Graphs and Networks 1

CS 7450 - Information Visualization November 14, 2016 John Stasko

Learning Objectives

- Define network concepts
 - vertex, edge, cycle, degree, direction
- Describe different node-link design choices
 - color, width, position, shape, size, label, form
- Enumerate primary aesthetic considerations for layouts
 - edge crossings, clusters, symmetry, edge lengths
- List example tasks for network data
- Explain "ball of string/hairball" problem
- List common layout approaches and describe characteristics of each
 - hierarchical, force-directed, circular, geo, matrix
- Define "edge bundling"

Connections

- Connections throughout our lives and the world
 - Circle of friends
 - Delta's flight plans

– ...

Model connected set as a Graph

Fall 2016 CS 7450 3

What is a Graph?

4

- Vertices (nodes) connected by
- Edges (links)

Adjacency list

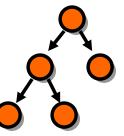
1: 2

2: 1, 3

3: 2

Fall 2016 CS 7450

Graph Terminology


- Graphs can have cycles
- Graph edges can be directed or undirected
- The degree of a vertex is the number of edges connected to it
 - *In-degree* and *out-degree* for directed graphs
- Graph edges can have values (weights) on them (nominal, ordinal or quantitative)

Fall 2016 CS 7450 5

Trees are Different

- Subcase of general graph
- No cycles
- Typically directed edges
- Special designated root vertex

Fall 2016 CS 7450

Graph Uses

- In information visualization, any number of data sets can be modeled as a graph
 - US telephone system
 - World Wide Web
 - Distribution network for on-line retailer
 - Call graph of a large software system
 - Semantic map in an AI algorithm
 - Set of connected friends
- Graph/network visualization is one of the oldest and most studied areas of InfoVis

Fall 2016 CS 7450 7

Graph Visualization Challenges

- Graph layout and positioning
 - Make a concrete rendering of abstract graph
- Navigation/Interaction
 - How to support user changing focus and moving around the graph

Scale Challenge

- Previous two issues not too bad for small graphs, but large ones are much tougher
- May run out of space for vertices and edges (turns into "ball of string")
- Can really slow down algorithm
- Sometimes use clustering to help
 - Extract highly connected sets of vertices
 - Collapse some vertices together

Fall 2016 CS 7450

Navigation/Interaction Challenge

- How do we allow a user to query, visit, or move around a graph?
- Changing focus may entail a different rendering

Layout Examples

- Homework assignment
- Let's judge!

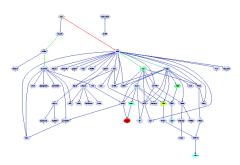
Fall 2016 CS 7450 11

Results

- What led to particular layouts being liked more?
- Discuss

Graph Drawing

Entire research community's focus



Fall 2016 CS 7450 13

Vertex Issues

- Shape
- Color
- Size
- Location
- Label

Edge Issues

- Color
- Size
- Label
- Form
 - Polyline, straight line, orthogonal, grid, curved, planar, upward/downward, ...

Fall 2016 CS 7450 15

Aesthetic Considerations

- Develop a set of metrics to quantitatively rate the "goodness" of a graph layout
- What metrics would you use?

Aesthetic Considerations

- Crossings -- minimize towards planar
- Total Edge Length -- minimize towards proper scale
- Area -- minimize towards efficiency
- Maximum Edge Length -- minimize longest edge
- Uniform Edge Lengths -- minimize variances
- Total Bends -- minimize orthogonal towards straight-line

Fall 2016 CS 7450 17

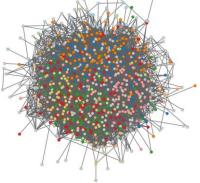
Which Matters?

- Various studies examined which of the aesthetic factors matter most and/or what kinds of layout/vis techniques look best
 - Purchase, Graph Drawing '97
 - Ware et al, Info Vis 1(2)
 - Ghoniem et al, *Info Vis* 4(2)
 - van Ham & Rogowitz, TVCG '08

- ...

 Results mixed: Edge crossings do seem important

Shneiderman's NetViz Nirvana


- 1) Every node is visible
- 2) For every node you can count its degree
- 3) For every link you can follow it from source to destination
- 4) Clusters and outliers are identifiable

Fall 2016 CS 7450 19

Classic Problem

- With enough vertices and enough edges, you get...
- A hairball! (ball-of-string)

http://visone.info/wiki/images/b/b7/Caltech36-hairball.png

But What about User Tasks?

- So what do people want to do with or learn from network visualizations?
 - Recurring theme of this class: Too often this is neglected

Fall 2016 CS 7450 21

Graph Vis Task Taxonomy

- Start with Amar et al '05 low-level tasks (retrieve value, find extreme, sort, etc.)
- Then add four types of other tasks (next pages)

Lee et al BELIV '06

Fall 2016 CS 7450

Graph Vis Task Taxonomy

- 1. Topology-based tasks
 - Adjacency

Find the set of nodes adjacent to a node

Accessibility

Find the set of nodes accessible to a node

- Common connection
 Given nodes, find the set of nodes connected to all
- Connectivity
 Find shortest path
 Identify clusters
 Identify connected components

Fall 2016 CS 7450 23

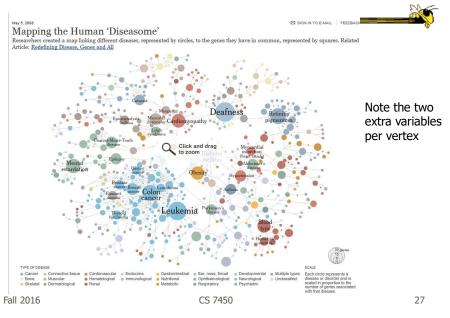
Graph Vis Task Taxonomy

- 2. Attribute-based tasks
 - On the nodes
 Find the nodes having a specific attribute value
 - On the edges

Given a node, find the nodes connected only by certain kinds of edges

Graph Vis Task Taxonomy

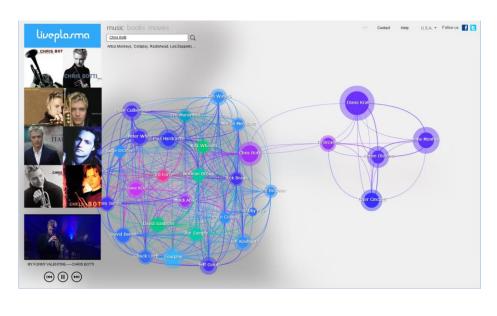
- 3. Browsing tasks
 - Follow pathFollow a given path
 - Revisit
 Return to a previously visited node
- 4. Overview task
 - Compound exploratory task
 Estimate size of a network
 Find patterns


Fall 2016 CS 7450 25

Graph Drawing Uses

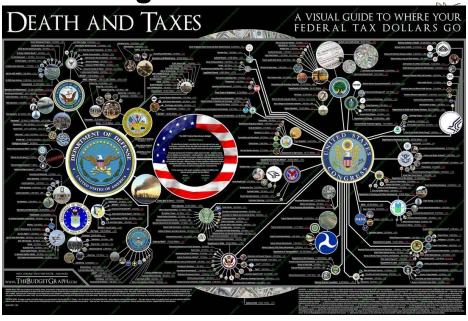

- Many domains and data sets can benefit significantly from nice graph drawings
- Let's look at some examples...

Human Diseases


Music Artists

older

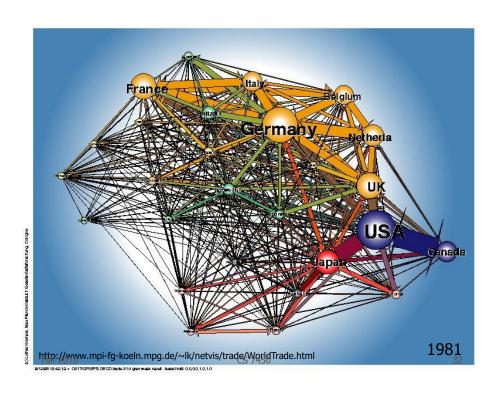
http://www.liveplasma.com/


newer

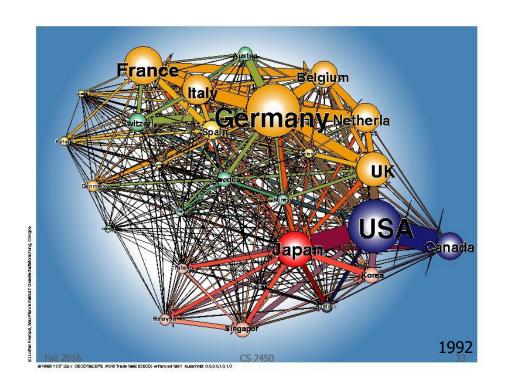
Fall 2016 CS 7450 29

http://mibi.deviantart.com/art/Death-and-Taxes-2007-39894058

US Budget

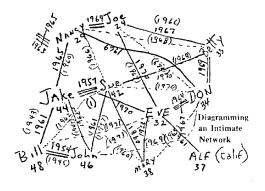


Social Analysis

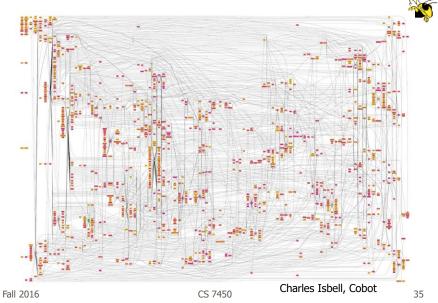


- Facilitate understanding of complex socioeconomic patterns
- Social Science visualization gallery (Lothar Krempel):
 - http://www.mpi-fg-koeln.mpg.de/~lk/netvis.html
- Next slides: Krempel & Plumper's study of World Trade between OECD countries, 1981 and 1992

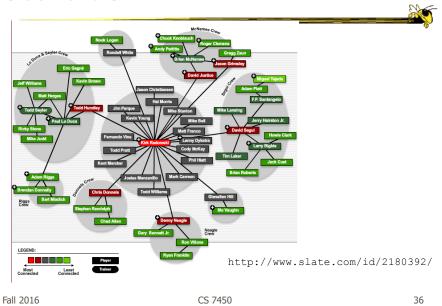
Fall 2016 CS 7450 31

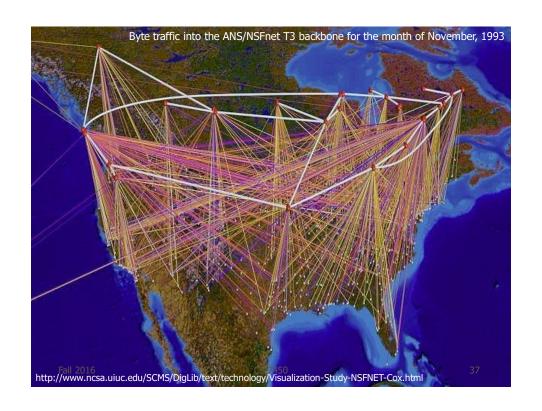

16

Social Network Visualization

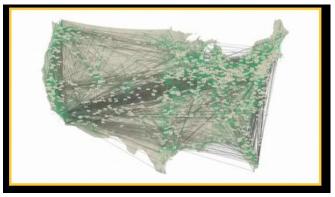


- Social Network Analysis
 - http://www.insna.org




Hot topic again Why? Terrorists Facebook

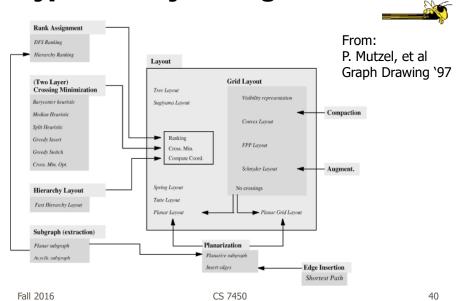
People connections


Steroids in MLB

Follow the Money

Where does a dollar bill go?

http://www.nsf.gov/news/special_reports/scivis/follow_money.jsp


Layout Heuristics

- Layout algorithms can be
 - polyline edges
 - planar
 - No edge crossings
 - orthogonal horizontal and vertical lines/polylines
 - grid-based
 vertices, crossings, edge bends have integer coords
 - curved lines
 - hierarchies
 - circular
 - ...

Fall 2016 CS 7450 39

Types of Layout Algorithms

20

Common Layout Techniques

- Hierarchical
- Force-directed
- Circular
- Geographic-based
- Clustered
- Matrix
- Attribute-based

We will discuss many of these further in the slides to come

Fall 2016 CS 7450 41

Tree Layout (Use Last Week)

- Run a breadth-first search from a vertex
 This imposes a spanning tree on the graph
- Draw the spanning tree
- Simple and fast, but obviously doesn't represent the whole graph

Hierarchical Layout

Often called Sugiyama layout

Try to impose hierarchy on graph Reverse edges if needed to remove cycles Introduce dummy nodes Put nodes into layers or levels Order I->r to minimize crossings

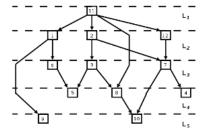


Figure: A graph showing a layered layout, created with the Sugiyama heuristic, with the layers shown. The bends in the edges correspond to dummy nodes.

http://www.csse.monash.edu.au/hons/se-projects/2006/Kieran.Simpson/output/html/node7.html#sugiyamaexample

Fall 2016 CS 7450 43

Force-directed Layout

- Example of constraint-based layout technique
- Impose constraints (objectives) on layout
 - Shorten edges
 - Minimize crossings

– ...

- Define through equations
- Create optimization algorithm that attempts to best satisfy those equations

Force-directed Layout

- Spring model (common)
 - Edges Springs (gravity attraction)
 - Vertices Charged particles (repulsion)
- Equations for forces
- Iteratively recalculate to update positions of vertices
- Seeking local minimum of energy
 - Sum of forces on each node is zero

Fall 2016 CS 7450 45

Force-directed Example

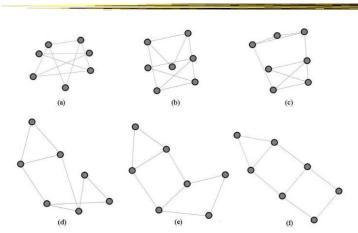
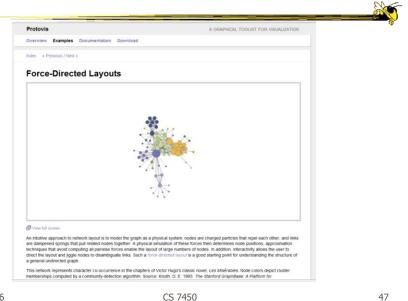
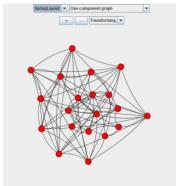



Figure 2: A graph drawing through a number of iterations of a force directed algorithm.

http://www.cs.usyd.edu.au/~aquigley/3dfade/

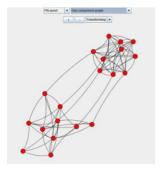
In Action


Fall 2016 CS 7450

Variant

Images from JUNG

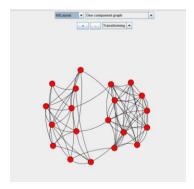
- Spring layout
 - Simple force-directed spring embedder



Fall 2016 CS 7450 48

Variant

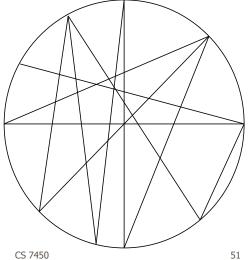
- Fruchterman-Reingold Algorithm
 - Add global temperature
 - If hot, nodes move farther each step
 - If cool, smaller movements
 - Generally cools over time


Fall 2016 CS 7450 49

Variant

Images from JUNG

- Kamada-Kawai algorithm
 - Examines derivatives of force equations
 - Brought to zero for minimum energy

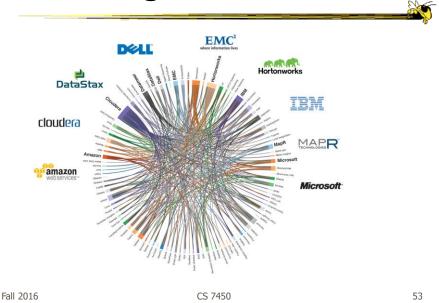

Circular Layout

Ultra-simple May not look so great

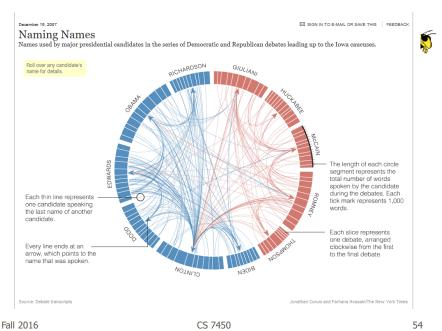
Space vertices out around circle Draw lines (edges) to connect vertices

Uses curved lines and becomes "chord diagrams"

Fall 2016

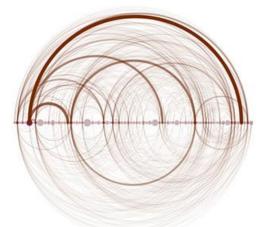

Circos

http://circos.ca/

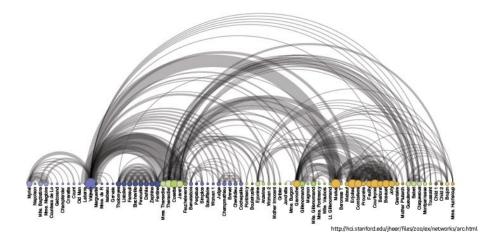


Fall 2016 CS 7450 52

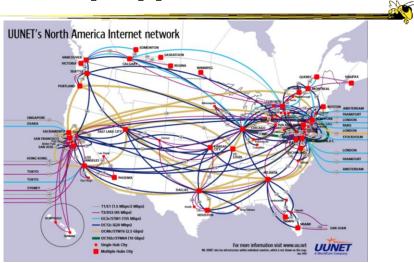
Chord Diagram


http://www.nytimes.com/interactive/2007/12/15/us/politics/DEBATE.html?_r=0

Arc Diagram Layout



Wattenberg InfoVis '02


http://www.visualcomplexity.com/vc/index.cfm?method=Arc%20Diagrams

Fall 2016 CS 7450 55

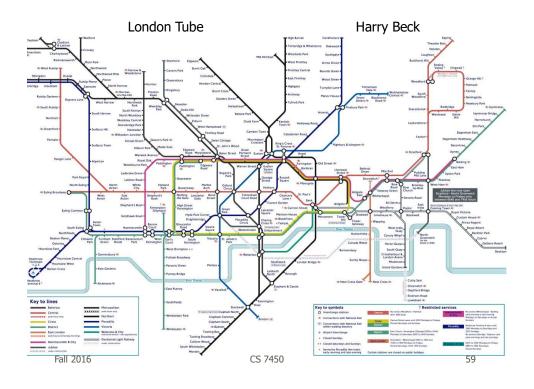
http://www.nthelp.com/images/uunet.pdf

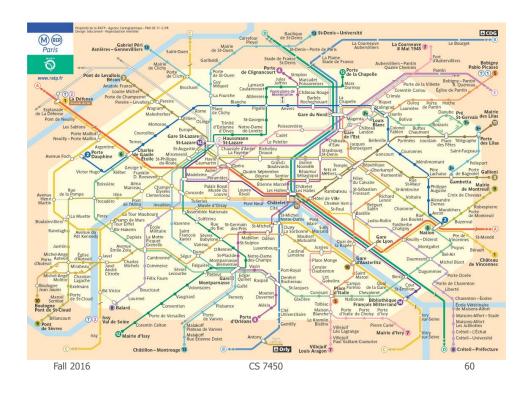
Geo/Map Approaches

Maps can easily become networks

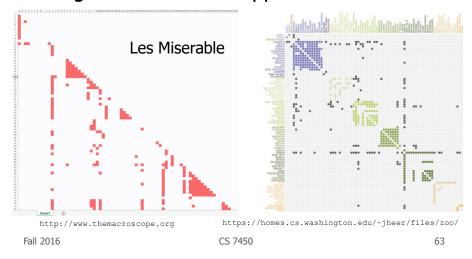
Fall 2016 CS 7450 57

http://www.citylab.com/tech/2014/02/mapping-where-people-run/8313/


Where People Run


Atlanta

3 Subway Diagrams



- Geographic landmarks largely suppressed on maps, except water (rivers in London & Paris) and asphalt (highways in Atlanta)
 - Rather fitting, no?
- These are more graphs than maps!
- Subway-style diagrams have become their own genre of network layouts

Matrix Representations

Forget the node-link approach

Drawing Graphs Better

 Can we do clever "tricks" to make dense graphs more readable?

Hierarchical Edge Bundles

- Bundle edges that go from/to similar nodes together
 - Like wires in a house
- Uses B-spline curves for edges
- Reduces the clutter from many edges

Holten TVCG (InfoVis) '06

Fall 2016 CS 7450 65

Example

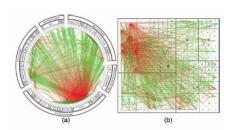


Fig. 11. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system without bundling using a radial and a squarfiled treemap layout (node labels disabled), respectively. (a) and (b) mainly show hot spots; the actual connectivity information is more difficult to discern due to visual clutter.

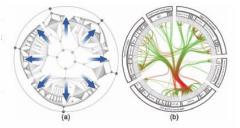


Fig. 12. Radial layout construction. (a) A radial tree layout is used for the inner circle and subsequently mirrored to the outside; (b) the inner layout is hidden and its structure is used to guide the adjacency edges. An icicle plot based on the mirrored layout is used to show the hierarchy.

Example

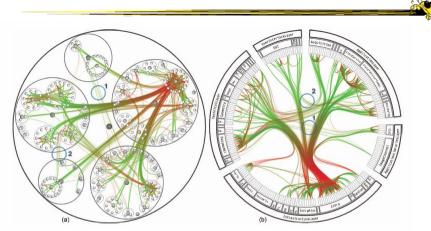


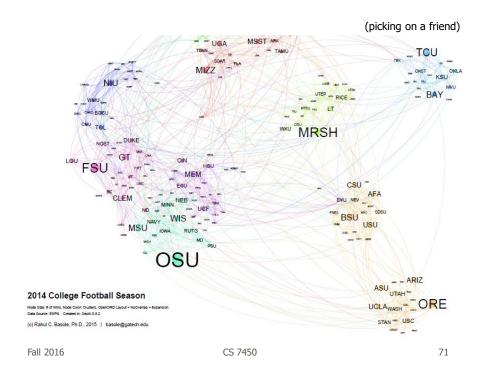
Fig. 13. A software system and its associated call graph (caller = green, callee = red). (a) and (b) show the system with bundling strength $\beta=0.85$ using a balloon layout (node labels disabled) and a radial layout, respectively. Bundling reduces visual clutter, making it easier to perceive the actual connections than when compared to the non-bundled versions (figures 2a and 1 1a). Bundled visualizations also show relations between sparsely connected systems more clearly (encircled regions); these are almost completely obscured in the non-bundled versions. The encircled regions highlight identical parts of the system for (a), (b), and figure 15.

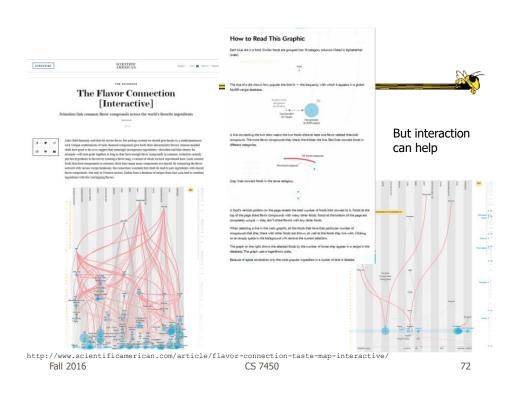
Fall 2016 CS 7450 67

Example Design Challenge

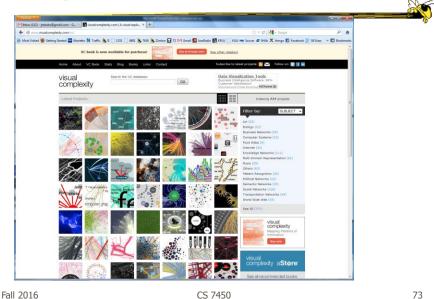
- Email
- How would you visualize all email traffic in CoC between pairs of people?
- Solutions???

Possible Solutions


- Put everyone on circle, lines between
 - Color or thicken line to indicate magnitude
- Use spring/tension model
 - People who send a lot to each other are drawn close together
 - Shows clusters of communications


Fall 2016 CS 7450 69

Opinion



- Many graph drawings/visualizations (particularly the hairballs) provide little insight about the underlying data
 - Many are just "show offs" to make an accompanying visualization

Many Examples

But Is It InfoVis?

- I generally don't consider a pure graph layout (drawing) algorithm to be InfoVis
 - Nothing wrong with that, just an issue of focus
- For InfoVis, I like to see some kind of interaction or a system or an application...
 - Still, understanding the layout algorithms is very important for infovis
 - Let's look at a few...

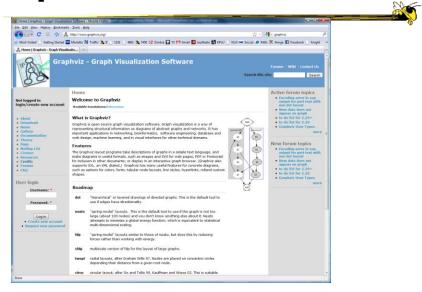
Fall 2016 CS 7450 74

37

Graph Drawing Support

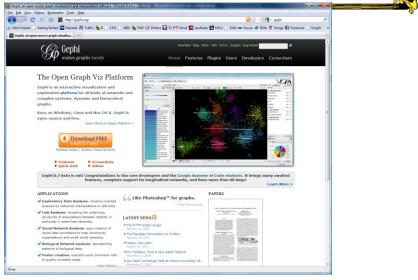
- Libraries
 - JUNG (Java Universal Network/Graph Framework)
 - Graphviz (formerly dot?)
- Systems
 - Gephi
 - TouchGraph

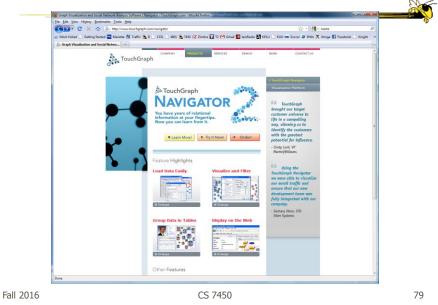
Fall 2016 CS 7450 75


http://jung.sourceforge.net/

JUNG

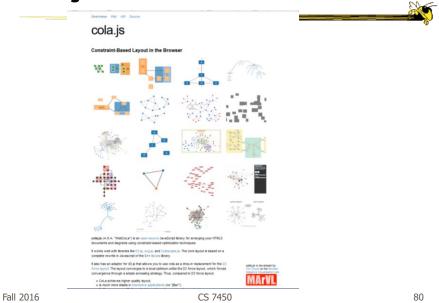
Fall 2016 CS 7450


Graphviz


Fall 2016 CS 7450 77

http://gephi.org

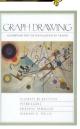
Gephi



TouchGraph

http://marvl.infotech.monash.edu/webcola/

cola.js



40

Graph Drawing Resources

- Book
 - diBattista, Eades, Tamassia, and Tollis,
 Graph Drawing: Algorithms for the
 Visualization of Graphs, Prentice Hall,
 1999

- Tutorial (talk slides)
 - http://www.cs.brown.edu/people/rt/papers/gd-tutorial/gd-constraints.pdf
- Web links
 - http://graphdrawing.org

Fall 2016 CS 7450 81

Learning Objectives

- Define network concepts
 - vertex, edge, cycle, degree, direction
- Describe different node-link design choices
 - color, width, position, shape, size, label, form
- Enumerate primary aesthetic considerations for layouts
 - edge crossings, clusters, symmetry, edge lengths
- List example tasks for network data
- Explain "ball of string/hairball" problem
- List common layout approaches and describe characteristics of each
 - hierarchical, force-directed, circular, geo, matrix
- Define "edge bundling"

Reading

Meirelles chapter 2

Fall 2016 CS 7450 83

Upcoming

- Graphs and Networks 2
- Time Series Data