
Game AI: The set of algorithms, representations, 
tools, and tricks that support the creation and 
management of real-time digital experiences

_____: A rule of thumb, simplification, or educated 
guess that reduces or limits the search for solutions 
in domains that are difficult and poorly understood.



Grid Generation Hints

• If no world line goes through grid lines 
(rayTraceWorld)

• If no obstacle point within grid cell 
(pointInsidePolygonPoints, for each obst.) 

• Please check the following sections

– Miscellaneous utility functions

– Hints



PREVIOUSLY ON…



Class N-2

1. How would you describe AI (generally), to not us?

2. Game AI is really about
– The I____ of I_____. Which is what?

– Supporting the P_____ E______ which is all about… 
making the game more enjoyable

– Doing all the things that a(nother) player or designer…

3. What are ways Game AI differs from Academic AI?

4. (academic) AI in games vs. AI for games. What’s that?

5. What is the complexity fallacy?

6. The essence of a game is a g_ a set of r_, and a__?

7. What are three big components of game AI in-game?

8. What is a way game AI is used out-of-game?



Class N-1

1. What is attack “kung fu” style?

2. How do intentional mistakes help games?

3. What defines a graph?

4. What defines graph search?

5. Name 3 uniformed graphs search algorithms.

6. What is a heuristic?

7. Admissible heuristics never ___estimate

8. Examples of using graphs for games



Sidebar: Iterative Deepening

• mid 1970s 
• Idea: perform depth-limited DFS repeatedly, with 

an increasing depth limit, until a solution is 
found.

• Each repetition of depth-limited DFS needlessly 
duplicates all prior work? 
– Duplication is not significant because a branching 

factor b > 1 implies that the number of nodes at depth 
k  exactly is much greater than the total number of 
nodes at all depths k-1 and less.

• That is: most nodes are in the bottom level.



Number of nodes

• Full, complete, balanced binary tree, height h
– Number of nodes N = 2^{h+1} – 1

• Height 0: 2^0 = 1

• Height 1: 2^1 = 2

• Height 2: 2^2 = 4

• Height 3: 2^3 = 8

• N = 1 + 2 + 2^2 + 2^3 + … + 2^h
= (2^{h+1} – 1) / (2 – 1) = 2^{h+1} - 1  

– Number of leaves L = 2^h

– Height 42, N = 8,796,093,022,207
L = 4,398,046,511,104



BRIEF RECAP OF LAST TIME



Path finding models

1. Tile-based graph – “grid navigation”

2. Path Networks / Points of Visibility NavGraph

3. Expanded Geometry

4. NavMesh



Model 1: Grid Navigation

• 2D tile representation mapped to floor/level

– Squares, hex; 8 or 6 neighbors / connectivity

• Mainly RTS games

• One entity/unit per cell

• Each cell can be assigned terrain type

• Bit mask for non-traversable areas

• Navigation: A*, Dijkstra



Path Planner

• Initial state (cell), Goal state (cell)

• Each cell is a state agent can occupy

• Sort successors, try one at a time (backtrack)

• Heuristic: Manhattan or straight-line distance

• Each successor stores who generated it



Grid navigation: pros

• Discrete space is simple

• Can be generated algorithmically at runtime

• Good for large number of units

• A* works really well on grids (uniform action 
cost, not many tricky spots)



Grid navigation: cons

• Discretization “wastes” space

• Agent movement is jagged/awkward/blocky, 
though can be smoothed

• Some genres need continuous spaces

• Partial-blocking hurts validity

• Search must visit a lot of nodes (cells)

• Search spaces can quickly become huge

– E.g. 100x10 map == 100k nodes and ~78k edges



New Problems

• Generation

• Validity

• Quantization

– Converting an in-game position (for yourself or an 
object) into a graph node

• Localization

– Convert nodes back into game world locations (for 
interaction and movement)



Validity

not all points in a grid square are 
reachable from each other!



• String pulling

• Splines

• Hierarchical A*



Path Smoothing

• Zig-zagging from point to point looks 
unnatural

• Post-search smoothing can elicit better paths





Quick Path-Smoothing

• Given a path, look at first two edges, E1 & E2

1. Get E1_src and E2_dest

2. If unobstructed path between the two, set 
E1_dest = E2_dest, then delete E2 from the 
path. Set next edge as E2.

3. Else, increment E1 and E2.

4. Repeat until E2_dest == goal.



Slow Path-Smoothing

• Given a path, look at first two edges, E1 & E2

1. Get E1_src and E2_dest

2. If unobstructed path between the two, set 
E1_dest = E2_dest, then delete E2 from the 
path. Set E1 and E2 from beginning of path.

3. Else, increment E1 and E2.

4. Repeat until E2_dest == goal.



Graphs, Search, & Path Planning
Continued

2016-05-24



M2: Path Networks

• POV: Points of visibility NavGraph (see B CH 8)

• Discretization of space into sparse network of 
nodes

• Two-tiered navigation system
– Local, continuous

– Remote

• Connects points visible to each other in all 
important areas of map

• Usually hand-tailored (can use flood-fill)





Flood Fill

• Start with “seed”

• “grow” graph

• Designer can move, 
delete, or add nodes

• Ensure all nodes and 
edges are at least as 
far from walls as 
agents bounding 
radius

Buckland Figure 8.7



Path network navigation

• Path nodes

– Option 1: manual path node placement

– Option 2: automatic path node placement

• What happens if you want to go to a place you 
cannot see?

– Can’t get there from here

– Local search

– Flood fill (increase granularity of nav graph)



Using the path network

• Basic AI steps when told to go to target X
1. Find the closest visible graph node (A)

2. Find the closest visible graph node to X (B)

3. Search for lowest cost path from A to B

4. Move to A

5. Traverse path

6. Move from B to X

Problem: Unsightly paths.









Unnecessary double-backs



Going where you can’t see





• Using a path node network

• Bot decides to go to 8

• Get on the network at closest node

• Ask: where to next to get to 8?

• Global table, or store

in nodes themselves

Node 7: 

Go to node 3

Node 4: 

Go to node 1



? ?





Create navigation table

• For any two nodes (a, b) tells the agent what 
node, c to go to next.

• For source node v:
– For each node u:

• Follow the parent links until you get to v

• Record the last node before getting to v

• Dijkstra running time: O(|V|2)

• Fully path node process: O(|V|3)

* Can run in O(|E| + |V|log|V|)

* Run Djikstra |V| times.



Path network: pros

• Discretization of space is very small

• Does not require agent to be at one of path nodes at all 
times (unlike grid)

• Can be used with navigation mesh to automatically 
identify where to place path nodes

• Continuous, non-grid movement in local area

• Switch between local and remote navigation

• Plays nice with “steering” behaviors

• Good for FPS, RPGs

• Can indicate special spots (e.g. sniping, crouching, etc.)



Path network: cons

• https://www.youtube.com/watch?v=WzYEZVI46
Uw

• Getting on and off the network can be awkward
• Path node placement

– Difficult for complex maps
– May have invisible spots

• Dynamic pathing in destructable terrain
• Doesn’t fit well with map-generation features in 

games
• Fog-of-war in RTSs

https://www.youtube.com/watch?v=WzYEZVI46Uw


Fog of war



M3: Expanded Geometry

• Automatic, and no wall bumping.

• Automatically expand boundaries of obstacles 
(∆ ≥ agent_radius)

• Add vertices as nodes

• Test line of sight for all vertices (O(n2))

• Add edges where (v1, v2) == true



Simple Geometry



Expanded Geometry



Expanded Geometry



Finished POV Nav Graph



Expanded Geo: pros

• Discretization of space can be smaller

• Continuous, non-grid movement in local area

• Can work with auto map generation

• Switch between local and remote navigation

• Can play nice with “steering” behaviors



Expanded Geo: cons

• Getting on and off the network can be even 
more awkward

• Dynamic pathing in destructable terrain

• Fog-of-war in RTSs



M4: NavMesh

• Win: compact rep, fast search, auto create

• Each node (edges) is a convex polygon

• Convex = Any point within the polygon is 
unobstructed from any other

• Can be generated from the polygons used to 
define a map



Generating the Mesh

• Lots of algorithms

• Optimal:

– Fewest polygons, smallest discretization possible

– NP-complete

• Greedy

– Find triangles 
guarantees convex

– Merge triangles









Waypoints vs. NavMesh



5 Reasons why 
waypoints fall short



1) Some worlds need
WAY too many



Waypoints. Need more?



NavMesh



2) Waypoints make NPCs zig-zag



NPC path



NavMesh path



Nav Meshes + Waypoints

• Put a waypoint in center of each nav mesh

– It’s important to get a good set of nav meshes



Nav Meshes + Waypoints

• Put a waypoint at adjoining edges



Nav Meshes + Waypoints

• Put a waypoint at corners of obstacles



Nav Meshes + Waypoints

• Put a waypoint at edges and corners



NavMesh Smoothing



3) Waypoints don’t allow for 
path correction



NavMesh solution



4) Waypoints don’t work well for
different characters



NavMesh solution



5) They don’t hold
enough data



NavMesh

• Isn’t pathfinding on a NavMesh slower?

– No

• Graph usually has fewer nodes

• Makes the assumption that you can locally get 
from node (edge) to node (edge) because of 
the convex polygon construction



NavMesh

• Don’t they take up a lot of memory?

– No

• Can be smaller than dense waypoint graphs

• Smaller than collision mesh (ignores walls, 
etc.)

• Fairly compact representation



FPS Example

• Let’s see that again (waypoints…)
– http://www.youtube.com/watch?v=WzYEZVI46U

w

• Cheating / hiding the problem
– Most AIs don't live long enough to let you spot the 

flaws in their pathfinding (LOS stop, shoot)

– Many 1P FPS, AIs don't move very much, shoot 
from relatively fixed position.

– FPS games with AI sidekicks kill the enemy AIs so 
quickly they don't have time to move very far.

http://www.youtube.com/watch?v=WzYEZVI46Uw


FPS implications

• What if we force characters to use melee 
weapons (e.g. Covenant soldiers in Halo, the 
Icarus stealth assassins in F.E.A.R., or the 
Metroids in a Metroid Prime game)? Which 
technique did they use?



Designers need to be
able to add info…



How do you handle
walking under bridges?



Is this good for all games?

• Not necessarily

• Find the right solution for your problem


