
GLO-STIX: Graph-Level Operations for Specifying Techniques and
Interactive eXploration

Charles D. Stolper, Minsuk Kahng, Zhiyuan Lin, Florian Foerster, Aakash Goel, John Stasko, and Duen Horng Chau

Fig. 1: A screenshot of the GLO-STIX user interface showing a user exploring the Les Misérables character co-occurrence graph
using graph-level operations (GLOs). Nodes are characters, and an edge connects two characters if they co-occur in a chapter. The
original node-link view of the graph is saved by the user as a snapshot in the bottom pane. From the list of operations available
(shown in left-most column), applying those selected in the middle column transforms the original graph into the PivotGraph
visualization [30] displayed in the main view. All graph figures in this paper were generated using GLO-STIX.

Abstract— The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis
tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide
this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering
each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and
apply it to identify five classes of GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. We
discuss advantages of the GLO model, including potentially discovering new, effective network visualization techniques and easing the
engineering challenges of building multi-technique graph visualization applications. Finally, we implement the GLOs that we identified
into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by applying GLOs.

Index Terms—Graph-level operations, graph visualization, visualization technique specification, graph analysis, information visual-
ization.

• Charles D. Stolper is with the College of Computing, Georgia Institute of
Technology. E-mail: chadstolper@gatech.edu.

• Minsuk Kahng is with the College of Computing, Georgia Institute of
Technology. E-mail: kahng@gatech.edu.

• Zhiyuan Lin is with the College of Computing, Georgia Institute of
Technology. E-mail: zlin48@gatech.edu.

• Florian Foerster is with the College of Computing, Georgia Institute of
Technology. E-mail: florian.foerster@gatech.edu.

• Aakash Goel is with the College of Computing, Georgia Institute of
Technology. E-mail: aakashgoel@gatech.edu.

• John Stasko is with the the College of Computing, Georgia Institute of
Technology. E-mail: stasko@cc.gatech.edu.

• Duen Horng Chau is with the College of Computing, Georgia Institute of
Technology. E-mail: polo@gatech.edu.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of
publication xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

1 INTRODUCTION

The field of graph visualization has provided analysts with a number of
useful techniques for displaying the nodes and edges of a graph. Each
of these techniques can be quite effective at showing aspects of the
graph to the analyst. In other words, different techniques are effective
at accomplishing different tasks. When analysts wish to perform mul-
tiple tasks, they often turn to multiple graph visualization techniques.
Developers of graph visualization systems, in turn, must implement
this variety of techniques in their applications.

We introduce the new idea of graph-level operations (GLOs),
which provides an alternative to implementing each graph visualiza-
tion technique in isolation. GLOs are encapsulated manipulations of
a graph visualization. Let us consider an example GLO: positioning
each node’s glyph relatively on an axis according to a continuous at-
tribute of the node. This GLO might be used to stratify the nodes
according to their node types, as in a semantic substrates visualiza-
tion [22], which places nodes in non-overlapping regions, one region
for each node type, to help reduce visual complexity (see Table 1,
fourth visualization). The same GLO may also be used to position



nodes into a 2D grid, each dimension corresponds to a node attribute,
as in a PivotGraph [30], which is designed for summarizing multivari-
ate graphs (see Table 1, fifth visualization). It could further be applied
to align the nodes into a scatterplot.

In fact, we can consider graph visualization techniques as sequences
of GLOs. For example, the aforementioned PivotGraph technique can
be represented as:

• Substrate Nodes on x by attribute0
• Substrate Nodes on y by attribute1
• Aggregate Nodes by attribute0 and attribute1
• Display All Links
• Display Links as Curved
• Size Nodes by Count
• Show x Axis
• Show y Axis
• Set Target Generation 1
• Set Source Generation 1

This means that through flexible combinations of GLOs, we may
create and specify familiar canonical visualization techniques and po-
tentially create and specify new ones.

Our Contributions. Our work makes multiple major contributions:

• We present GLOs (Graph-Level Operations) — a new idea and
model for specifying graph visualization techniques. We con-
tribute a method to identify GLOs and demonstrate the flexibility
of GLOs in re-creating canonical graph visualization techniques.

• We discuss the important properties of GLOs, and the benefits
to graph visualization that GLOs provide, such as: (1) a new
model of graph exploration; (2) the potential to discover new
network visualization techniques; and (3) a reduced engineering
challenge for graph visualization application developers.

• We demonstrate the feasibility and potential of the GLO ap-
proach through an implementation of each of the GLOs within
GLO-STIX prototype system.

Notation. Throughout this paper we use the terms graph and network
interchangeably to refer to data structures of nodes (or vertices) con-
nected by edges (or links). We use the term technique or visualization
technique to refer to methods of displaying data and graph visualiza-
tion techniques or network visualization techniques to refer to meth-
ods of displaying graph data. Visualization elements (or glyphs) are
the on-screen graphical representations of data such as circle elements
representing nodes. Finally, we use the terms graph-level operations,
operations, and GLOs interchangeably to refer to encapsulated manip-
ulations of these visualization elements.

Paper Organization. This paper provides a significantly more de-
tailed and rigorous description of graph-level operations than our pre-
liminary work-in-progress extended abstract [24]. Section 2 presents
repeatable methods for identifying GLOs provided a set of canoni-
cal graph visualization techniques and for specifying techniques using
GLOs. Section 3 describes three advantages of graph-level operations
over alternative network visualization technique specification models.
Section 4 provides descriptions of GLOs that we identified by apply-
ing the method of Section 2 to the set of six graph canonical graph
visualization techniques in Table 1. Section 5 presents general proper-
ties of GLOs. Section 6 presents the design rationale and implementa-
tion of GLO-STIX, an application for exploring a graph using GLOs
and implementing the GLOs in Section 4. Section 7 discusses related
work in graph visualization programming toolkits and graphical tools
for graph analysis. We conclude in Sections 8 with a discussion of
the limitations of the current GLO-STIX implementation and future
research directions for the Graph-Level Operations model.

2 IDENTIFYING GRAPH-LEVEL OPERATIONS

In this section, we describe the method that we used to identify the
graph-level operations necessary to specify a set of canonical graph vi-
sualization techniques. We then describe how we can use these GLOs
to specify these techniques, or others.

2.1 Identifying GLOs
Graph-level operations are encapsulated manipulations of a graph vi-
sualization. This encapsulation introduces uncertainty as to the appro-
priate level of abstraction for each operation. For example, is position-
ing a node relatively along the x and y axes one operation or two? In
order to mitigate this uncertainty, in this section we describe a repeat-
able method for identifying a set of operations necessary for specifying
a given a set of techniques.

We began by choosing a set of techniques that were commonly used
within the graph visualization community and provided a cross-section
of network visualization methods. We settled on the six techniques
shown in Table 1. We then, as a team, described operations necessary
to transition from each technique to each other technique. Two exam-
ple transitions are demonstrated in Figure 2. During this process, we
took a “worst-case” approach and assumed that any variable param-
eters would be different. For example, when determining the opera-
tions required to transition from a semantic substrates visualization to
a PivotGraph visualization, we assumed that the substrated attribute
was not also one of the pivot attributes.

Having identified all of the transitions between each of the tech-
niques, we collected each of the different operations used into a set.
We then augmented this set with obvious parallel operations. For ex-
ample, “Align y Top” never appears in Table 1, but given “Align y
Bottom” does, it is logical to include this operation in the set. The col-
lection of all of these operations represented the final set of of GLOs.
This process allowed us to reproducibly grow our set of GLOs by it-
eratively expanding the number of visualization techniques to support.
This resulted in the set of 34 graph-level operations (see Section 4).
Finally, we classified the operations using card sorting [21], a tech-
nique to categorize and group information. We printed all GLOs on
small cards and had three visualization experts sort the GLOs into cat-
egories and give them names. Subsequently we analyzed the group-
ings and combined them into multiple categories of GLOs. We note
that while these GLO categories provide good coverage, they are by
no means exhaustive.

More formally: consider a set of techniques T . Let Sti→t j be a set of
operations necessary to transition from technique ti ∈ T to technique
t j ∈ T . Thus, the set of GLOs necessary to specify T (denoted OT )
can be defined as

OT :=
⋃

Sti→t j ,∀ti, t j ∈ T (1)

2.2 Specifying Techniques
We then set out to reverse this method, and use the GLOs that we
identified to specify the techniques. We can do so by listing the GLOs
necessary to transition to them. As we already have a list of oper-
ations for transitions between any two techniques, we can specify a
technique by combining these sequences of GLOs for transitions to
the given technique from all the other techniques. Ideally, the order
in which GLOs are applied would not matter, and in some cases this
is true. For instance, the results are the same regardless of the order
“Position Relatively on x by attribute0” or “Size Nodes Relatively by
attribute1” are applied for a transition to a scatterplot. However, in
certain instances the GLO ordering does matter, namely some GLOs
must be applied after a certain GLO is applied. This case occurs be-
cause of a construct we term generations. Notice that in the adjacency
matrix in Table 1 there are two sets of node elements: those on the
left and those on the bottom. Each set contains an element represen-
tating each node in the dataset. The set on the bottom was generated
from the set on the left through the “Clone Active Generation” GLO.
This GLO made a precise copy of the current active generation (in this
case evenly-distributed on y, constantly-sized, left-aligned circles) and
made the newly created elements (the new generation) into the active



Table 1: The six canonical graph visualization techniques from which we derived the set of graph-level operations. For each technique, we
include its name (left column), a screenshot of its implementaion using our GLO-STIX prototype system (center column), and the sequence
of GLOs used (right column). We show in bold those GLOs requiring before or after dependencies. Those GLOs shown in italics must come
before or after (though need not come immediately before or after) the bolded GLO.

Technique Name GLO-STIX Implementation GLO Specification

Force-Directed Diagram

Apply Force-Directed Algorithm
Display Links as Straight
Size Nodes Relatively by attribute
Display All Links
Hide x Axis
Hide y Axis
Set Target Generation 0
Set Source Generation 0

Circle Plot

Size Nodes by Constant
Position Nodes Along Plot Radius by {constant}
Evenly Distribute Nodes Radially by attribute
Display All Links
Display Links as Curved
Hide x Axis
Hide y Axis
Set Target Generation 0
Set Source Generation 0

Scatterplot

Posn. Nodes Relatively on x by attribute0
Posn. Nodes Relatively on y by attribute1
Show x Axis
Show y Axis
Hide Links
Size Nodes Relatively by attribute
Set Target Generation 0
Set Source Generation 0

Semantic Substrates [22]

Substrate Nodes on y by attribute1
Evenly Distribute Nodes on x Within Substrates
Display Selected Links
Size Nodes by Constant
Display Links as Curved
Display All Links
Hide x Axis
Hide y Axis
Set Target Generation 0
Set Source Generation 0

PivotGraph [30]

Substrate Nodes on x by attribute0
Substrate Nodes on y by attribute1
Aggregate Nodes by attribute0 and attribute1
Size Nodes by Count
Show x Axis
Show y Axis
Display Links as Curved
Display All Links
Set Target Generation 1
Set Source Generation 1

Adjacency Matrix

Size Nodes by Constant
Evenly Distribute Nodes on y
Align Nodes Left
Clone Active Generation
Evenly Distribute Nodes on x
Align Nodes Bottom
Set Target Generation 1
Display Links as Circles
Display All Links



Fig. 3: Arc diagram [29] created using the following sequence of
GLOs: Size Nodes by Constant, Align Nodes Middle, Evenly Dis-
tribute Nodes on x by category, Display All Links, Display Links as
Curved, Hide x Axis, Hide y Axis, Set Target Generation 0, Set Source
Generation 0 .

generation. The active generation is used to set the generation param-
eter of a GLO, described in Section 5, but in plain terms all GLOs
are applied to only the active generation. Returning to the adjacency
matrix, “Align Bottom” had to be applied after “Clone Active Gener-
ation” else it will be applied to the circles on the left, instead of a new
set of circles.

For each technique we can specify a list of dependence (preceding)
relationships between two GLOs denoted oa ≺ ob, signifying that oa
must precede ob. We then represent the technique, Ot , as a sequence
of GLOs where each GLO is from the union of all of the sets of GLOs
used to transition to the technique, and the order of GLOs satisfy all
dependence conditions. Resulting sequences from this process for the
six chosen techniques can be found in the GLO Specification column
of Table 1. Applying a technique’s sequence of operations results in a
visualization of the technique on the active generation.

3 BENEFITS OF GRAPH-LEVEL OPERATIONS

Here we describe benefits the graph-level operations model provides
as a holistic model of graph visualization. We look at two cases where
the GLO model provides either additional capabilities or explicit ad-
vantages over existing approaches. We begin by discussing a new style
of interactive graph exploration enabled by GLOs and how this could
lead to the discovery of new, effective network visualization tech-
niques. We then discuss the alternative coding paradigm that GLOs
provide developers and the advantages of this paradigm.

3.1 Graph Exploration and Discovering New Techniques
One of the more interesting applications of graph-level operations is
using them to interactively explore a graph without limiting an analyst
to only supported techniques. As we mentioned in the introduction,
different techniques support different graph analysis tasks. There is
a chance, however, that the best view of the data is not one explic-
itly provided by the visualization application. By iteratively applying
GLOs, an analyst can see different views onto his or her graph data
beyond those predefined by an application’s developer. This balance
allows the application developer to still specify common techniques,
but empowers the analyst with the freedom to experiment with differ-
ent displays.

Not only do GLOs provide a benefit to analysts by allowing them
to explore their data in a more free-form manner, but they provide a
benefit to the visualization community by potentially providing a novel
method of identifying new techniques. Let us use a simple example
to demonstrate this point. Suppose that we had built a system that
supported the six techniques in Table 1 and allowed an analyst to apply
GLOs freely to adjust the display. Let us say that the analyst were to
distribute the nodes evenly on the x axis (an adjacency matrix GLO),
then position the nodes in the middle of the screen (an augmented
GLO from the adjacency matrix), and then choose to display the links
as curved (a GLO used by semantic substrates). By applying these
three GLOs, the analyst has successfully recreated the arc diagram
technique [29] in Figure 3. In other words, the analyst was able to not
only explore his or her graph but was able to ‘discover’ a new graph
visualization technique in the process.

Fig. 4: Multi-dimensional technique akin to a hive plot [17] or star
diagram [16]. Clockwise from the top, the chart visualizes the id,
betweenness-centrality, page-rank, category, and degree attributes of
the nodes. Edges are drawn from a single axis to a single other
axis. The plot is specified by the following sequence of GLOs: Size
Nodes by Constant, Clone Active Generation, Clone Active Gener-
ation, Clone Active Generation, Clone Active Generation, Position
Nodes Radially by generation, Position Nodes Along Plot Radius by
degree, Select Generation 3, Position Nodes Radially by generation,
Substrate Nodes Along Plot Radius by category, Select Generation
2, Position Nodes Radially by generation, Position Nodes Along Plot
Radius by page-rank, Select Generation 1, Position Nodes Radially
by generation, Position Nodes Along Plot Radius by betweenness-
centrality, Select Generation 0, Position Nodes Radially by generation,
Evenly Distribute Nodes Along Plot Radius, Display All Links, Dis-
play Links as Curved, Set Source Generation 4, Set Target Generation
0, Hide x Axis, Hide y Axis .

For a more complex example, consider the technique in Figure 4.
This technique required creating four (for five total) generations of
nodes, plotting each generation radially by generation, and then posi-
tioning each generation along the plot radius by different attributes.
Edges can then be drawn between any two sets of axes using the
source-generation and target-generation GLOs. The resulting chart
is akin to Hive Plots [17] (where edges are drawn between nodes on
different radial axes) or star diagrams [16] (where elements are po-
sitioned along multiple radial attribute axes). An analyst may not
serendipitously encounter this precise technique, but he or she may en-
counter aspects of the technique such as positioning radially by gener-
ation or positioning different generations by different attributes along
the same axis.

While these two examples do not prove that new, effective network
visualization techniques will be discovered using GLOs (arc diagrams
are not a new technique and we have not evaluated the technique in
Figure 4 for effectiveness) these cases do demonstrate the potential
and the feasibility of such a discovery occurring.

3.2 Easing the Engineering Challenge
As we mentioned in our introduction, graph-level operations provide
flexibility for developers of graph visualization applications. In the
past, these developers have needed to implement each technique indi-
vidually. As new techniques are identified or become popular, these
developers implement them on the fly. In the worst case, this means
defining each technique with no reusable code base, though this case is
highly unlikely. Having a language for describing both existing tech-
niques and potentially future techniques, as GLOs are, provides devel-
opers with a new target for their development.

Rather than building each technique in isolation, the developer can
instead develop the code for each GLO in a set, just as they might
for any interface in an object-oriented software system. These GLOs



Fig. 2: Results of the GLOs making up the transition from (a) arc diagram [29] to (d) semantic substrates [22], then to (i) PivotGraph [30]. The
GLOs applied to achieve each display are: (b) Substrate on y by category; (c) Distribute on x Within Substrates; (d) Display Selected Links; (e)
Display All Links; (f) Substrate on x by gender; (g) Show x Axis; (h) Show y Axis; (i) Aggregate by gender and category.

provide seamless reusability and rapidly speed up the implementation
of the techniques themselves. By specifying techniques in terms of
GLOs, the developer need only write short code blocks to apply the
necessary GLOs for each technique. This applies to both existing
techniques as well as any new techniques that might be discovered.
Furthermore, it is trivial for a developer to enable the analyst explo-
ration capability that we described above when the techniques are al-
ready implemented as GLOs. In other words, graph-level operations
provide developers with an easier means to implement techniques that
inherently provides a powerful and useful additional capability to their
customers.

4 GRAPH-LEVEL OPERATIONS

Following the method in Section 2 using the techniques in Table 1, we
identified 34 graph-level operations (GLOs) and categorized each into
five classes: 1) positioning nodes, 2) modifying element properties, 3)
cloning elements, 4) aggregating elements, and 5) modifying display
properties.

In this section, we describe the five categories and their GLOs.

4.1 Positioning Nodes
The GLOs in this category each applies a different algorithm for deter-
mining the spacial properties (two-dimensional coordinate positions)
of the node glyphs in the visualization.

• Align Nodes {Left, Center, Right, Top, Middle, Bottom}: ad-
justs the position of the nodes by changing the appropriate coor-
dinate values of all nodes to a constant value.

• Evenly Distribute Nodes on x or y by {attribute}: disperses
the nodes horizontally or vertically so that the nodes are evenly
distributed on the appropriate axis, sorted by the attribute of the
node.

• Evenly Distribute Nodes on x or y: disperses the nodes hori-
zontally or vertically so that the nodes are evenly distributed on
the appropriate axis, defaulting to the nodes’ ordering in the data
store.

• Substrate Nodes on x or y by {categorical attribute}: posi-
tions the nodes based on a categorical attribute value. Attribute

values are assigned to locations evenly across the appropriate
axis and each node is then positioned at its value’s location.

• Evenly Distribute Nodes within Substrates: positions the
nodes of the most recently applied substrate evenly along the
opposite axis of the substrate axis.

• Position Nodes on x or y Relatively by {continuous attribute}:
positions each node based on a continuous attribute. The left-
most or bottom-most position is assigned a zero value and the
right-most or top-most position is assigned the maximum value
amongst the nodes. Nodes are then positioned along the axis
using a linear scale of their attribute values.

• Evenly Distribute Nodes Radially by {attribute}: position the
nodes evenly around the center of the plot clockwise from the
top, sorted by the attribute of the node.

• Evenly Distribute Nodes Radially: position the nodes evenly
around the center of the plot clockwise from the top, defaulting
to the nodes’ ordering in the data store.

• Position Nodes Radially by {continuous attribute}: positions
each node radially based on a continuous attribute. The top-most
position is assigned a zero value and the position just left of the
top value is assigned the maximum value amongst the nodes.
Nodes are then positioned clockwise-radially using a linear scale
of their attribute values.

• Substrate Nodes Radially by {categorical attribute}: posi-
tions the nodes based on a categorical attribute value. Attribute
values are assigned to locations evenly around the center of the
plot and each node is then positioned at its value’s location.

• Evenly Distribute Nodes Along Plot Radius by {attribute}:
disperses the nodes so that the nodes are evenly distributed in
distance from the center of the plot to the edge of the plot, sorted
from the center by the attribute of the node.

• Evenly Distribute Nodes Along Plot Radius: disperses the
nodes so that the nodes are evenly distributed in distance from



the center of the plot to the edge of the plot, sorted from the cen-
ter by the attribute of the node, defaulting to the nodes’ ordering
in the data store.

• Position Nodes Along Plot Radius by {continuous attribute}:
positions each node based on a continuous attribute. The inner-
most position is assigned a zero value and outer-most position is
assigned the maximum value amongst the nodes. Nodes are then
positioned from the inner-most position to the outer-most using
a linear scale of their attribute values.

• Substrate Nodes Along Plot Radius by {categorical at-
tribute}: positions the nodes based on a categorical attribute
value. Attribute values are assigned to locations evenly along the
radius of the plot and each node is then positioned at its value’s
location.

• Position Nodes Along Plot Radius by {constant}: Positions
the nodes a fixed distance from the center of the plot.

• Apply {algorithm} to the Nodes: positions the nodes using a
physics-based algorithm, such as a force-directed algorithm.

4.2 Modifying Element Properties
The GLOs in this category each algorithmically modify the (non-
spacial) visual properties of the node and edge glyphs.

• Size Nodes by {constant}: adjusts the radius of each node to a
constant value.

• Size Nodes Relatively by {continuous attribute}: adjusts the
radius of each node using a linear scale between zero and the
maximum value amongst the nodes.

• Display All Links: makes all edges visible.

• Display Selected Links: makes all edges invisible. When the
user mouses over a node, makes the in- and out-edges of that
node visible.

• Hide Links: makes edges invisible.

• Display Links as Straight: adjusts each edge to be drawn as a
straight line from the center of the source node to the center of
the target node.

• Display Links as Curved: draws each edge as a quadratic curve
clockwise from the source node to the target node.

• Display Links as Circles: adjusts each edge to be drawn as a
circle with y coordinate of its source node and x coordinate of its
target node.

4.3 Cloning Nodes
This category of GLOs allows for duplicating node glyphs and inter-
acting with the various sets of duplicates. Each cloning operation (as
well as each aggregation operation) creates a new generation of nodes,
and each generation is assigned an identifying generation number so
that the generation can be referenced by other operations. The initial
set of nodes are assigned generation number 0. After that, the first
clone (or aggregate) generation created is assigned generation number
1, the second 2, and so on. The active generation is the generation of
nodes on which GLOs are applied. For example, if an evenly distribute
nodes on x GLO is applied, only the nodes in the active generation are
repositioned.

• Clone Active Generation: generates copies of all of the node
glyphs of the current generation. The copies have the same vi-
sual properties of the cloned generation. The new generation is
assigned a generation number for reference and becomes the ac-
tive generation.

• Select Generation k: select a generation of nodes and makes
it the active generation. Subsequent GLOs are applied to this
generation.

• Set Source Generation k: adjust edges to be drawn from gener-
ation k.

• Set Target Generation k: adjust edges to be drawn to generation
k.

• Remove Generation k: Removes the glyphs of generation k
from the display. If edges were being drawn to or from this gen-
eration, they are instead drawn to or from generation 0 (the initial
nodes). If generation k was the active generation, generation 0
becomes the active generation.

4.4 Aggregating Nodes and Edges
This category of GLOs enable the creation of glyphs that represent
more than a single node or edge. As with cloning GLOs, aggregation
creates new generations of nodes and assigns them generation num-
bers for reference.

• Aggregate by {categorical attribute}: aggregates nodes with
the same attribute into supernodes and aggregates edges into su-
peredges between the supernodes. The original nodes and edges
are discarded. The radius of the supernodes and width of the
superedges are determined relatively by the number of nodes or
edges the supernode or superedge represents. These supernodes
and superedges are assigned a generation number in order to ref-
erence them and are set as the active generation as described
in [30].

• Aggregate by {categorical attribute} and {categorical at-
tribute}: as above, but aggregates nodes where the values of
both attributes are the same.

• Deaggregate Generation k: deaggregates the supernodes and
superedges of the kth generation back into the original nodes and
edges. The original nodes retain their original sizes, but are po-
sitioned at their respective supernodes’ most recent positions.

4.5 Modifying Display Properties
The operations in this category do not modify the elements of the
graph (the node and edge glyphs) but instead modify the display it-
self.

• Show x or y Axis: displays labels on the appropriate axis based
on the currently applied positioning GLO. These labels are up-
dated as new positioning GLOs are applied.

• Hide x or y Axis: hides the labels on the appropriate axis.

5 PROPERTIES OF GRAPH-LEVEL OPERATIONS

Here we present five properties of graph-level operations that we iden-
tified while developing the model:

• Duplication of GLOs. With the exception of the “Clone Active
Generation” GLO, applying the same GLO twice has no effect.
For example, applying the “Display Links as Curved” GLO twice
has the same effect as applying it once: the edges are transitioned
to and displayed as curved.

• Parameterized GLOs. There are a number of GLOs that take
parameters, such as an attribute or an axis. In the case where two
instances of the GLO are applied with the same parameter, these
are considered duplicate GLOs as described above, and therefore
has no effect. However, in the cases where the parameter is dif-
ferent, these are not duplicate GLOs and are treated as distinct.
For example, evenly distributing nodes along the x axis is distinct
from evenly distributing nodes along the y axis.



• Complementary GLOs. We do not consider GLOs to be re-
versible manipulations. However, this is not to say that an ana-
lyst has no means to undo applying a GLO. Instead, GLOs have
complementary GLOs. Complementary GLOs overwrite certain
previously applied GLOs. For example, any GLO that positions
nodes along a particular axis will overwrite any previous GLOs
that positioned the nodes along that axis. Showing links as ei-
ther straight, curved, or hidden overwrite each other. Setting the
source or target of a generation overwrites previous source or
target GLOs. When saving GLOs as techniques, the overwrit-
ten GLOs can safely be ignored. Thus, to undo a given GLO,
the system or the analyst must merely reapply the most recently
overwritten GLO complementary to the given GLO.

• The Generation Parameter. It is important to note that all
GLOs (including cloning and aggregation) have an implied gen-
eration parameter. In other words, performing the same GLO
successively on two different generations does have an effect.
For example, distributing generation 2 evenly on x and then dis-
tributing generation 3 evenly on x is not equivalent to only dis-
tributing generation 2 evenly on x. Because aggregating nodes
discards the original nodes, it is impossible to call an aggregation
on the same generation twice without applying the complemen-
tary deaggregation GLO. In contrast, duplications of the “Clone
Active Generation” GLO must be treated separately because, if
called twice with the same generation parameter, two new gen-
erations are created.

• Application of Techniques. As GLOs are applied to the active
generation using the Generation Parameter, techniques are effec-
tively applied to the active generation as well. For example, if
the active generation has a node element for each node, then ap-
plying the circle plot technique will generate a circle plot of the
nodes. However, if a “Aggregate Nodes by attribute” GLO has
been applied to the set (resulting in an active generation of ag-
gregate supernodes) then applying the technique would result in
a circle plot of the supernodes, rather than of the nodes them-
selves.

6 GLO-STIX
In this section we describe the design and implementation of
GLO-STIX (Graph-Level Operations for Specifying Techniques and
Interactive eXploration), a prototype application for exploring graphs
using GLOs.

6.1 Design Goals and Rationale
GLO-STIX, a prototype implementation the GLO model, serves as a
proof-of-concept of the benefits of GLOs described in Section 3. Our
goals in designing the prototype were focused on enabling a graph
analyst to experiment with and interactively explore a newly encoun-
tered graph dataset. We envisioned an analyst, upon first receiving a
dataset, wishing to better understand the graph’s features. We see the
analyst using GLO-STIX to apply GLO-specified techniques. These
techniques may have been specified by the analyst or pre-built into
the system. We also foresee the analyst exploring the network further
by applying individual GLOs, with the possibility of identifying new
network visualization techniques and saving them for future use. In
addition, developing the GLO-STIX prototype provided a testbed for
evaluating the viability of GLOs and the GLO model.

We adopted the design guidelines of Shneiderman and Aris for se-
mantic substrates [22] and their principle of iteratively applying and
evaluating the creation of a visualization. The analyst begins with an
idea, applies it to the visualization and evaluates if it creates the de-
sired outcome. In the case of semantic substrates, if the idea was inef-
fective, the analyst can apply other attributes to the visualization until
reaching an ideal understanding of the graph. Applying this principle
to GLOs implied that the user interface should enable the analyst to
explore a graph by experimenting with applying various GLOs until a
deeper understanding of the graph was reached. This approach allows

the analyst to observe changes to the display by means of animated
transitions as GLOs are applied, enabling a deeper understanding of
the benefits and limitations of various techniques.

Based on this principle we generated a number of requirements for
a GLO-driven graph visualization prototype:

• Since these are the operations necessary to specify our set of
canonical techniques, the prototype should implement the full
set of GLOs identified in Section 4.

• As our intent is to enable an analyst to explore their network
data more effectively using GLOs, the prototype should enable
an analyst to apply individual GLOs to a graph.

• The analyst should be able to experiment with applying various
GLOs and therefore the prototype should enable an analyst to
move backwards and forwards through the GLO history.

• If an analyst has identified an effective display of the network,
he or she may wish to know the only GLOs necessary to recreate
the display, as opposed to the full path he or she took to reach
the display. As we described in Section 5, applying complemen-
tary GLOs can override previously-applied GLOs. Therefore the
prototype should communicate to the analyst which GLOs in the
history are no longer relevant to the current visualization due to
complementary GLOs having been applied.

• If an analyst has identified an effective technique, he or she will
likely wish to apply it to the same or a different graph in the
future. Therefore the prototype should enable an analyst to save
a GLO history as a technique to apply to other graphs.

• An analyst should be able to easily recall techniques that he or
she found interesting as well as be able to easily compare them
side-by-side and switch between them seamlessly. Therefore the
prototype should allow an analyst to save an image (snapshot) of
the current visualization along with its GLO history to compare
techniques.

A number of these requirements concern the analyst seeing both
how he or she reached the current display and saving interesting dis-
plays for future analysis. These were influenced by the work on visual-
ization provenance such as VisTrails [7] and Graphical Histories [10].

6.2 Interface Development and Implementation
We began the development of the user interface by translating the re-
quirements listed above into necessary software functions and user
interface (UI) elements. We settled on four UI elements: a list of
all available GLOs, a history view of applied GLOs, the visualiza-
tion display, and a region for displaying the snapshotted techniques.
The functions we identified included the GLOs themselves, support
for un-applying and re-applying a GLO to a graph, saving the current
configuration of GLOs for later use as a technique.

Using these elements and functions we sketched a number of de-
signs for the user interface. We discussed these drawings amongst the
team, identifying potential advantages and disadvantages of each. We
eventually settled on the interface in Figure 1. This interface features
all of the basic elements (available GLOs, view of the history, visu-
alization area, view of visualization states captured) and the functions
envisioned.

We then implemented the functions and UI as a a browser-based
application that we have dubbed GLO-STIX. GLO-STIX is written
in JavaScript using D3.js [6], jQuery1, Bootstrap2, and jQueryUI3.
Figure 1 is a screenshot of the prototype during an analysis of the Les
Misérables character co-occurrence graph included with D3.js based
on Donald Knuth’s jean.dat file4. Nodes are characters, and an edge

1http://jquery.com
2http://getbootstrap.com
3http://jqueryui.com
4http://www-cs-staff.stanford.edu/ uno/sgb.html



connects two characters if they co-occur in a chapter. Furthermore, all
of the graph images in this paper were generated using the prototype.

7 RELATED WORK

7.1 Graph Visualization Programming Toolkits
There have been many software systems and toolkits developed for
graph visualization. Some visualization toolkits, such as Protovis [9]
and D3 [6], provide a declarative language for developing new visual-
izations, including network visualizations, enabling developers to cre-
ate data visualizations more easily. There are also some software li-
braries for graph visualization, such as JUNG [19]. However, these
tools require users to have programming skills, which makes it diffi-
cult for many analysts to use them. The Ploceus [18] and Orion [11]
projects enable analysts to transform and analyze relational data as
graphs.

GUESS [1] introduced a system for navigating graphs, which al-
lows analysts to rapidly prototype visualization by using its Python-
based interpreted language. It introduced functions and operators for
manipulating graph data. This type of interpreted language is better
than toolkits in terms of accessibility to non-programmers or practi-
tioners, but we believe its command-line input still makes it more dif-
ficult for them to use. With GLO-STIX, users can specify a number of
graph visualization techniques by choosing a set of operations (GLOs)
with our graphical user interface.

7.2 Graphical Tools for Graph Analysis
There exist several graphical tools, such as UCINet [5], Pajek [4], and
Gephi [3], for network analysis, and they make it possible for analysts
to make visualizations of graphs without programming. NodeXL [23]
enables analysts to do so in a commercial spreadsheet. Users can
easily import, transform, analyze, and visualize network data with it.
However, these systems tend to provide only a small number of visual-
ization techniques, usually focusing on node-link diagrams, while we
provide a variety of operations to manipulate visual elements to create
a more diverse range of visualization techniques.

8 LIMITATIONS AND FUTURE WORK

We feel that the Graph-Level Operation (GLO) model provides a novel
avenue for the visualization research community. Section 3 demon-
strates the benefits that GLOs can provide for network analysts, visual-
ization researchers, and graph visualization system developers. How-
ever, GLOs are a new paradigm. We present in this section limitations
that GLOs have in our current GLO-STIX implementation. We note
that many of these limitations, such as not supporting sub-graph selec-
tion or edge bundling, are merely of the current implementation and
input techniques. Other limitations, such as the dependence on the
source technique set, are of the GLO model itself. However, we ex-
pect that future work on the part of the authors and other researchers
will find solutions for the majority these issues.

While the identification process described in Section 2 lowers the
uncertainty of the level atomicity, it does not remove it entirely. For
example, are “Evenly Distributing Nodes by {attribute}” and “Evenly
Distribute Nodes” one operation or two? While we settled on con-
sidering these as two distinct operations, one might interpret the latter
operation the same as the former with a null attribute parameter. As
long as there is consistency in the process, however, the precise level
of atomicity is largely irrelevant.

A more relevant limitation of the process is the dependence on an
input set of visualization techniques. While using this method has the
advantage of better identifying the atomic units of a techniques, it also
has the effect of restricting the GLO set to features of the input set. If
a GLO is not present in the input set, it cannot manifest in any output
visualizations. For example, the technique described in Figure 4 would
not have been possible had the input set not included some form of
radial-based layout. This can extend to otherwise simple operations,
such as the ability to show curved edges or size nodes by attributes.
“Bundle Edges” [13, 8, 14] (equivalent to “Show Edges as Curved”)
or “Highlight Nodes Matching {predicate}” would be worthwhile and

implementable GLOs, yet our input set of techniques did not include
a technique that used either.

The set of GLOs we have presented in Section 4 act on sets of ele-
ments representing nodes and edges. Since the techniques we describe
in Table 1 and Section 3.1 only require that the operations be applied to
every node or edge in the set, we are able to use the current generation
as the subset of elements that applied GLOs act upon. However, tech-
niques such as hive plots [17], NodeTrix [12], or SoccerStories [20]
require that GLOs be applied to arbitrary user- or data-defined subsets
of elements. We expect that by considering subsets as generations (as
they share many of the properties of generations such as a single node
in the data may be represented by multiple generations), implemen-
tations should be able to take advantage of the Generation Parameter
described in Section 5 to represent the subset.

A limitation merely of our current implementation is that we only
draw a single glyph for each edge and require that edges be drawn
from a source node to a target node. Thus we currently only support
directed graphs (GLO-STIX converts undirected graphs into directed
graphs by arbitrarily designating one vertex the source and the other
the target). Proper support for undirected graphs, as well as more ad-
vanced directed- and undirected-graph data structures such as trees
and nested graphs, remain to be implemented. A related point of fu-
ture work is that we have focused exclusively on static graph visual-
ization techniques. GLO support for dynamic graph data and dynamic
graph visualization techniques such as Matrix Cubes [2] or small mul-
tiples [26] would be worthwhile to explore. As techniques such as
parallel coordinates [15] and parallel scatterplot matrices [28] require
drawing links not between source and target nodes, but rather from
the same node in different generations, these cannot yet be expressed
using GLO-STIX. (Each also requires more than one link for each
node.) GLO-STIX also currently has no support for alternative node
representations such as data-driven icons.

We defined GLOs in Section 2 as “encapsulated manipulations of
a graph visualization.” In this paper we have kept to GLOs for ma-
nipulating graph visualization elements. An interesting extension of
this paradigm would be to discuss operations for manipulating graph
data. The most important of these “data GLOs” are filtering GLOs
such as “Filter attribute by predicate” that restrict the dataset. Other
potential data GLOs include “compute distance from target”, required
for creating even a simple Sugiyama hierarchical layout [25] or “com-
pute most-interesting neighbors” according to an algorithm such as
van Ham and Perer’s graph degree-of-interest algorithm [27].

Finally, we must mention the potential usability limitations intro-
duced by the generation construct. For instance, understanding the
dependency relationships within a technique and keeping track of gen-
eration numbers could all potentially confuse a user of a GLO imple-
mentation. Furthermore, there is the simple fact that cloned gener-
ations look exactly like the source generation. We also do not know
without a user study how much confusion long sequences of GLOs can
introduce. While we enable an analyst to remove “out-dated” GLOs
based on complementary GLOs, the lengths of even active GLOs can
still become quite long. However, many of these issues can be miti-
gated. For example, order-dependence can be mitigated by assuming
that each GLO in an analyst-designated technique has a dependence
relationship with the GLO preceding it. UI approaches such as high-
lighting the active generation (demonstrated in Figure 4) can mitigate
the confusion as well. We feel that the greatly expanded expressability
of the GLO model provided by the generation construct are more than
worth these small limitations.

9 CONCLUSION

We presented GLOs (graph-level operations), a new model for specify-
ing graph visualization techniques. We contributed a method to iden-
tify GLOs and demonstrated GLOs’ flexibility in re-creating canonical
graph visualization techniques. We discussed the important properties
of GLOs and the benefits to graph visualization that GLOs provide.
We presented GLO-STIX — an implementation of our GLO set and
an interface for exploring a graph using GLOs. Finally, we discussed
the limitations of the GLO and GLO-STIX implementations at time



of publication and potential future research directions concerning the
Graph-Level Operation model in general.

ACKNOWLEDGMENTS

The authors offer their tremendous thanks to the anonymous Info-
Vis reviewers for the breadth and depth of their feedback. The final
manuscript published here is far stronger than the initial submission
thanks to their voluntary time and effort.

This material is based upon work supported by the National Science
Foundation under Grant No. IIS-1320537 and the National Science
Foundation Graduate Research Fellowship Program under Grant No.
DGE-1148903.

This work has been partially supported by the U.S. Army Re-
search Office (ARO) and Defense Advanced Research Projects
Agency (DARPA) under Contract Number W911NF-11-C-0088 and
the XDATA program sponsored by the Air Force Research Laboratory
(AFRL) and DARPA. The content of the information in this document
does not necessarily reflect the position or the policy of the Govern-
ment, and no official endorsement should be inferred.

REFERENCES

[1] E. Adar. GUESS: a language and interface for graph exploration. In
Proc. of the ACM SIGCHI Conference on Human Factors in Computing
Systems, (CHI 2006), pages 791 –800. ACM, 2006.

[2] B. Bach, E. Pietriga, and J.-D. Fekete. Visualizing dynamic networks
with matrix cubes. In Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, (CHI 2014), pages 877–886. ACM, 2014.

[3] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source soft-
ware for exploring and manipulating networks. In ICWSM ’09, pages 361
–362. AAAI, 2009.

[4] V. Batagelj and A. Mrvar. Pajek– analysis and visualization of large
networks. In Graph Drawing Software, Mathematics and Visualization,
pages 77 –103. Springer Berlin Heidelberg, 2004.

[5] S. P. Borgatti, M. G. Everett, and L. C. Freeman. UCINet for windows:
Software for social network analysis, 2002.

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301 –2309, Dec. 2011.

[7] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and
H. T. Vo. VisTrails: visualization meets data management. In Proc. of the
2006 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’06, pages 745–747. ACM, 2006.

[8] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1277–1284, Nov. 2008.

[9] J. Heer and M. Bostock. Declarative language design for interactive visu-
alization. IEEE Transactions on Visualization and Computer Graphics,
16(6):1149–1156, 2010.

[10] J. Heer, J. Mackinlay, C. Stolte, and M. Agrawala. Graphical histo-
ries for visualization: Supporting analysis, communication, and eval-
uation. IEEE Transactions on Visualization and Computer Graphics,
14(6):1189–1196, Nov. 2008.

[11] J. Heer and A. Perer. Orion: A system for modeling, transformation and
visualization of multidimensional heterogeneous networks. In Proc. of
IEEE VAST 2011, pages 51 –60, 2011.

[12] N. Henry, J.-D. Fekete, and M. McGuffin. NodeTrix: a hybrid visualiza-
tion of social networks. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1302 –1309, 2007.

[13] D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data. IEEE Transactions on Visualization and Com-
puter Graphics, 12(5):741–748, Sept. 2006.

[14] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983–990, June 2009.

[15] A. Inselberg. Multidimensional detective. In Proc. of IEEE Infovis 1997,
pages 100 –107, Oct. 1997.

[16] E. Kandogan. Visualizing multi-dimensional clusters, trends, and outliers
using star coordinates. In Proc. of the Seventh ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’01,
pages 107–116. ACM, 2001.

[17] M. Krzywinski, I. Birol, S. J. Jones, and M. A. Marra. Hive plotsrational
approach to visualizing networks. Brief Bioinform, 13(5):627–644, Sept.
2012.

[18] Z. Liu, S. Navathe, and J. Stasko. Network-based visual analysis of tab-
ular data. In Proc. of IEEE VAST 2011, pages 41 –50, Oct. 2011.

[19] J. O’Madadhain, D. Fisher, P. Smyth, S. White, and Y.-B. Boey. Analysis
and visualization of network data using JUNG. Journal of Statistical
Software, 10(2):1 –35, 2005.

[20] C. Perin, R. Vuillemot, and J.-D. Fekete. SoccerStories: a kick-off for
visual soccer analysis. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2506–2515, Dec. 2013.

[21] G. Rugg and P. McGeorge. The sorting techniques: a tutorial paper on
card sorts, picture sorts and item sorts. Expert Systems, 22(3):94 –107,
July 2005.

[22] B. Shneiderman and A. Aris. Network visualization by semantic sub-
strates. IEEE Transactions on Visualization and Computer Graphics,
12(5):733 –740, 2006.

[23] M. A. Smith, B. Shneiderman, N. Milic-Frayling, E. Mendes Rodrigues,
V. Barash, C. Dunne, T. Capone, A. Perer, and E. Gleave. Analyzing
(social media) networks with NodeXL. In Proc. of the Fourth Interna-
tional Conference on Communities and Technologies, (C&T ’09), pages
255 –264. ACM, 2009.

[24] C. Stolper, F. Foerster, M. Kahng, Z. Lin, A. Goel, J. Stasko, and D. Chau.
GLOs: graph-level operations for exploratory network visualization. In
ACM SIGCHI 2014 Work-In-Progress Extended Abstracts, 2014.

[25] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man
and Cybernetics, 11(2):109–125, Feb. 1981.

[26] E. R. Tufte. Envisioning Information. Graphics Press, Cheshire, Conn.,
1995.

[27] F. van Ham and A. Perer. Search, show context, expand on demand:
Supporting large graph exploration with degree-of-interest. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6):953 –960, Nov.
2009.

[28] C. Viau, M. McGuffin, Y. Chiricota, and I. Jurisica. The FlowVizMenu
and parallel scatterplot matrix: Hybrid multidimensional visualizations
for network exploration. IEEE Transactions on Visualization and Com-
puter Graphics, 16(6):1100 –1108, 2010.

[29] M. Wattenberg. Arc diagrams: Visualizing structure in strings. In Proc.
of IEEE Infovis 2002, pages 110 –116, 2002.

[30] M. Wattenberg. Visual exploration of multivariate graphs. In Proc. of
the ACM SIGCHI Conference on Human Factors in Computing Systems,
(CHI 2006), pages 811 –819. ACM, 2006.


	Introduction
	Identifying Graph-Level Operations
	Identifying GLOs
	Specifying Techniques

	Benefits of Graph-Level Operations
	Graph Exploration and Discovering New Techniques
	Easing the Engineering Challenge

	Graph-Level Operations
	Positioning Nodes
	Modifying Element Properties
	Cloning Nodes
	Aggregating Nodes and Edges
	Modifying Display Properties

	Properties of Graph-Level Operations
	GLO-STIX
	Design Goals and Rationale
	Interface Development and Implementation

	Related Work
	Graph Visualization Programming Toolkits
	Graphical Tools for Graph Analysis

	Limitations and Future Work
	Conclusion

