Multivariate Visual
 Representations 2

CS 7450 - Information Visualization
Sep. 2, 2015
John Stasko

Recap

- We examined a number of techniques for projecting >2 variables (modest number of dimensions) down onto the 2D plane

Scatterplot matrix
Table lens

- Parallel coordinates etc.

Varieties of Techniques

Can We Make a Taxonomy?

- D. Keim proposes a taxonomy of techniques

Standard 2D/3D display
Bar charts, scatterplots
Geometrically transformed display
Parallel coordinates
Iconic display
Needle icons, Chernoff faces
Dense pixel display
What we're about to see...
Stacked display
Treemaps, dimensional stacking

Minimum Possible?

- We have data cases with variables
- What's the smallest representation we can use?
How?

Dense Pixel Display

- Represent data case or a variable as a pixel
- Million or more per display
- Seems to rely on use of color
- Can pack lots in
- Challenge: What's the layout?

One Representation

- Grouping arrangement
- One pixel per variable
- Each data case has its own small rectangular icon
- Plot out variables for data point in that icon using a grid or spiral layout

Illustration

Levkowitz
Vis '91

Related Idea

- Pixel Bar Chart
- Overload typical bar chart with more information about individual elements

Keim et al

Idea 1

Height encodes quantity

Width encodes quantity

Idea 2

- Make each pixel within a bar correspond to a data point in that group represented by the bar
Can do millions that way
- Color the pixel to represent the value of one of the data point's variables

Idea 3

Each pixel is a customer
Color encodes amount spent by that person
High-bright, Low-dark
Ordered by that color attribute too
Right one shows more customers

Idea 4

Product type is x-axis divider
Customers ordered by y-axis: dollar amount
x -axis: number of visits
Color is (a) dollar amount spent, (b) number of visits, (c) sales quantity

Example Application

Figure 13 Multi-pixel bar chart for mining 405,000 sales transaction records. ($D_{x}=$ Product Type, $D_{y}=\perp, O_{x}=$ no. of visits, $O_{y}=$ dollar amount, C). (a) Color: dollar amount. (b) Color: no. of visits. (c) Color: quantity.

1. Product type 7 and product type 10 have the top dollar amount customers (dark colors of bar 7 and 10 in Figure 13a)
2. The dollar amount spent and the number of visits are clearly correlated, especially for product type 4 (linear increase of dark colors at the top of bar 4 in Figure 13b)
3. Product types 4 and 11 have the highest quantities sold (dark colors of bar 4 and 11 in Figure 13c)
4. Clicking on pixel A shows details for that customer

Thoughts?

- Do you think that would be a helpful exploratory tool?

High Dimensions

- Those techniques could show lots of data, but not so many dimensions at once
Have to pick and choose

Another Idea

- Use the dense pixel display for showing data and dimensions, but then project into 2D plane to encode more information
- VaR - Value and relation display

Algorithm

- Find a correlation function for comparing dimensions
- Calculate distances between dimensions (similarities)
- Make each dimension into a dense pixel glyph
- Assign position for each glyph in 2D plane using multi-dimensional scaling

Questions

- What order are the data cases in each dimension-glyph?
- Maybe there is a predefined order
- Choose one dimension as "important" then order data cases by their values in that dimension
"Important" one may be the one in which many cases are similar

Alternative

- Instead of each glyph being a dimension, it can be a data case

Follow-on Work

- Use alternate positioning strategies other than MDS
- Use Jigsaw map idea (Wattenberg, InfoVis '05) to lay out the dimensions into a grid
Removes overlap
- Limits number that can be plotted

New Layout

Plot the glyphs into the grid positions

Very Different Metaphor

- Represent each data case as a small glyph
- Make interaction be a crucial part of the visualization

Dust \& Magnet

- Altogether different metaphor
- Data cases represented as small bits of iron dust
- Different attributes given physical manifestation as magnets
- Interact with objects to explore data

Interface

Interaction

- Iron bits (data) are drawn toward magnets (attributes) proportional to that data element's value in that attribute
Higher values attracted more strongly
- All magnets present on display affect position of all dust
- Individual power of magnets can be changed
- Dust's color and size can connected to attributes as well

Interaction

- Moving a magnet makes all the dust move Also command for shaking dust
- Different strategies for how to position magnets in order to explore the data

See It Live

ftp://ftp.cc.gatech.edu/pub/people/stasko/movies/dnm.mov

Video \&
Demo

Kinetica

physics metaphor Touch interaction on tablet

Go Big

Dust \& Magnet on a large multitouch display

Dai, Sadana, Stolper \& Stasko InfoVis '15 Poster

Set Data \& Operations

- Different type of problem
- Large set of items, each can be in one or more sets
- How do we visually represent the set membership?

Standard Technique

Contains all possible zones of overlap

Alternately

Euler
Diagram
Does not necessarily show all possible overlap zones

But what's the problem?

Bubble Sets

Video

Collins et al TVCG (InfoVis) ' 09

ComED \& DupED

OnSet

Represent set as a box, elements are spots in that box Use interaction to do set union, intersection

Sadana, Major, Dove \& Stasko TVCG (InfoVis) '14

Nice Review

Step Back

- Most of the techniques we've examined work for a modest number of data cases or variables

What happens when you have lots and lots of data cases and/or variables?

Many Cases

Recalld

Out5d dataset (5 dimensions, 16384 data items)

Many Variables

Strategies

- How are we going to deal with such big datasets with so many variables per case?
- Ideas?

General Notion

- Data that is similar in most dimensions ought to be drawn together
- Cluster at high dimensions
- Need to project the data down into the plane and give it some ultra-simplified representation
- Or perhaps only look at certain aspects of the data at any one time

Mathematical Assistance 1

- There exist many techniques for clustering high-dimensional data with respect to all those dimensions
Affinity propagation
k-means
- Expectation maximization
- Hierarchical clustering

Mathematical Assistance 2

- There exist many techniques for projecting n-dimensions down to 2-D (dimensionality reduction)

Multi-dimensional scaling (MDS)

- Principal component analysis
- Linear discriminant analysis
- Factor analysis

Comput Sci \& Eng courses
Data \& Visual Analytics, Prof. Chau

Other Techniques

- Other techniques exist to manage scale

Sampling - We only include every so many data cases or variables
Aggregation - We combine many data cases or variables

Interaction (later)

- Employ user interaction rather than special renderings to help manage scale

Use?

- What kinds of questions/tasks would you want such techniques to address?
- Clusters of similar data cases
- Useless dimensions
- Dimensions similar to each other
- Outlier data cases
- ...
- Think about the "cognitive tasks" we want to accomplish

Recap

- We've seen many general techniques for multivariate data these past two days
Know strengths and limitations of each
Know which ones are good for which circumstances
- We still haven't explored interaction much

Visualization of the Day

- Everyone posts one
- Use tumblr
- Overview on class webpages
- Details on t-square
- Please comment \& share thoughts
- Part of participation grade

Project

- Overview
- Topics
- Last.fm example
- Teams
- Teams \& Topics due Monday 14th

You must meet me or TA before then
Bring 3 copies

HW 1

- Recap

Design Challenge

year	os	units
2007 S	Symbian	
2007 R	RIM	
2007	iPhone	
2007	Windows	
2007 A	Android	
2007	Other	
2008 S	Symbian	
2008 R	RIM	
2008 i	iPhone	
2008	Windows	
2008 A	Android	
2008	Other	
2009 S	Symbian	
2009 R	RIM	
2009	iPhone	
2009	Windows	
2009	Android	
2009	Other	
2010	Symbian	
2010 R	RIM	
2010	iPhone	
2010	Windows	
2010 A	Android	
2010	Other	
2011 S	Symbian	
2011 R	RIM	
2011 i	iPhone	
2011	Windows	
2011 A	Android	
2011	Other	

Fall 2015

Smart Phones sold by OS
Challenge: Help someone understand the competitive landscape in this area

Projections Source: Gartner

CS 7450
53

Upcoming

- Labor Day holiday
- Visualization Programming Tutorial Reading

Murray online book

- InfoVis Systems \& Toolkits

Reading:
Viegas et al, '07

