
“I may not have gone where I intended to go, 
but I think I have ended up where I needed to 

be.” – Douglas Adams

“All you need is the plan, the road map, and the 
courage to press on to your destination.” – Earl 

Nightingale

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the 
topic. They are neither a substitute for attending the lectures nor for reading the 
assigned material.



PREVIOUSLY ON…



Class N-3

1. How would you describe AI (generally), to not us?

2. Game AI is really about
– The I____ of I_____. Which is what?

– Supporting the P_____ E______ which is all about… 
making the game more enjoyable

– Doing all the things that a(nother) player or designer…

3. What are ways Game AI differs from Academic AI?

4. (academic) AI in games vs. AI for games. What’s that?

5. What is the complexity fallacy?

6. The essence of a game is a g_ a set of r_, and a__?

7. What are three big components of game AI in-game?

8. What is a way game AI is used out-of-game?



Class N-2

1. What is attack “kung fu” style?

2. How do intentional mistakes help games?

3. What defines a graph?

4. What defines graph search?

5. Name 3 uniformed graph search algorithms.

6. What is a heuristic?

7. Admissible heuristics never ___estimate

8. Examples of using graphs for games



























Is NavMesh good for all games?

• Not necessarily

– 2d Strategy game – grid gives fast random access

• Among the best for robust pathfinding and 
terrain reasoning in 3d worlds

– Find the right solution for your problem



Class N-1

1. What are some benefits of path networks?
2. Cons of path networks?
3. What is the flood fill algorithm?
4. What is a simple approach to using path 

navigation nodes?
5. What is a navigation table?
6. How does the expanded geometry model work? 

Does it work with map gen features?
7. What are the major wins of a Nav Mesh?
8. Would you calculate an optimal nav-mesh?



findNearestWaypoint()

• Most engines provide a rapid “nearest” 
function for objects

• Spatial partitioning w/ special data structures:

– Quad-trees (2d), oct-trees (3d), k-d trees

– Binary space partitioning (BSP tree)

– Multi-resolution maps (hierarchical grids)

• The gain over all-pairs techniques depends on 
number of agents/objects



Graphs, Search, & Path Planning
Continued

2016-05-26

(and maybe kinematic motion; 
steering and flocking)



PATH NETWORK SEARCH



Precomputing Paths

• Why, When…
– Faster than computation on the fly

– Especially with large maps or lots of agents

• How…
– Use Dijkstra’s algorithm to create lookup tables

– Lookup cost tables

– Registering search requests

• What is the main problem with precomputed 
paths?



Dijkstra’s algorithm

• A single-source, multi-target shortest path 
algorithm for arbitrary directed graphs with 
non-negative weights

• Tells you path from any one node to all other 
nodes



Given: G=(V,E), source

For each vertex v in G, set dist[v] to infinity
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty:

Let u = get vertex in Q with smallest distance value
Remove u from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

Return dist[]
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For each vertex v in G, set dist[v] to infinity
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty…

Let u = get vertex in Q with smallest distance value (node 1)
dist[v]

Q=[1,2,3,4,5,6]
U=1
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Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

Q=[1,2,3,4,5,6]
U=1
V=2
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Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

dist[1]=0
dist[2]=7
dist[3]=9
dist[4]=inf
dist[5]=inf
dist[6]=inf

Q=[1,2,3,4,5,6]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 inf

5 inf

6 inf

Q=[1,2,3,4,5,6]
U=1
V=3



1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Remove u (node 1) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]
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Q=[1,2,3,4,5,6]
U=1
V=6



1 2

3

4

5

6

7

9

14 10 15

11

6
9

2

inf

inf

7

14

9

0

* Source = 1

Let u = get vertex in Q with smallest distance value (node 2)

x dist[x] par[x]
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4 inf
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Q=[2,3,4,5,6]
U=2

V=
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Remove u (node 2) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]
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Q=[2,3,4,5,6]
U=2
V=3
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Remove u (node 2) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]

x dist[x] par[x]

1 0

2 7 1

3 9 1

4 22 2

5 inf

6 14 1

Q=[2,3,4,5,6]
U=2
V=4
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Let u = get vertex in Q with smallest distance value (node 3)

x dist[x] par[x]
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Q=[3,4,5,6]
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Remove u (node 3) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]
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Q=[3,4,5,6]
U=3
V=4
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Remove u (node 3) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]
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Q=[3,4,5,6]
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Let u = get vertex in Q with smallest distance value (node 6)

Q=[4,5,6]
U=6

V=
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Remove u (node 6) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]
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Q=[4,5,6]
U=6
V=5
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Let u = get vertex in Q with smallest distance value (node 4)

Q=[4,5]
U=4

V=
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Remove u (node 4) from Q
For each neighbor v of u:

d = dist[u] + distance(u, v)
if d < dist[v] then:

dist[v] = d
parent[v] = u

dist[v]parent[v]
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Q=[4,5]
U=4
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* Source = 1

Let u = get vertex in Q with smallest distance value (node 5)

x dist[x] par[x]
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* We now know the shortest distance and shortest path to all nodes from node 1.
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Floyd-Warshall algorithm

• All-pairs shortest path algorithm

• Tells you path from all nodes to all other nodes in 
weighted graph

• Positive or negative edge weights, but no 
negative cycles (edges sum to negative)

• Incrementally improves estimate

• O(|V|3)

• [Use Dijkstra from each starting vertex when the 
graph is sparse and has non-negative edges]



Given: G=(V,E), source

For each edge (u, v) do:

dist[u][v] = weight of edge (u, v) or infinity

next[u][v] = v

For k = 1 to |V| do:

for i = 1 to |V| do:

for j = 1 to |V| do:

if dist[i][k] + dist[k][j] < dist[i][j] then:

dist[i][j] = dist[i][k] + dist[k][j]

next[i][j] = next[i][k]

 Intermediate node

 End node

 Start node
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Reconstructing the path

Want to go from u to v

if next[u][v] is empty then return null path

path = (u)

while u <> v do:

u = next[u][v]

path.append(u)

return path



Dynamic environments

• Terrain can change

– Jumpable?

– Kickable?

– Too big to jump/kick?

• Typically: destructible environments

• Path network edges can be eliminated

• Path network edges can be created



Heuristic Search

• Find shortest path from a single source to a 
single destination

• Heuristic function:

– We have some knowledge about how far away any 
given state from the goal, in terms of operation cost

– For navigation: Euclidean distance, Manhattan 
distance



A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374



A* Search

• Single source, single target graph search

• Generalization of Dijkstra

• Guaranteed to return the optimal path if the 
heuristic is admissible; quick and accurate

• Evaluate each state: f(n) = g(n) + h(n)

• Open list: nodes that are known and waiting 
to be visited

• Closed list: nodes that have been visited



A*

Given: init, goal(s), ops

ops = {…}
closed = nil
open = {init}
current = init
while (NOT isgoal(current) AND open <> nil)

closed = closed + {current}
open = open – {current} 

+ (successors(current, ops) – closed)
current = first(open)

end while
if isgoal(current) then reconstruct solution
else fail

* Insert according to 
evaluation function



Evaluation function f(n) = g(n) + h(n)

Open: A(366)
Closed:

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374



Open: S(253+140=393), T(329+118=447), Z(374+75=449)
Closed: A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)



Open: R(220+193=413), F(239+176=415), T(329+118=447), Z(374+75=449), O(291+380=671)
Closed: S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)



Open: F(239+176=415), P(317+100=417), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)



Open: P(317+100=417), T(329+118=447), Z(374+75=449), B(450+0=450), C(366+160=526), O(291+380=671)
Closed: F(415), R(413), S(393), A(366)

Backtrack!

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)



Open: B(418+0=418), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: P(417), F(415), R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)



Open: T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: B(418), P(417), F(415), R(413), S(393), A(366)

Solution: A-S-R-P-B

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)



A* Search

• A* is optimal…

• …but only if you use an admissible heuristic

• An admissible heuristic is mathematically 
guaranteed to underestimate the cost of 
reaching a goal

• What is an admissible heuristic for path 
finding on a path network?



Non-Admissible Heuristics

• What happens if you have a non-admissible 
heuristic?

A B C D

F G Goal

…

40 30

20 10

20 10
15

20

3

25
74

10

55



Non-admissible heuristics

• Discourage agent from being in particular states

• Encourage agent from being in particular states



Hierarchical Path Planning

• Used to reduce CPU overhead of graph search

• Plan with coarse-grained and fine-grained 
maps

• People think hierarchically (more efficient)

• We can prune a large number of states

• Example: Planning a trip to NYC based on 
states, then individual roads



Hierarchical A*

• http://www.cs.ualberta.ca/~mmueller/ps/hpa
star.pdf

• Within 1% of optimal path length, but up to 
10 times faster

http://www.cs.ualberta.ca/~mmueller/ps/hpastar.pdf


How high up do you go? As high as you can without 
start and end being in the same node.



1. Build clusters. Can be arbitrary
2. Find transitions, a (possibly empty) set of obstacle-free locations.  
3. Inter-edges: Place a node on either side of transition, and link them (cost 1).
4. Intra-edges: Search between nodes inside cluster, record cost.

* Can keep optimal intra-cluster paths, or discard for memory savings.



1. Start cluster: Search within cluster to the border
2. Search across clusters to the goal cluster
3. Goal cluster: Search from border to goal
4. Path smoothing

* Really just adds start and goal to 
the hierarchy graph



Path Smoothing in Hierarchical A*



Sticky Situations

• Dynamic environments can ruin plans

• What do we do when an agent has been pushed 
back through a doorway that it has already 
“visited”?

• What do we do in “fog of war” situations?

• What if we have a moving target?



Real Time A*

• Online search: execute as you search
– Because you can’t look at a state until you get there
– You can’t backtrack
– No open list

• Modified cost function f()
– g(n) is actual distance from n to current state (instead of initial state)

• Use a hash-table to keep track of h() for nodes you have visited 
(because you might visit them again)

• Pick node with lowest f-value from immediate successors
• Execute move immediately
• After you move, update previous location

– h(prev) = second best f-value
– Second best f-value represents the estimated cost of returning to the 

previous state (and then add g)



RTA* with lookahead

• At every node you can see some distance

• DFS, then back up the value (think of it as 
minimin with alpha-pruning)

• Search out to known limit

• Pick best, then move

• Repeat, because something might change in the 
environment that change our assessment
– Things we discover as our horizon moves

– Things that change behind us



D* Lite

• Incremental search: replan often, but reuse 
search space if possible

• In unknown terrain, assume anything you don’t 
know is clear (optimistic)

• Perform A*, execute plan until discrepancy, 
then replan

• D* Lite achieves 2x speedup over A* (when 
replanning)

http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf



“Omniscient optimal”: given complete information



“Optimistic optimal”: assume empty for parts you don’t know.



Heuristic Search Recap

• A*

– Can’t precompute

• Dynamic environments

• Memory issues

– Optimal when heuristic is admissible (and 
assuming no changes)

– Replanning can be slow on really big maps

• Hierarchical A* is the same, but faster



Heuristic Search Recap

• Real-time A*

– Stumbling in the dark, 1 step lookahead

– Replan every step, but fast!

– Realistic? For a blind agent that knows nothing

– Optimal when completely blind



Heuristic Search Recap

• Real-time A* with lookahead

– Good for fog-of-war

– Replan every step, with fast bounded lookahead
to edge of known space

– Optimality depends on lookahead



Heuristic Search Recap

• D* Lite

– Assume everything is open/clear

– Replan when necessary

– Worst case: Runs like Real-Time A*

– Best case: Never replan

– Optimal including changes



See also

• AI Game Programming wisdom 2, CH 2

• Buckland CH 8

• Millington CH 4



(KINEMATIC) MOVEMENT, 
STEERING, FLOCKING, FORMATIONS

Next time…


