
“I may not have gone where I intended to go,
but I think I have ended up where I needed to

be.” – Douglas Adams

“All you need is the plan, the road map, and the
courage to press on to your destination.” – Earl

Nightingale

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

PREVIOUSLY ON…

Class N-3

1. How would you describe AI (generally), to not us?

2. Game AI is really about
– The I____ of I_____. Which is what?

– Supporting the P_____ E______ which is all about…
making the game more enjoyable

– Doing all the things that a(nother) player or designer…

3. What are ways Game AI differs from Academic AI?

4. (academic) AI in games vs. AI for games. What’s that?

5. What is the complexity fallacy?

6. The essence of a game is a g_ a set of r_, and a__?

7. What are three big components of game AI in-game?

8. What is a way game AI is used out-of-game?

Class N-2

1. What is attack “kung fu” style?

2. How do intentional mistakes help games?

3. What defines a graph?

4. What defines graph search?

5. Name 3 uniformed graph search algorithms.

6. What is a heuristic?

7. Admissible heuristics never ___estimate

8. Examples of using graphs for games

Is NavMesh good for all games?

• Not necessarily

– 2d Strategy game – grid gives fast random access

• Among the best for robust pathfinding and
terrain reasoning in 3d worlds

– Find the right solution for your problem

Class N-1

1. What are some benefits of path networks?
2. Cons of path networks?
3. What is the flood fill algorithm?
4. What is a simple approach to using path

navigation nodes?
5. What is a navigation table?
6. How does the expanded geometry model work?

Does it work with map gen features?
7. What are the major wins of a Nav Mesh?
8. Would you calculate an optimal nav-mesh?

findNearestWaypoint()

• Most engines provide a rapid “nearest”
function for objects

• Spatial partitioning w/ special data structures:

– Quad-trees (2d), oct-trees (3d), k-d trees

– Binary space partitioning (BSP tree)

– Multi-resolution maps (hierarchical grids)

• The gain over all-pairs techniques depends on
number of agents/objects

Graphs, Search, & Path Planning
Continued

2016-05-26

(and maybe kinematic motion;
steering and flocking)

PATH NETWORK SEARCH

Precomputing Paths

• Why, When…
– Faster than computation on the fly

– Especially with large maps or lots of agents

• How…
– Use Dijkstra’s algorithm to create lookup tables

– Lookup cost tables

– Registering search requests

• What is the main problem with precomputed
paths?

Dijkstra’s algorithm

• A single-source, multi-target shortest path
algorithm for arbitrary directed graphs with
non-negative weights

• Tells you path from any one node to all other
nodes

Given: G=(V,E), source

For each vertex v in G, set dist[v] to infinity
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty:

Let u = get vertex in Q with smallest distance value
Remove u from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

Return dist[]

x dist[x] par[x]

1 0

2 inf

3 inf

4 inf

5 inf

6 inf

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

inf

inf

inf

0

* Source = 1

For each vertex v in G, set dist[v] to infinity
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty…

Let u = get vertex in Q with smallest distance value (node 1)
dist[v]

Q=[1,2,3,4,5,6]
U=1

x dist[x] par[x]

1 0

2 7 1

3 inf

4 inf

5 inf

6 inf

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

inf

inf

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Q=[1,2,3,4,5,6]
U=1
V=2

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

inf

9

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

dist[1]=0
dist[2]=7
dist[3]=9
dist[4]=inf
dist[5]=inf
dist[6]=inf

Q=[1,2,3,4,5,6]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 inf

5 inf

6 inf

Q=[1,2,3,4,5,6]
U=1
V=3

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 inf

5 inf

6 14 1

Q=[1,2,3,4,5,6]
U=1
V=6

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 2)

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 inf

5 inf

6 14 1

Q=[2,3,4,5,6]
U=2

V=

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Remove u (node 2) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 inf

5 inf

6 14 1

Q=[2,3,4,5,6]
U=2
V=3

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

22

7

14

9

0

* Source = 1

Remove u (node 2) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 22 2

5 inf

6 14 1

Q=[2,3,4,5,6]
U=2
V=4

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

22

7

14

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 3)

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 22 2

5 inf

6 14 1

Q=[3,4,5,6]
U=3

V=

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

20

7

14

9

0

* Source = 1

Remove u (node 3) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 inf

6 14 1

Q=[3,4,5,6]
U=3
V=4

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

20

7

11

9

0

* Source = 1

Remove u (node 3) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 inf

6 11 3

Q=[3,4,5,6]
U=3
V=6

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

20

7

11

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 6)

Q=[4,5,6]
U=6

V=

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 inf

6 11 3

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Remove u (node 6) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[4,5,6]
U=6
V=5

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 4)

Q=[4,5]
U=4

V=

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Remove u (node 4) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[4,5]
U=4
V=5

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 5)

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[5]
U=5

V=

1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

20

20

7

11

9

0

* Source = 1

* We now know the shortest distance and shortest path to all nodes from node 1.

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 20 3

5 20 6

6 11 3

Q=[]
U=5

V=

Floyd-Warshall algorithm

• All-pairs shortest path algorithm

• Tells you path from all nodes to all other nodes in
weighted graph

• Positive or negative edge weights, but no
negative cycles (edges sum to negative)

• Incrementally improves estimate

• O(|V|3)

• [Use Dijkstra from each starting vertex when the
graph is sparse and has non-negative edges]

Given: G=(V,E), source

For each edge (u, v) do:

dist[u][v] = weight of edge (u, v) or infinity

next[u][v] = v

For k = 1 to |V| do:

for i = 1 to |V| do:

for j = 1 to |V| do:

if dist[i][k] + dist[k][j] < dist[i][j] then:

dist[i][j] = dist[i][k] + dist[k][j]

next[i][j] = next[i][k]

 Intermediate node

 End node

 Start node

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 INF INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 0

i = 0

j = 0

Distance

Next

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 INF INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 3 9 + 1 < INF

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 3 0 -> 3: dist 10, goto 2

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 4 9 + 6 < INF

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 15

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 4 0 -> 3: dist 10, goto 2

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 15

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 3

i = 0

j = 4 10 + 3 < 15

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 3

i = 0

j = 4 0 -> 4: dist 13, goto 2

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 3

i = 2

j = 4 1 + 3 < 6

Distance

Next

S

M

F

0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 INF INF

2 9 9 INF 1 4

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 3

3 2 4

4 2 3

k = 3

i = 2

j = 4 2 -> 4: dist 4, goto 3

Distance

Next

S

M

F

0

1 2

3

4

-9 -9

-9
1

6

3

0 1 2 3 4

0 -3 -9 -9 8 4

1 -9 -3 -9 INF INF

2 -9 -9 -3 1 4

3 INF INF 1 INF 3

4 INF INF 6 3 INF

Distance

Reconstructing the path

Want to go from u to v

if next[u][v] is empty then return null path

path = (u)

while u <> v do:

u = next[u][v]

path.append(u)

return path

Dynamic environments

• Terrain can change

– Jumpable?

– Kickable?

– Too big to jump/kick?

• Typically: destructible environments

• Path network edges can be eliminated

• Path network edges can be created

Heuristic Search

• Find shortest path from a single source to a
single destination

• Heuristic function:

– We have some knowledge about how far away any
given state from the goal, in terms of operation cost

– For navigation: Euclidean distance, Manhattan
distance

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

A* Search

• Single source, single target graph search

• Generalization of Dijkstra

• Guaranteed to return the optimal path if the
heuristic is admissible; quick and accurate

• Evaluate each state: f(n) = g(n) + h(n)

• Open list: nodes that are known and waiting
to be visited

• Closed list: nodes that have been visited

A*

Given: init, goal(s), ops

ops = {…}
closed = nil
open = {init}
current = init
while (NOT isgoal(current) AND open <> nil)

closed = closed + {current}
open = open – {current}

+ (successors(current, ops) – closed)
current = first(open)

end while
if isgoal(current) then reconstruct solution
else fail

* Insert according to
evaluation function

Evaluation function f(n) = g(n) + h(n)

Open: A(366)
Closed:

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Open: S(253+140=393), T(329+118=447), Z(374+75=449)
Closed: A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

Open: R(220+193=413), F(239+176=415), T(329+118=447), Z(374+75=449), O(291+380=671)
Closed: S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

Open: F(239+176=415), P(317+100=417), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

Open: P(317+100=417), T(329+118=447), Z(374+75=449), B(450+0=450), C(366+160=526), O(291+380=671)
Closed: F(415), R(413), S(393), A(366)

Backtrack!

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

Open: B(418+0=418), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: P(417), F(415), R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

Open: T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: B(418), P(417), F(415), R(413), S(393), A(366)

Solution: A-S-R-P-B

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

A* Search

• A* is optimal…

• …but only if you use an admissible heuristic

• An admissible heuristic is mathematically
guaranteed to underestimate the cost of
reaching a goal

• What is an admissible heuristic for path
finding on a path network?

Non-Admissible Heuristics

• What happens if you have a non-admissible
heuristic?

A B C D

F G Goal

…

40 30

20 10

20 10
15

20

3

25
74

10

55

Non-admissible heuristics

• Discourage agent from being in particular states

• Encourage agent from being in particular states

Hierarchical Path Planning

• Used to reduce CPU overhead of graph search

• Plan with coarse-grained and fine-grained
maps

• People think hierarchically (more efficient)

• We can prune a large number of states

• Example: Planning a trip to NYC based on
states, then individual roads

Hierarchical A*

• http://www.cs.ualberta.ca/~mmueller/ps/hpa
star.pdf

• Within 1% of optimal path length, but up to
10 times faster

http://www.cs.ualberta.ca/~mmueller/ps/hpastar.pdf

How high up do you go? As high as you can without
start and end being in the same node.

1. Build clusters. Can be arbitrary
2. Find transitions, a (possibly empty) set of obstacle-free locations.
3. Inter-edges: Place a node on either side of transition, and link them (cost 1).
4. Intra-edges: Search between nodes inside cluster, record cost.

* Can keep optimal intra-cluster paths, or discard for memory savings.

1. Start cluster: Search within cluster to the border
2. Search across clusters to the goal cluster
3. Goal cluster: Search from border to goal
4. Path smoothing

* Really just adds start and goal to
the hierarchy graph

Path Smoothing in Hierarchical A*

Sticky Situations

• Dynamic environments can ruin plans

• What do we do when an agent has been pushed
back through a doorway that it has already
“visited”?

• What do we do in “fog of war” situations?

• What if we have a moving target?

Real Time A*

• Online search: execute as you search
– Because you can’t look at a state until you get there
– You can’t backtrack
– No open list

• Modified cost function f()
– g(n) is actual distance from n to current state (instead of initial state)

• Use a hash-table to keep track of h() for nodes you have visited
(because you might visit them again)

• Pick node with lowest f-value from immediate successors
• Execute move immediately
• After you move, update previous location

– h(prev) = second best f-value
– Second best f-value represents the estimated cost of returning to the

previous state (and then add g)

RTA* with lookahead

• At every node you can see some distance

• DFS, then back up the value (think of it as
minimin with alpha-pruning)

• Search out to known limit

• Pick best, then move

• Repeat, because something might change in the
environment that change our assessment
– Things we discover as our horizon moves

– Things that change behind us

D* Lite

• Incremental search: replan often, but reuse
search space if possible

• In unknown terrain, assume anything you don’t
know is clear (optimistic)

• Perform A*, execute plan until discrepancy,
then replan

• D* Lite achieves 2x speedup over A* (when
replanning)

http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf

“Omniscient optimal”: given complete information

“Optimistic optimal”: assume empty for parts you don’t know.

Heuristic Search Recap

• A*

– Can’t precompute

• Dynamic environments

• Memory issues

– Optimal when heuristic is admissible (and
assuming no changes)

– Replanning can be slow on really big maps

• Hierarchical A* is the same, but faster

Heuristic Search Recap

• Real-time A*

– Stumbling in the dark, 1 step lookahead

– Replan every step, but fast!

– Realistic? For a blind agent that knows nothing

– Optimal when completely blind

Heuristic Search Recap

• Real-time A* with lookahead

– Good for fog-of-war

– Replan every step, with fast bounded lookahead
to edge of known space

– Optimality depends on lookahead

Heuristic Search Recap

• D* Lite

– Assume everything is open/clear

– Replan when necessary

– Worst case: Runs like Real-Time A*

– Best case: Never replan

– Optimal including changes

See also

• AI Game Programming wisdom 2, CH 2

• Buckland CH 8

• Millington CH 4

(KINEMATIC) MOVEMENT,
STEERING, FLOCKING, FORMATIONS

Next time…

