 2

CS 7450 - Information Visualization Sep. 2, 2015 John Stasko

Recap

 We examined a number of techniques for projecting >2 variables (modest number of dimensions) down onto the 2D plane

- Scatterplot matrix
- Table lens
- Parallel coordinates
- etc.

CS 7450

Can We Make a Taxonomy?

- D. Keim proposes a taxonomy of techniques
 - Standard 2D/3D display Bar charts, scatterplots
 - Geometrically transformed display Parallel coordinates
 - Iconic display
 Needle icons, Chernoff faces
 - Dense pixel display
 What we're about to see...
 - Stacked display
 Treemaps, dimensional stacking

TVCG`02

Minimum Possible?

- We have data cases with variables
- What's the smallest representation we can use?

- How?

Fall 2015

CS 7450

5

6

Dense Pixel Display

- Represent data case or a variable as a pixel
- Million or more per display
- Seems to rely on use of color
- Can pack lots in
- Challenge: What's the layout?

One Representation

- Grouping arrangement
- One pixel per variable
- Each data case has its own small rectangular icon
- Plot out variables for data point in that icon using a grid or spiral layout

Related Idea

- Pixel Bar Chart
- Overload typical bar chart with more information about individual elements

Height encodes quantity

Width encodes quantity

ldea 2

- Make each pixel within a bar correspond to a data point in that group represented by the bar
 - Can do millions that way
- Color the pixel to represent the value of one of the data point's variables

Figure 13 Multi-pixel bar chart for mining 405,000 sales transaction records. $(D_x = Product Type, D_y = \bot, O_x = no. of visits, O_y = dollar amount, C)$. (a) Color: dollar amount. (b) Color: no. of visits. (c) Color: quantity.

1. Product type 7 and product type 10 have the top dollar amount customers (dark colors of bar 7 and 10 in Figure 13a)

2. The dollar amount spent and the number of visits are clearly correlated, especially for product type 4 (linear increase of dark colors at the top of bar 4 in Figure 13b)

3. Product types 4 and 11 have the highest quantities sold (dark colors of bar 4 and 11 in Figure 13c) 4. Clicking on pixel A shows details for that customer

Fall 2015

Thoughts?

Fall 2015

CS 7450

High Dimensions

 Those techniques could show lots of data, but not so many dimensions at once
 Have to pick and choose

CS 7450

Another Idea

- Use the dense pixel display for showing data and dimensions, but then project into 2D plane to encode more information
- VaR Value and relation display

		Yang et al InfoVis `04
Fall 2015	CS 7450	17

Algorithm

- Find a correlation function for comparing dimensions
- Calculate distances between dimensions (similarities)
- Make each dimension into a dense pixel glyph
- Assign position for each glyph in 2D plane using multi-dimensional scaling

Questions

- Maybe there is a predefined order
- Choose one dimension as "important" then order data cases by their values in that dimension
 - "Important" one may be the one in which many cases are similar

Alternative

 Instead of each glyph being a dimension, it can be a data case

Fall 2015

CS 7450

Follow-on Work

- Use alternate positioning strategies other than MDS
- Use Jigsaw map idea (Wattenberg, InfoVis '05) to lay out the dimensions into a grid
 - Removes overlap
 - Limits number that can be plotted

Yang et al *TVCG* `07

CS 7450

Very Different Metaphor

- Represent each data case as a small glyph
- Make interaction be a crucial part of the visualization

Dust & Magnet

- Altogether different metaphor
- Data cases represented as small bits of iron dust
- Different attributes given physical manifestation as magnets
- Interact with objects to explore data

		Yi, Melton, Stasko & Jacko Information Visualization '05
2015	CS 7450	25

Interface

Fall

Interaction

- Iron bits (data) are drawn toward magnets (attributes) proportional to that data element's value in that attribute
 - Higher values attracted more strongly
- All magnets present on display affect position of all dust
- Individual power of magnets can be changed
- Dust's color and size can connected to attributes as well

Fall 2015

CS 7450

Interaction

- Moving a magnet makes all the dust move
 Also command for shaking dust
- Different strategies for how to position magnets in order to explore the data

See It Live

ftp://ftp.cc.gatech.edu/pub/people/stasko/movies/dnm.mov

Video & Demo

Fall 2015

CS 7450

29

Fall 2015

CS 7450

Video

Dust & Magnet on a large multitouch display

CS 7450

Dai, Sadana, Stolper & Stasko InfoVis '15 Poster 31

Fall 2015

Go Big

Set Data & Operations

- Different type of problem
 - Large set of items, each can be in one or more sets
 - How do we visually represent the set membership?

Fall 2015

CS 7450

33

http://en.wikipedia.org/wiki/File:British_Isles_Euler_diagram_15.svg

But what's the problem?

Fall 2015

Bubble Sets

Fall 2015

ComED & DupED

OnSet

Represent set as a box, elements are spots in that box Use interaction to do set union, intersection

Sadana, Major, Dove & Stasko *TVCG* (InfoVis) '14

Fall 2015	CS 7450	37

Dragging and dropping a PixelLayer to create a new AND MultiLayer.

A MultiLayer OR with three sets. A MultiLayer AND of nested OR layers.

OnSet shows the similarity of two sets via the thickness of a band between them. Hovering over a similarity band highlights the common elements between two sets.

Fall 2015

Demo/video

Step Back

- Most of the techniques we've examined work for a modest number of data cases or variables
 - What happens when you have lots and lots of data cases and/or variables?

Fall 2015

Strategies

 How are we going to deal with such big datasets with so many variables per case?

• Ideas?

Fall 2015

CS 7450

General Notion

- Data that is similar in most dimensions ought to be drawn together

 Cluster at high dimensions
- Need to project the data down into the plane and give it some ultra-simplified representation
- Or perhaps only look at certain aspects of the data at any one time

Fall 2015

CS 7450

Mathematical Assistance 1

- There exist many techniques for clustering high-dimensional data with respect to all those dimensions
 - Affinity propagation
 - k-means
 - Expectation maximization
 - Hierarchical clustering

Fall 2015

CS 7450

Mathematical Assistance 2

- There exist many techniques for projecting n-dimensions down to 2-D (dimensionality reduction)
 - Multi-dimensional scaling (MDS)
 - Principal component analysis
 - Linear discriminant analysis
 - Factor analysis

Comput Sci & Eng courses Data & Visual Analytics, Prof. Chau Data mining Knowledge discovery

Fall 2015

CS 7450

46

Other Techniques

- Sampling We only include every so many data cases or variables
- Aggregation We combine many data cases or variables
- Interaction (later)
 - Employ user interaction rather than special renderings to help manage scale

Fall 2015	CS 7450	47

Use?

- What kinds of questions/tasks would you want such techniques to address?
 - Clusters of similar data cases
 - Useless dimensions
 - Dimensions similar to each other
 - Outlier data cases
 - ...
- Think about the "cognitive tasks" we want to accomplish

Recap

- Know strengths and limitations of each
- Know which ones are good for which circumstances

- We still haven't explored interaction much

Fall 2015

CS 7450

Visualization of the Day

- Everyone posts one
- Use tumblr
 - Overview on class webpages
 - Details on t-square
- Please comment & share thoughts
- Part of participation grade

CS 7450

Project

- Overview
- Topics
 - Last.fm example
- Teams
- Teams & Topics due Monday 14th
 - You must meet me or TA before then
 - Bring 3 copies

Fall 2015	CS 7450	51
1011 2013	0.57 150	51

HW 1

• Recap

Design Challenge

Upcoming

- Labor Day holiday
- Visualization Programming Tutorial
 - Reading
 Murray online book
- InfoVis Systems & Toolkits
 - Reading:
 Viegas et al, '07