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Abstract. While commercial solutions for precise indoor positioning exist, they 
are costly and require installation of additional infrastructure, which limits op-
portunities for widespread adoption. Inspired by robotics techniques of Simul-
taneous Localization and Mapping (SLAM) and computer vision approaches 
using structured light patterns, we propose a self-contained solution to precise 
indoor positioning that requires no additional environmental infrastructure. 
Evaluation of our prototype, called TrackSense, indicates that such a system can 
deliver up to 4 cm accuracy with 3 cm precision in rooms up to five meters 
squared, as well as 2 degree accuracy and 1 degree precision on orientation. We 
explain the design and performance characteristics of our prototype and demon-
strate a feasible miniaturization that supports applications that require a single 
device localizing itself in a space. We also discuss extensions to locate multiple 
devices and limitations of this approach. 

1   Introduction and Motivation 

We introduce a solution to indoor localization, TrackSense, that requires no additional 
infrastructure in the environment and provides 3D positioning and orientation data 
that performs well against existing research and commercial solutions. Although we 
have seen great progress toward the goal of indoor localization, almost all of the solu-
tions that offer precise (few centimeter) indoor localization have been limited to tech-
niques that require the introduction of new infrastructure to the physical space (e.g. 
cameras or beacons). These solutions are often costly and typically require time-
consuming installations, and it is not easy to move the instrumentation from one space 
to another. Although existing commercial positioning systems are adequate for proto-
typing user experiences, their ultimate success relies on a localization approach that is 
inexpensive and easily deployed. TrackSense is appropriate for situations where the 
localized device has a clear view of the walls and ceilings. By centralizing all compu-
tation to a single, small device, we reduce cost and substantially increase the number 
of places the localized device can be used. 
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In addition to the inherent technical challenges, there are several motivating applica-
tions in which a single computational device benefits from precise location. Patel et al. 
demonstrate a see-through augmented reality, handheld device capable of performing 
precise at-a-distance interaction [20]. Their iCam device provided simple authoring and 
retrieval of digital content attached to physical objects, as well as manipulation of digital 
content in an augmented reality game. The iCam relied on a commercial ultra-wideband 
positioning system for localizing the handheld. Cao and Balakrishnan demonstrated the 
use of a handheld projector for viewing and interacting with multiple dynamically de-
fined information spaces projected in the physical space [5]. Their application used a 
commercial camera-based motion capture system to determine the pose and position of 
the projector. In addition to these research prototypes, many examples of augmented 
reality rely on precise tracking of an object (such as an individual’s head) and these 
applications would be improved by any solution that would speed deployment in multi-
ple spaces.  

TrackSense determines its distance and orientation to fixed large planes in a space 
(i.e., walls and ceilings) and uses that information to calculate its 3D position and 
pose in the room. Inspired by robotics localization and camera-projector research, our 
solution uses a camera to locate and track a grid pattern projected onto surfaces in the 
camera’s field of view. This solution is more accurate and reliable than standard com-
puter vision feature extraction techniques, because the exact feature (the grid pattern) 
is known and ever-present in the camera’s view. It also provides a useful complement 
to traditional stereo vision, which does not perform well on plain surfaces. In addi-
tion, our technique provides information regarding its pose that is not available with 
standard ultrasonic or laser range finding solutions. Combining our solution with less 
precise room-level positioning systems we can provide localization within an entire 
world coordinate frame. Our current prototype is bulky and only demonstrates local-
ization of a subsection of any given room. However, we also describe a miniaturized 
system that can be extended to an entire room. 

2   Related Work 

Indoor location technologies have been a long-studied topic in pervasive and ubiqui-
tous computing. Hightower and Borriello provide an overview of the various location 
technologies and techniques [14]. The two basic approaches are to build the entire  
infrastructure from the ground up (e.g., Ultra-wideband [35], ActiveBadge [37], 
Cricket [25], Vicon [36], NorthStar [21] and Active Bat[1]) or to leverage existing 
infrastructure that can yield localization, either through triangulation or fingerprinting 
(e.g., 802.11 work such as RADAR [2] and Place Lab[15], GSM Cell Towers [22], 
Bluetooth [19], and powerlines [24]). Typically, solutions that offer precise indoor 
localization of a few centimeters use the first approach of installing new environ-
mental infrastructure that is both expensive and hard to move, thus limiting location-
based applications to a few highly specialized environments. Although researchers are 
exploring ways to leverage existing public infrastructure, the solutions are currently 
limited to resolutions of a few meters (room-level). 

The robotics community has a long history of exploring ways to localize autono-
mous robots without having to install custom infrastructure or gather a priori  
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topological knowledge of the environment. Researchers have extensively studied the 
use of highly precise laser or ultrasonic range finders to automatically construct a 
feature map of the environment and then later consult it for localization [9, 18, 34]. 
This class of techniques is called Simultaneous Localization and Mapping (SLAM). A 
visual variant of SLAM, visual SLAM (vSLAM), builds a map entirely using vision 
[7, 30]. SLAM solutions typically employ various statistical and probabilistic models 
for localization. In addition, SLAM is a recursive process that evolves over time to 
improve accuracy and address changes in the environment. Although inspired by 
robotics, our solution does not rely on a statistical model or the construction of a 
complete map of the environment.  

Vision-based techniques extract features from the physical environment, such as 
detecting planar surfaces for 3D model extraction [3, 6, 8, 17, 27, 33]. One limitation 
of purely vision-based techniques is the requirement of easily discernible and static 
features in the environment. Features many not always be available, such as on single-
colored or plain walls. Additionally, lighting conditions may change the way features 
appear at different times. In our solution, the features (projected grid) are placed arti-
ficially in the environment to ease feature extraction. Our solution works best on the 
plain surfaces on which other computer vision approaches such as stereo vision fail. 
However, stereo vision techniques would be complimentary when the device is used 
in more textured spaces. 

Our approach with TrackSense is similar to previous vision work using structured 
light to extract physical feature information from an object, which use projected 
coded patterns of light at an object to extract the 3D features of that object [3, 29]. 
Other research has used the detection of structured light on a planar surface to auto-
mate projector calibration [31, 32]. These solutions temporally encode different struc-
tured light patterns; we focus on a static pattern produced by a laser to ensure a small, 
low-cost solid-state solution. 

Finally, augmented reality researchers have explored using fiducials (such as bar-
codes or 2-dimensional glyphs) to determine distance and pose to labeled objects and 
surfaces [12, 28]. However, large glyphs are needed for long distances and a number 
of them must be placed in the environment to cover a large space. In addition, glyphs 
are not always aesthetically pleasing unless they are blended with the décor of the 
environment. Our approach can be made invisible to the user by using infrared lasers. 

3   System and Implementation Details 

TrackSense projects a grid pattern into the environment to locate planes (walls) and 
intersections (corners). By detecting three orthogonal planes (two walls and a ceiling 
or floor), the system can recover its position and orientation with respect to that cor-
ner. By using a 3-axis accelerometer and magnetometer (compass), the unit can de-
termine which corner of a room it is looking at, and hence, its position and orientation 
with respect to the room’s coordinate frame. Practically, several TrackSense units  
(2-5) angled in different directions can cooperatively identify three planes within their 
combined views. This section discusses the implementation of a single TrackSense 
unit and how it obtains distance and orientation measurements from one or more 
planes it observes in the environment. 
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Fig. 1. Left: Operating TrackSense prototype and its components. Right: A miniaturized design 
prototype with laser diode, camera, and 400 MHz GumStix computer. 

3.1   Hardware 

TrackSense has a grid projector and a camera (see Figure 1). We used a 2000 Lumen 
DLP projector, which simulates a grid projecting laser diode. We used a projector to 
allow for easy prototyping of different sizes and shapes of projected grids. In an ac-
tual engineered solution, the relatively large desktop projector would be replaced with 
a single laser diode and grid diffraction lens, possibly projecting infrared light to 
make the system's operation imperceptible. For our prototype camera, we used a 
Logitech QuickCam Pro 4000 USB webcam with VGA (640x480) resolution. Our 
prototype system also had a custom-built magnetometer for a cost of $50 USD with a 
resolution of about 2°. In an actual system, several TrackSense units would share a 3-
axis accelerometer and magnetometer. For prototyping, these components were con-
nected to a desktop PC running our software, which was written in C++ using Intel's 
OpenCV and the VXL computer vision libraries. 
 
Projected Grid & Camera Calibration  
As with all stereo vision devices, for a TrackSense unit to operate correctly, the grid 
projector and camera must be calibrated, both with respect to each other and with 
respect to a ground truth or world coordinate system. By using point correspondences 
between the grid projector and the camera using a known calibration rig, we can find 
the Fundamental matrix, F that encodes the relationship between the grid projector 
and the camera. The Fundamental matrix is defined by the equation x’T Fx = 0 for any 
pair of matching points x ↔ x’ in two images. In other words, if two points x and x’ 
correspond, the equation described above evaluates to 0. Note that mathematically, 
the grid projector is assumed to be a second camera, with grid line intersections at 
specific points in the virtual grid “image.” We use F to help determine point corre-
spondences as described in Section 3.2.3. By using known world coordinate points on 
our calibration rig, we can also calculate the projective matrices, P and P`, between 
the world coordinate system and the camera and virtual grid “camera” that is used to 
determine the location of detected points with respect to the TrackSense unit. We 
computed this standard multiple-view calibration with a custom rig using the calibra-
tion routines from OpenCV [13]. In actual operation, this calibration would be per-
formed a single time at the time of manufacture. 
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3.2   System Operation 

As the grid is projected onto and reflected from objects in the environment such as the 
ceiling and walls, the camera detects the lines using a custom edge detection algo-
rithm, Using these detected lines, we can find the location of each grid intersection 
point. Because we are integrating data from hundreds of pixels for each line, we can 
develop a mathematical model of the line that is more accurate than any single pixel. 
Hence, we can measure locations of intersection points with sub-pixel accuracy. By 
triangulation (using the same math as standard stereo vision), we can find the distance 
and orientation to each point relative to the camera. Using multiple points, we can 
detect planes and corners where multiple planes meet. From this, we can recover the 
orientation and position of the TrackSense unit with respect to the corner. If we use a 
3-axis accelerometer and magnetometer to determine which corner we are observing, 
we can locate the TrackSense unit within the room. Furthermore, if we already can 
identify the room using a less accurate positioning system, such as GSM fingerprint-
ing [22], the within room position translates to an accurate world position. In this 
section, we describe elements of this procedure in more detail. 

3.2.1   Line Detection 
To determine where the grid intersection points occur in the camera image, our sys-
tem must first detect the projected lines from a potentially noisy image. Using a stan-
dard Canny edge detection algorithm would detect the grid, but it would also detect 
many other lines in the image (i.e., edges of windows, picture frames, desks, pencils, 
etc). One way to enhance the detection of the projected grid would be to take pairs of 
images, one with the grid turned off, and one with it turned on, and then subtract them 
to obtain the location of only the grid. However, this reduces the frame rate of the 
system by one-half, requires precise synchronization between the grid projector and 
camera, and assumes that the system is not in motion between subsequent frames. 
Custom hardware operating at extremely high frame rates where these assumptions 
may be valid could make use of this subtraction technique to greatly simplify the line 
detection algorithm. 

However, our prototype uses a web cam with limited frame rate and no synchroni-
zation to the grid projector. We also wanted our system to operate while in motion 
and be able to provide a new orientation and position with every camera image. To 
enable this, we developed an enhanced edge-finding algorithm that detects projected 
grid lines while ignoring many environmental lines. Figure 2 (center) shows results 
obtained using a standard implementation of the Canny edge detection algorithm [4]. 
The Canny algorithm looks for gradients in the image, detecting lines for both low-to-
high and high-to-low transitions. Naturally occurring lines in the environment (i.e., 
from a corner or edge) typically only have one of these gradients, either increasing or 
decreasing, as the edge typically separates objects of different reflectance levels. 
However, projected lines are typically brighter than the objects they fall upon, leading 
to both a rising and falling gradient on either side of the line. As shown in Figure 2: 

1. For our single luminous projected line, two edges are detected: One for the in-
creasing gradient and one for the decreasing gradient. 

2. Each edge of the black square (upper left) results in exactly one detected edge. 



 TrackSense: Infrastructure Free Precise Indoor Positioning Using Projected Patterns 339 

We can obtain better results by modifying a gradient-based edge detection algo-
rithm so that a positive gradient followed by a negative gradient of similar magnitude 
is used to detect a line. This leads to a zero-crossing edge detection algorithm that 
uses the 1st derivative instead of the 2nd derivative. Figure 2 shows the result of such 
an algorithm. This helps reduce both the ambiguity problem and the false positives. 

                                   

Fig. 2. Left: A line projected onto a wall and a black square representing an object in the envi-
ronment. Middle: Results obtained applying Canny edge detection to the image on the left. 
Right: Result obtained applying the gradient based edge detection algorithm we developed. 

                   

Fig. 3. Left: Zoomed in image of two intersecting lines. Right: The same lines from the left 
superimposed with lines detected by our line finding algorithm. 

3.2.2    Intersection Points 
Using the edges detected from the projected grid, a Hough transform can determine 
the parameters of each line [11]. By mathematically determining the intersection point 
of each pair of lines, we obtain the position of these points with sub-pixel accuracy. 
Figure 3 shows an intersection of two projected lines in our camera view, and an 
overlay of the detected lines (blue) and intersection point (center red dot). Our proto-
type used a grid of 9 vertical lines and 7 horizontal lines, which corresponded to our 
4:3 aspect ratio camera, giving a maximum of 63 detectable points. 

3.2.3   Point Correspondences and 3D Reconstruction 
An important step of reconstruction is the correct identification of point correspon-
dences between two views. To determine the orientation and distance to any point in 
the environment, a stereo rig must identify where that point appears in both camera 
views. Traditional stereo vision algorithms [11] rely on distinctive textures in the pair 
of images to determine which points from the left camera image corresponds to a 
particular point in the right camera image. However, we are unable to use a similar 
method for two reasons. First, our system needs to be able to work on plain walls 
without features, which lack the texture that traditional stereo vision algorithms rely 
upon. Second, we are using a projector as a virtual “camera”. The advantage of the 
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projector is that our system will work on walls without texture by projecting its own 
features, but the disadvantage is that the grid is regular and each intersection point 
looks very much like all the others.1 

Given a grid intersection point in the projector “view”, the correct corresponding 
point in the camera view must to be found. In order to reduce the search space for this 
point the epipolar constraint from the Fundamental matrix is applied [13]. Figure 4 
shows epipolar lines for our prototype in which the camera and grid projector were 
mounted horizontally.  

To determine point correspondences we use a cost function that is the sum of the 
squared distance to the epipolar line and the position of that point in the previous image 
(timestep t-1). Using these cost functions, the Hungarian algorithm [16, 20] minimizes 
the total cost and produces the best match in correspondences between the grid intersec-
tions and the detected line intersections in the camera image. In some cases, intersection 
points may be missing from the camera image. For example, lying on a dark or textured 
object or falling outside the view of the camera would prevent detection by the edge and 
line finding algorithms. To prevent errors in these cases, the cost for questionable points 
are set to infinite cost (allowing the Hungarian algorithm to skip that point) if the dis-
tance to the epipolar line was greater than a pre-set threshold.  

Once point correspondences are known, the projective matrices, P and P` obtained 
in the initial system calibration are used to calculate the 3D position of the point. 
Linear triangulation is used to obtain the desired 3D position of a point. More details 
of the linear triangulation approach, along with methods for improving its accuracy 
can be found in [13].  

            

Fig. 4. Left: A projected grid. The yellow dots show points of intersecting lines. Right: Left 
image superimposed with epipolar lines. 

3.2.4   Identifying Planes  
A TrackSense unit models walls, ceilings or floors as large planes. After triangulation, 
we have data points that may represent points on the surface of planes, or may be 
noise, either from random objects in the environment or measurement errors. In order 
to develop a robust algorithm that can detect planes correctly, several issues arise. 

                                                           
1 As our prototype uses a data-projector to simulate a laser-grid, we could have used textured 

patterns (as used in 3D reconstruction using structured light [3, 29]). To work with very small 
and inexpensive laser diodes, we limited the output of the projector to a uniform static image. 
With custom diffraction lenses on a laser diode it would be possible to produce a laser pattern 
that, while static, would not be regular, allowing for easier calculation of point correspondences.  
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• The exact number of planes in each frame is unknown. Because each TrackSense 
unit has a finite field of view and operating range, we do not expect to detect more 
than a maximum of 3 planes of usable size (a corner of two walls and a ceiling or 
floor). 

• It is not known which points lie on the surface of the same plane and form a 
group. 

• A significant amount of points represent noise and have to be classified as outliers 
so they do not affect the correct computation of a plane.  

Our approach uses the RANSAC (RANdom Sample Consensus) algorithm [10]. 
First, three  points which specify a plane are randomly selected, and every remaining 
point is tested to see if it is close to the candidate plane. We have found that a thresh-
old of 3 cm includes most valid points while eliminating most outliers. After selecting 
many possible random planes, the one with the largest group of supporting points is 
chosen. The valid points are then used to compute a least mean square solution for the 
actual position and orientation of the plane, resulting in better accuracy than any of 
our single point measurements. Planes without enough supporting points are dis-
carded. The algorithm terminates with failure to detect a plane. Otherwise the previ-
ous steps are repeated in order to find the next plane. We have found that with a 7 by 
9 grid (63 total points) a threshold of 18 points generally indicates that a valid wall, 
floor, or ceiling plane has been found. Figure 5 shows a point cloud representing 
points on the surface of two walls of a corner (left), and the planes that have been 
fitted to the points using the approach described above (right). Once the four parame-
ters characterizing each plane have been determined, the distance from the Track-
Sense unit to the plane can be determined geometrically. 
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Fig. 5. Left: Point cloud from a two wall corner. Right: Point cloud plus the fitted planes. 

3.2.5   Determining Position and Orientation 
Depending on the number of walls, we discuss the different strategies for determining 
the position and orientation of the device. 

One Wall: A TrackSense unit that can observe a wall can determine its orientation 
with respect to that wall, and distance from the wall. With a single wall in view it can 
act as an enhanced ultrasonic tape measure, being able to calculate the direct distance 
from the unit to the closest point on the wall. Unlike an ultrasonic tape measure, the 
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TrackSense unit does not have to be pointed directly at the closest point on the wall to 
make this measurement, as it also knows the orientation of the wall. 

Two Walls: By observing two orthogonal walls, a TrackSense unit is able to determine 
its (X,Y) position with respect to the corner. If it makes the assumption that the two 
walls are vertical (at 90 degrees to the ground plane) the TrackSense unit can determine 
its own orientation with respect to the ground plane. Note that the two walls do NOT 
have to form a 90 degree angle with each other, only with the ground plane. 

By making use of a magnetometer a TrackSense unit can determine its global bear-
ing, and determine which corner of the room it is observing, which leads to a global 
(X,Y) position within the room. Also note that if the room has a different angle at 
each corner (as opposed to the standard 90 degree corner) the TrackSense unit can 
measure the angle between each set of two walls and use that to “fingerprint” the 
corner that it is looking at. Although two walls do not provide a Z (or height) meas-
urement, if the unit is held at a consistent height, or mounted on a mobile base the Z 
component may be stable. While an ultrasonic transducer could be used pointing 
towards the ground or ceiling to provide an estimate of Z, we recommend the use of a 

second TrackSense unit for redundancy. 

Three Walls / Corner: By observing three orthogonal planes (such as the intersection 
of two walls and the ceiling or floor) a TrackSense unit can determine its full 6 degree 
of freedom position and orientation with respect to the corner. If it can identify the 
corner, it can also obtain its global position and orientation within the room. Note that 
our prototype only has enough resolution and field of view to accurately detect two 
planes simultaneously. Hence, the analysis in Section 4.2.2 assumes a constant Z 
value (the unit sat on a wheeled platform). We expect in actual operation, 2-5 Track-
Sense units would operate on the same rigid body. Even if three TrackSense units 
could each only detect a single unique plane, the combination of distance and orienta-
tion data from each TrackSense unit would be equivalent to a single “super Track-
Sense” observing the three planes directly. 

3.2.6   Adding a Magnetometer and Accelerometers 
The previous analysis assumes that the TrackSense unit is somewhat vertical. If it is 
held upside down, its yaw, pitch, and roll measurements will be incorrect by 180 
degrees, and if held sideways it will mistake the floor and ceiling for walls and visa 
versa. If the TrackSense unit will be held generally level (within 30 degrees), the use 
of accelerometer data is not strictly necessary for satisfactory operation. However, 
most solid state magnetometers integrate a 3 axis accelerometer (and 2 orthogonal 
magnetometers) to ensure that the compass bearing is accurate even if the unit is 
tilted. By using data from a 3 axis accelerometers we can enhance the TrackSense unit 
in two ways:  

• By detecting the 1G acceleration of gravity and magnetic north the unit can oper-
ate in any orientation and provide correct yaw, pitch, and roll data (Excepting 
zero-gravity environments). 

• The data from inexpensive accelerometers (with fast update rates, but moderate 
drift) can be used to provide updated position and orientation data between camera 
frames or while the cameras do not have a view of enough planes to obtain full 6 
DOF data. 
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4   Performance Evaluation 

We conducted four experiments to determine the accuracy and precision of the sys-
tem’s position and orientation measurements. The first two involved measuring the 
distance and orientation with respect to a single wall or plane. The third measured the 
ability of a single TrackSense unit to measure the angle between two walls or planes. 
The fourth experiment used the distance and orientation to the intersection of two 
walls to measure the (2D) location of the TrackSense unit in a room. These tests allow 
us to report on the overall positioning and orientation accuracy of our prototype and 
predict the accuracy and precision of a system using multiple TrackSense units to 
position and orient itself within a room.  For accuracy, we report the difference be-
tween the system’s determination of its location and the measured ground truth.  For 
precision, we show the smallest discernable position unit by observing the variations 
of the system’s reported position at specific locations.  

4.1   Distance and Orientation to a Single Wall 

Figure 6 (left) shows the single wall experimental setup. At each test point 300 con-
secutive samples were taken. In the two experiments, we varied the prototype’s  
distance and angle to the wall while keeping lighting constant at normal office illumi-
nation levels. 

        

Fig. 6. Left: Experiment set-up for one wall experiment with projected grid. Right: Two wall 
experiment setup with projected grid. In both experiments, the apparatus was at a fixed height.  

4.1.1   Distance 
In this experiment, the apparatus was pointed straight towards one wall and the perpen-
dicular distance was measured as the ground truth. We took measurements at nine points 
ranging from 75cm to 325cm from the wall. The TrackSense prototype has a minimum 
range slightly under 75cm (due to geometric constraints), and the optimal working range 
extends to 275cm, although less accurate results can be obtained up to 350cm.  

The accuracy of the system is shown in Figure 7. The straight blue line represents the 
result of a least mean square linear regression for the sample points. The distance be-
tween the measured and the actual data closely follows a linear function (y=ax+b). This 
systematic error comes from the fact the lines from the projector increase in thickness as 
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the apparatus is moved farther back, thus shifting the detected lines farther to the left. 
Using a true laser grid would mitigate this problem substantially, although there would 
still be a slight systematic error. However, because the system error is linear, a correc-
tion factor can be applied at the factory to improve the overall accuracy. This correction 
factor is a simple offset value learned through experimentation. When we applied the 
linear correction factor, our corrected accuracy was between 3-4 cm. 

Within the working range, the precision is on average 2 cm (see Figure 7). The re-
sults indicate that the standard deviation increases quadratically with increasing dis-
tance from the wall. As the area imaged by our camera increases with the square of 
the distance, this curve corresponds to the expected reduction in sensor resolution 
with respect to wall area. 

Precision decreases drastically near 3 meters. Several factors cause the system per-
formance to begin degrading at this point. As the distance from the TrackSense unit to 
the wall is increased, the intensity and size of the projected lines in the camera image 
is reduced until the edge detection algorithm can no longer successfully identify all 
lines. With fewer lines, fewer points are detected, and more incorrect point corre-
spondences are made, leading to more outliers for the RANSAC algorithm. Increasing 
the resolution of the camera and using a brighter laser grid projector would increase 
the effective working range. 

Fig. 7. Accuracy (left) and precision (right) of distance facing a single wall 

  

Fig. 8. Accuracy (left) and precision (right) for angle measurement towards one wall 
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4.1.2   Orientation 
We also characterized the system’s ability to determine its orientation with respect to 
a single wall or plane. We measured the angle between the prototype and a wall at six 
different angles: 0,10,20,30,40 & 45 degrees. At each position, 300 samples were 
collected to calculate the device's precision. The TrackSense prototype was located 
120 cm from the wall, and swiveled from 0 degrees (directly facing the wall) to 40 
degrees in 10 degree increments, and a final measurement was taken at 45 degrees. 
Beyond the 45 degree angle we expect the TrackSense unit would have a less acute 
angle to an adjacent wall. 

Over the tested 0 – 45° range, the TrackSense prototype has an accuracy of  2° or 
better and has a precision of  1° or better (see Figure 8). We attribute the slight de-
crease in precision and accuracy as the angle increases to the smaller surface area that 
is visible to the camera as the incident angle is increased. We did not measure angles 
beyond 45 degrees because in standard operation we expect the TrackSense unit to 
have a view to an adjacent wall with a less-acute angle. 

4.2   Two Wall Experiments 

We investigated using our prototype to measure the angle between two walls, as well 
as using the distance and orientation from a known corner to measure the (X,Y) loca-
tion of our prototype within a room (see Figure 6). All measurements were taken with 
the grid centered horizontally in the corner and the TrackSense unit directly facing the 
corner. 

4.2.1   Angle Between Two Walls 
The ability to calculate the angle between intersecting planes is important in recog-
nizing unique corners (e.g., an odd shaped room where each corner has a different 
angle). For the two wall angle experiment, a movable surface against the corner of a 
room approximated a second wall, and measurements were taken at three different 
angles at 90°, 67.5° and 45° as measured with a protractor. The accuracy of angle 
measurements is shown numerically in Table 1. TrackSense provides accuracy of 
better than 2°. The accuracy degrades as the angle gets narrower. As the angle be-
tween the walls decrease, the angle from each wall to the TrackSense unit increases 
causing an increase in error similar to that seen in Section 4.1.2. The precision of 
the system remains relatively constant (around 1°) despite the angle of the walls. 

Table 1. Accuracy of angle measurements between two walls 

Ground 
truth 

Measured 
angle (Mean) 

Difference 
(Error) 

Standard 
Deviation 

90.00° 90.08° 0.08° 1.70 
67.50° 69.09° 1.59° 1.83 
45.00° 43.06° 1.94° 1.25 
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4.2.2   Location Within a Room 
By observing a corner, our prototype measures the distance to two walls and can pro-
duce an (X,Y) location within a room. Using a fixed height, and keeping the Track-
Sense grid projector and camera pointing towards a known corner, measurements 
were taken from a total of 25 positions equally spaced on a grid covering an area of 
approximately 2.0m x 3.0m. We took 300 samples at each location with standard 
office lighting conditions. 

Figure 9 shows the raw data results of the two wall position experiment. Through-
out the experiment, we pointed the apparatus toward the lower left corner of the room 
(the corner at the origin of the coordinate frame). This raw data has an average accu-
racy of only 29.0cm. When we apply the linear correction factor discussed in Section 
4.1.1, the average accuracy of all 25 data points is increased to 17.3cm. If we look at 
only the 9 points closest to the corner (grid size of 1.2m x 1.2m), our corrected accu-
racy is 9.53cm. 

To calculate the precision, we first computed the variances of the detected X and Y 
values. var(X) and var(Y) are the squared mean distances of X and Y from the mean. 
Because the data is in a Cartesian coordinate frame, the Euclidean distance can be 
applied, and the average distance of all samples from their mean is  

std( X ,Y ) var( X ) var(Y )= +
. 

Within a working range of 2m x 3m the precision of the system is at most 15.8cm 
(approximately 3 cm – 4cm in each direction) for 90% of the readings (see Figure 9). 
The device performs the best when it is close to at least one wall when pointed at a 
corner. The reason for the less accurate results when compared to the single wall 
experiment is that fewer points were being used to define each plane, as the grid  
pattern is distributed across two different walls. An accuracy of 10 to 17cm with 
15cm of precision is still significantly better than other indoor location systems that 
 

   

Fig. 9. Two wall experiment. Left: Each dot represents a single data sample. Dots of the same 
color belong to the same position data set and black crosshairs show mean values. Right: Up 
front view of interpolated standard deviation of the two wall readings. 
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do not require the deployment of infrastructure. By using multiple TrackSense units, 
each plane in the room would be illuminated by more feature points. This would in-
crease the total accuracy and precision, approaching the performance of the single-
wall experiments. 

5   Miniaturization and Addressing Limitations 

In this section, we discuss miniaturizing this system and present two realistic proto-
types: a handheld device and a head-mounted unit. We also discuss the limitations of 
the current prototype and show how we would extend the system to cover an entire 
room. Finally, we consider some limitations that are beyond simple engineering con-
siderations. 

   

Fig. 10. Headset and handheld with active components on miniaturized TrackSense units 

5.1   Miniaturization and Improvements 

Our system is composed of relatively simple parts. We chose to use a projector in our 
prototype because it gave us the flexibility to experiment with various patterns 
quickly. Because the projected pattern is static, we can replace the projector with  
an infrared grid laser diode. The infrared diode would eliminate the visible patterns 
and increase the range because it is brighter. We would replace the camera with a 
smaller, black-and-white camera with an infrared pass filter and could place multiple 
laser/camera units on the localized device as a result of the miniaturization (see  
Figures 1 and 10). Theoretically, a single TrackSense unit with a wide enough field of 
view could always have at least one corner in its field of view, permanently maintain-
ing a position and orientation fix. Practically, we expect several TrackSense units 
angled in different directions to cooperatively identify three planes within their com-
bined views, interpolate the location of the (possibly non-observed) corner, and de-
termine their location and orientation regardless of their platform's motion. For the 
handheld unit (see Figure 10), we placed two TrackSense units facing forwards and 
angled 45 degrees away from center. This configuration ensures that two walls are 
detected at any given time for proper localization within the entire room. A third cam-
era facing up or down enables full 3D positioning. Another strategy is to slightly 
angle the two front facing units up to capture the wall and ceiling corners, eliminating 
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the need for the third. However, this solution would also limit how much the user can 
tilt the handheld forward. 

On a head-mounted device (see Figure 10), we can place four units looking at 90 
degree intervals. The units could be angled slightly upwards for full 3D positioning or 
a fifth could be added pointing vertically. The advantage of the head mounted unit is 
that more units can be installed facing in opposite directions, which would result in 
better precision in a larger room. As we saw in the results, the farther the device is 
from a wall, the lower the precision and accuracy. Since the head mounted device has 
a full view in all directions, the system can select the closest walls to offer the best 
results. 

5.2   Limitations 

There are still several limitations of our approach worthy of further examination. The 
current solution only supports one device in a room at a time. This might be accept-
able for some applications, but not for multiplayer games or collaborative applica-
tions. One solution is to synchronize the devices and have them alternately flash their 
patterns. Since the devices know their position within the room, the devices can turn 
off certain parts of the grid to avoid interfering with another device. 

An important limitation to our approach is the need for walls in the space. The wall 
has to be free of major obstructions and large windows. In our experience, posters and 
other flat objects do not cause major problems, and our implementation can detect 
outliers. However, many raised objects on the wall cause the system to incorrectly 
identify the plane. The current technique also assumes a flat surface with little to no 
curvature, limiting the types of rooms that are appropriate. However, our intent with 
this device is to enable applications where a user would already want to interact with 
multiple large surfaces that are relatively plain in the first place [5]. If the intent is to 
extend our solution to more complex spaces we can incorporate stereo vision tech-
niques that work well in cluttered environments and use both approaches in a com-
plementary fashion.  

Some dark wall colors cause problems for detecting the grid. Very bright lighting 
conditions (i.e., near a window during the day) can make the projected lines too faint. 
However, most artificial lighting from standard fluorescent and incandescent lights 
does not cause major problems with detection. Another concern is very tall ceilings, 
in which case the units would have to be oriented to detect walls and floor corners. To 
obtain three dimensions, we must select a unit to face downwards. The detector cam-
era resolution also limits how far a unit can be from a wall, thus limiting the working 
range in a room. Our experimental prototype was limited to a room approximately 5m 
x 5m in size. A higher resolution camera and the use of a laser grid would improve 
those limits. 

6   Conclusion 

We presented TrackSense, a localization system that requires no additional infrastruc-
ture in the environment and provides 3D positioning and orientation data that  
compares favorably against existing solutions. Inspired by robotics localization and 
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camera-projector calibration techniques, our solution uses a camera to locate and 
track a grid pattern projected onto surfaces in the camera’s field of view to determine 
its distance and orientation to multiple fixed large planes in a space (i.e., walls and 
ceilings). A system of TrackSense units can obtain up to 4 cm accuracy with 3 cm 
precision in rooms up to 5 square meters, as well as 2 degree accuracy and 1 degree 
precision on orientation. The relatively simple hardware used in its implementation 
makes miniaturization possible. 

TrackSense provides localization within a room, but combining it with a room-
level localization system, such as WiFi or GSM fingerprinting, can provide localiza-
tion within a global coordinate frame.  In addition, our solution provides a useful 
complement to traditional stereo vision techniques, which do not perform well on 
plain surfaces. The addition of another camera would provide localization within both 
a cluttered and uncluttered environment, thus extending the capabilities of the device 
further. 
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