
Shadow Elimination and Occluder Light Suppression for Switched Multi-Projector Displays

Matthew Flagg¹, Jay Summet¹, Ramswaroop Somani¹, James M. Rehg¹, Rahul Sukthankar^{2,3}, Tat-Jen Cham⁴

¹College of Computing; Georgia Institute of Technology; Atlanta, GA 30332
²Intel Research Pittsburgh; 417 S. Craig St.; Pittsburgh, PA 15213
³The Robotics Institute; Carnegie Mellon University; Pittsburgh, PA 15213
⁴School of Computer Engineering; Nanyang Technological University; Singapore 639798
mflagg@cc.gatech.edu, summetj@cc.gatech.edu, somani@cc.gatech.edu, rehg@cc.gatech.edu, rahuls@cs.cmu.edu, astjcham@ntu.edu.sg

Two related problems of front projection displays which occur when users obscure a projector are: (i) undesirable shadows cast on the display by the users, and (ii) projected light falling on and distracting the users. Our system uses multiple, conventional projectors which are positioned so that their projections overlap on the selected display surface to produce shadow-free displays even in the presence of multiple, moving occluders. Furthermore, projector light cast on the occluders is suppressed without affecting the quality of the display.

This demonstration is a two projector binary switching system where each pixel on the screen is illuminated by only one projector at any one time. If there is any observed deviation in pixel value from the reference pixel value, captured during initial calibration, it may be deduced that the illuminating projector is occluded without active probing. The system immediately blanks the pixel contribution from the current illuminating projector, and turns on the contribution to the other projector. This results in a binary switching process that is extremely fast. Our current demonstration eliminates shadows and suppresses occluder light at about 8 Hz.

Top view of multi-projector	Front view of multi-projector	Snapshot of binary switching
system : When a cylinder is	system : The keystone-corrected	demo : As the user head moves
placed in the projected light path	display on the screen does not	from left to right, occluded pixels
of the blue projector, the system	suffer from shadows cast by the	are switched. The unprocessed
switches occluded pixels to the	occluding cylinder.	shadow and occluder light is
red projector.	occluding cynnder.	visible due to feedback lag.