IEEE VIS 2016
POSTERS
23-28 October, Baltimore, Maryland, USA

NL4DV: Toolkit for Natural Language Driven Data Visualization

Arjun Srinivasan*

John Staskof

Georgia Institute of Technology

ABSTRACT

Developing natural language interfaces for visualization systems is
achallenging task and requires system developers to spend time and
effort on implementing Natural Language Processing (NLP) com-
ponents necessary to convert natural language queries into visual-
izations. Especially for developers without a background in NLP,
this learning curve can be even more challenging and time consum-
ing. We are developing the Natural Language Driven Data Visu-
alization (NL4DV) toolkit that provides high-level functions devel-
opers can use to create natural language-driven data visualization
systems.

1 INTRODUCTION

The idea of using natural language as a querying interface for visu-
alization systems is becoming increasingly popular. Articulate [8]
is an example of a system presenting a natural language interface
for visualization. Articulate maps user queries to tasks and uses
these tasks in combination with data attributes to generate required
visualizations. More recently, Gao et al. developed DataTone [3], a
mixed-initiative system targeted at helping users resolve ambiguity
in natural language queries. DataTone presents “ambiguity wid-
gets” that assist users to iteratively construct visualizations. Com-
mercial agplications like IBM Watson Analytics! and Microsoft
Power BI“ also present natural language interfaces for visualiza-
tion.

Developing visualization tools driven by natural language is a
challenging task, however, and it requires implementing not only
the user interface and visualization components but also the NLP
components necessary to convert a query to a visualization. Exist-
ing NLP toolkits (e.g., [5, 4]) provide functionality such as Parts-
of-Speech (POS) tagging and entity extraction that can be used to
implement aspects of these components. While such toolkits are
useful for general-purpose NLP tasks and provide a wide repertoire
of functionality, they are fairly complex and require developers to
understand NLP concepts for effective use. Other existing research
in the space of natural language querying of databases (e.g., [7, 2])
explores how keywords can be used to extract relevant information
from a query in the context of a database. While these systems work
well for their targeted users, they expect fairly structured queries
and do not support unstructured exploratory questions.

Even with this body of existing work, converting a natural lan-
guage query to a set of visualizations remains a challenging task.
It typically involves processing a query to identify a set of data
attributes and analytical tasks mentioned in the query. These at-
tributes and tasks then need to be mapped to relevant visualizations
that can be used to answer the input question. Implementing these
steps is generally time consuming and involves a steep learning
curve, especially for developers without a NLP background.

*e-mail: arjun010@gatech.edu
fe-mail: stasko@cc.gatech.edu

Mttp://www.ibm.com/analytics/watson-analytics/
’https://powerbi.microsoft.com/en—-us/

We are creating a toolkit called NL4DV to provide developers
and designers of visualization systems with high-level functions
that they can use to add natural language query interfaces as ex-
tensions to their existing systems or build systems entirely driven
by natural language.

2 NL4DV

Figure 1 highlights (in gray) the four high-level components and
some of their intermediate inputs and outputs (in white) that are
required to implement a natural language driven visualization sys-
tem. NL4DV is implemented in Python and is provided as a python
package. As shown in Figure 1, it comes with a built-in query pro-
cessor and visualization recommendation engine which are the core
components of this implementation pipeline.

Data i
/] attributes |\ i

2 / \ T | 2

\ N/ \ (
Natural / \ Visualization o
S User Language |—— Query 1 Recommendation Visualization |
interface Query Processor \ / Engine Renderer }
N
L I

J /L J AS 4

| Analytical |/
tasks

NL4DV

Figure 1: Typical components of a natural language driven visual-
ization system

To operate, NL4DV simply requires a data source (currently sup-
ported formats include CSV, TSV, and JSON files) and a natural
language query (as a string). The toolkit then returns a list of data
attributes (dataAttributesMap) and analytical tasks (taskList) being
referred to in the query, and a ranked list of visualizations (recom-
mendedVisualizations) that can be used to answer the question most
effectively. These responses can then be used by the developer to
render the visualizations or update the user interface depending on
the application’s context.

] Data
= Processor

e
$) AttributeAliasMap

8 Attribute
Extractor ‘
Visualization Response

“Are wider cars
Moecars | Query
oxpensive?” Processor Recommender Processor
o |

Identifier
L]

TaskKeywordMap

dataAttributesMap

taskList

recommendedVisualizations

(Query Analyzer)
NL4DV

Figure 2: NL4DV architecture

2.1 Components

Figure 2 highlights NL4ADV’s two primary components, the data
processor and the query analyzer. The query analyzer further en-

Authors remain in control of copyright.

capsulates five modules. A brief description of how these compo-
nents and modules work together to process a query follows:

Data Processor. On initializing NL4DV with a data source, this
component parses the input data source to extract details about in-
dividual attributes (e.g. data type, domain etc.). This information is
used later by the task identifier and visualization recommendation
modules.

Query Processor. The goals of this module are to process the
input query to generate a list of n-grams that constitute the sentence
and perform Parts-Of-Speech (POS) tagging on the input query.
n-grams are generated with n ranging from 1 (single word) to k
(number of words in the query).

Attribute Extractor. The attribute extractor uses the n-grams
from the query processor to identify data attributes mentioned in
the input query. To match n-grams to attributes, the module uses a
combination of string similarity score (using Levenshtein distance)
and the distance between the stemmed versions of the strings in
the wordnet graph [6]. When comparing n-grams to attributes, this
module also leverages the optional AftributeAliasMap provided by
the developer. This map essentially holds aliases for attribute names
(e.g. “MPG” for “Miles Per Gallon™). To support follow-up ques-
tions, this module persists the attributes identified in a query until it
encounters another query containing new attributes.

Task Identifier. This module generates a list of analytical tasks
implicitly or explicitly stated in the input query. NL4DV currently
supports identification of the ten tasks (Retrieve Value, Filter, Com-
pute Derived Value, Find Extremum, Sort, Determine Range, Char-
acterize Distribution, Find Anomalies, Cluster, and Correlate) in
the taxonomy proposed by Amar et al [1]. To identify tasks, the
module uses a combination of pre-defined keywords, POS-tags, and
a dependency parser to map tasks to attributes. Each pre-defined
keyword maps to one or more tasks. These keywords are gen-
erated using questions collected by Amar et al [1] and stored in
the TaskKeywordMap. This map can be extended by the developer
based on the context of a dataset to map specific keywords to tasks.
Since tasks can be implicity stated, there is uncertainty associated
with identifying them. This uncertainty is represented using a con-
fidence score (ranging from [0,1]) associated with each task.

Visualization Recommender. This module uses the attributes
and tasks identified to generate and rank possible visualizations
that are relevant to the input question. Currently supported visu-
alizations include bar chart, line chart, pie chart, scatterplot, and
histogram. The module first lists all combinations of attributes
and possible transforms. These are then scored (in the range [0,1])
based on how relevant and useful each of them are given the tasks at
hand (e.g., for a correlation task involving two numeric attributes,
a scatterplot will be assigned the highest score). Each visualization
is represented as a simple JSON object that can be parsed by the
developer to render visualizations on the front end.

Response Processor. This module takes the output from the at-
tribute extractor, task identifier, and the visuailzation recommender
and combines them into a single object. This module also adds a
boolean isFollowUpQuestion flag to the output depending on if a
question is identified as a follow-up question or not. It then returns
the generated object as the output to the calling function.

Figure 3 summarizes the output from the query processor, at-
tribute extractor, task identifier, and the visualization recommender
modules for the sample query “Are wider cars more expensive?” in
the context of a cars dataset.

3 STATUS AND FUTURE WORK

We have provided a trial version of the NL4DV toolkit to gradu-
ate students to use as a part of their projects. Some students have
already built natural language driven visualization systems from

3Supported POS-tags are listed at http://www.ling.upenn.edu/
courses/Fall_2003/1ing001/penn_treebank_pos.html

{
"Retail Price" : ["expensive"],
© “Dealer Cost': Pexpensive’]
"Width" : ["wider"]

}

Attribute
Extractor
“Are wider cars Query
more expensive?” | processor Recommender
[(are), (wider), (cars),. . .(wider

[
Task {
cars).... (wider cars more [Identifier "taskRelevanceScore":1.0,
" {
A;

o expensive) | {
[Care’, "NNP'), (‘wider', "JJ'),
(‘cars’, "NNS'), (‘more’, "RBRY),
(‘expensive’, "JJ')] o

“confidence”:1.0,

“‘mapapedObjects™ [
{“attribute”: “Width"},
{“attribute”: “Retail Price"},
{“attribute”: “Dealer Cost’} }

]

“task’: “Correlate” b
}
] 1

Figure 3: Query Analyzer sample outputs. (A) n-grams and POS-
tagged list® (B) DataAttributesMap, (C) TaskList, (D) Recommend-
edVisualizations

scratch using it. Other students are experimenting with using the
toolkit to add an optional natural language query interface to exist-
ing applications.

We are encouraged by the positive feedback this initial version
of the toolkit has received. We are currently working on setting up
experiments to evaluate the accuracy of the toolkit in identifying
attributes and tasks across multiple datasets and domains. Based on
some of the initial feedback, we also are exploring ways to improve
the query analyzer by using more advanced dependency parsing
techniques. Further, we are delving into the idea of adding a con-
versational assistant to the toolkit. This would allow the toolkit to
summarize the results and also provide human-readable responses
in cases where it is unable to parse a query. We are exploring the use
of Artificial Intelligence Markup Language (AIML) as a potential
way of implementing this “brain” for the assistant.

To support future research and experimentation in the space of
natural language interfaces for visualization, we will soon be mak-
ing NL4DV freely available as open-source software. We hope this
work will provide valuable building blocks for natural language
driven visualization research and development.

REFERENCES

[1] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic
activity in information visualization. In Proceedings of IEEE InfoVis
'05, pages 111-117, 2005.

[2] 1. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language
interfaces to databases—an introduction. Natural language engineering,
1(01):29-81, 1995.

[3] T.Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Datatone:
Managing ambiguity in natural language interfaces for data visualiza-
tion. In Proceedings of ACM UIST ’15, pages 489-500, 2015.

[4] E.Loper and S. Bird. Nltk: The natural language toolkit. In Proceed-
ings of the ACL-02 Workshop on Effective tools and methodologies for
teaching natural language processing and computational linguistics-
Volume 1, pages 63-70, 2002.

[5] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky. The stanford corenlp natural language processing toolkit.
In ACL (System Demonstrations), pages 5560, 2014.

[6] G. A.Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39-41, 1995.

[7]1 G. Orsi, L. Tanca, and E. Zimeo. Keyword-based, context-aware selec-
tion of natural language query patterns. In Proceedings of the 14th
International Conference on Extending Database Technology, pages
189-200. ACM, 2011.

[8] Y. Sun,J.Leigh, A.Johnson, and S. Lee. Articulate: A semi-automated
model for translating natural language queries into meaningful visual-
izations. In Smart Graphics, pages 184—195, 2010.

