
“the question of whether computers can think is 
like the question of whether submarines can 

swim” -- Dijkstra

Game AI: The set of algorithms, representations, 
tools, and tricks that support the creation and 
management of real-time digital experiences





ThingSprite

Mover

Agent Resource

Obstacle

Bullet

GameWorld

Navigator

core.py core.py core.py

core.py core.py

core.py core.py core.py

core.py

Greedy Grid 
Navigator

Grid 
Navigator

gridnavigator.py gridnavigator.py

mycreategrid.py

http://game-ai.gatech.edu/sites/default/files/documents/documentation/object-hierarchy.png

http://game-ai.gatech.edu/sites/default/files/documents/documentation/object-hierarchy.png


PREVIOUSLY ON…



Class N-1

1. How would you describe AI (generally), to not us?

2. Game AI is really about
– The I____ of I_____. Which is what?

– Supporting the P_____ E______ which is all about… 
making the game more enjoyable

– Doing all the things that a(nother) player or designer…

3. What are ways Game AI differs from Academic AI?

4. (academic) AI in games vs. AI for games. What’s that?

5. What is the complexity fallacy?

6. The essence of a game is a g__l and set of r_?

7. What are three big components of game AI in-game?

8. What is a way game AI is used out-of-game?



Common (game) “AI” Tricks?

• Move before firing – no cheap shots
• Be visible
• Have horrible aim (being Rambo is fun)
• Miss the first time
• Warn the player
• Attack “kung fu” style (Fist of Fury; BL vs School)
• Tell the player what you are doing (especially 

companions)
• React to own mistakes
• Pull back at the last minute
• Intentional vulnerabilities or predictable patterns

Liden, “Artificial Stupidity: The Art of Intentional Mistakes”. AI Game Programming Wisdom.

https://www.youtube.com/watch?v=M8DwOdbdUOM


Common Game AI techniques?

• Path planning, obstacle avoidance
• Decision making

– Finite state machines
– Trigger systems
– Behavior trees
– Robotics architectures

• Scripting, trigger systems
• Command hierarchies—strategic, tactical, individual combat
• Emergent behavior—flocking, crowds
• Formations
• Smart environments
• Terrain analysis—finding resource, ambush points
• Dynamic difficulty adjustment
• Drama management
• Procedural Content Generation



Intelligent vs. random



Graphs, Search, & Path Planning

2016-05-19



Graphs

• What is a graph?

• What defines a graph?

• How can we represent them?

• How does representation effect search?

• Applications to GAI?

• See Buckland CH 5 for a refresher



Graphs (2)

• G = {N,E}, N: Nodes, E: Edges (with cost)





Risk



RTS Dependency Tree



Graphs Killer App in GAI

• Navigation / Pathfinding

• Navgraph: abstraction of all locations and their 
connections

• Cost / weight can represent terrain features 
(water, mud, hill), stealth (sound to traverse), etc

• What to do when …
– Map features move

– Map is continuous, or 100K+ nodes?

– 3D spaces?



Graph Search

• Uninformed (all nodes are same)

– DFS (stack – lifo), BFS (queue – fifo)

– Iterative-deepening (Depth-limited)

• Informed (pick order of node expansion)

– Dijkstra – guarantee shortest path (Elog2N)

– A* (IDA*)…. Dijkstra + heuristic

– D*

http://en.wikipedia.org/wiki/A*_search_algorithm



Heuristics

• [dictionary]“A rule of thumb, simplification, or 
educated guess that reduces or limits the 
search for solutions in domains that are 
difficult and poorly understood.”

• h(n) = estimated cost of cheapest path from n 
to goal (with goal == 0)



Path finding problem solved, right?

• Hall of shame:
– Compilation

• http://www.youtube.com/watch?v=lw9G-8gL5o0

– Sim City (1, 2 … 5)
• https://www.youtube.com/watch?v=MXMnZvBbaMM

– Half-Life 2
• http://www.youtube.com/watch?v=WzYEZVI46Uw

– Fable III

– DOTA 1+2

– WoW

http://www.youtube.com/watch?v=lw9G-8gL5o0
https://www.youtube.com/watch?v=MXMnZvBbaMM
http://www.youtube.com/watch?v=WzYEZVI46Uw&feature=player_embedded


World Representation

• Ghallab, Nau, Traverso example

– (from Automated Planning textbook)

– A={pickup, putdown, load, unload, move}

– S: 5 locations, 3 piles per loc, 3 cranes, 100 crates

– State transition system has 10277 states (10190 x 
particles in universe)



Path finding models

1. Tile-based graph – “grid navigation”

2. Path Networks / Points of Visibility NavGraph

3. Expanded Geometry

4. NavMesh



Model 1: Grid Navigation

• 2D tile representation mapped to floor/level

– Squares, hex; 8 or 6 neighbors / connectivity

• Mainly RTS games

• One entity/unit per cell

• Each cell can be assigned terrain type

• Bit mask for non-traversable areas

• Navigation: A*, Dijkstra



Path Planner

• Initial state (cell), Goal state (cell)

• Each cell is a state agent can occupy

• Sort successors, try one at a time (backtrack)

• Heuristic: Manhattan or straight-line distance

• Each successor stores who generated it







Grid navigation: pros

• Discrete space is simple

• Can be generated algorithmically at runtime

• Good for large number of units

• A* works really well on grids (uniform action 
cost, not many tricky spots)



Grid navigation: cons

• Discretization “wastes” space

• Agent movement is jagged/awkward/blocky, 
though can be smoothed

• Some genres need continuous spaces

• Partial-blocking hurts validity

• Search must visit a lot of nodes (cells)

• Search spaces can quickly become huge

– E.g. 100x10 map == 100k nodes and ~78k edges



New Problems

• Generation

• Validity

• Quantization

– Converting an in-game position (for yourself or an 
object) into a graph node

• Localization

– Convert nodes back into game world locations (for 
interaction and movement)



Validity



• String pulling

• Splines

• Hierarchical A*



M2: Path Networks

• POV: Points of visibility NavGraph (see B CH 8)

• Discretization of space into sparse network of 
nodes

• Two-tiered navigation system
– Local, continuous

– Remote

• Connects points visible to each other in all 
important areas of map

• Usually hand-tailored (can use flood-fill)





Waypoints


