
Graphs: Killer App in GAI

• Navigation / Pathfinding

• Navgraph: abstraction of all locations and their connections

• Cost / weight can represent terrain features (water, mud, hill), 
stealth (sound to traverse), etc

• What to do when …

– Map features move

– Map is continuous, or 100K+ nodes?

– 3D spaces?

3



Grid as Graph

4



Path Network as Graph

5



Nav Mesh as Graph
(well actually path network again)

6



Why talk about these as graphs?

• Standard, abstract way to discuss different spatial 
representations

• Allows for quantifiable comparison between different spatial 
representations (e.g. number of edges/nodes)

• Allows us to discuss different search approaches without 
worrying about the exact spatial representation

7



Graph Search: Sorting Successors

• Uninformed (all nodes are same)
– Greedy
– DFS (stack – lifo), BFS (queue – fifo)
– Iterative-deepening (Depth-limited)

• Informed (pick order of node expansion)
– Dijkstra – guarantee shortest path (Elog2N)
– Floyd-Warshall
– A* (IDA*)…. Dijkstra + heuristic
– D*

• Hierarchical can help

http://en.wikipedia.org/wiki/A*_search_algorithm
8



Greedy Algorithm Review

Find a path from start to 
goal node

1. Add the neighbors of 
the current node to 
some open set list
– We can get here!

2. Pick next current 
node from open set

3. If next node is goal, 
backtrack to start for 
path

A

D

G

B

H

C

I

12



Question

What heuristic could be used to get from B to L in 
both graphs the fastest?

• Fastest meaning with fewest current nodes chosen

A

E

I

B

F

J

C

K

D

H

L

A

E

I

B

F

J

C D

H

L

13



Greedy as a tree

A

E

I

B

F

J

C

K

D

H

L

A

B

F C t=1

t=0

BE DJ t=2

A F CI K H

14



Improvement over Greedy

• Beyond improving 
the heuristic, how 
can we improve the 
greedy pathing
algorithm?

• When does it fail?

15



A*

• Won’t just have an open set, but also a closed set (nodes 
already evaluated)

• Open set will be a priority queue, so if we discover a better 
node we can immediately pick it

• Priority Queue: A queue that automatically sorts itself so 
minimum cost is at the top

16



A* Search

• 1968: Single source, single target graph search

• Guaranteed to return the optimal path if the heuristic is 
admissible

• Evaluate each state: f(n) = g(n) + h(n)

• Open list: nodes that are known and waiting to be visited

• Closed list: nodes that have been visited

17



A*

• Nodes will have two 
costs:
– G score: Cost from 

getting from start to 
here

– H score: Estimated cost 
of getting from here to 
goal

– F score: G+H

• We will pick which 
node to choose next 
based on both of 
these scores

18



A*

add start to openSet
while openSet is not empty:

current = openSet.pop()
if current == goal:

return reconstruct_path(current)
closedSet.Add(current)
for each neighbor of current:

if neighbor in closedSet:
continue

gScore = current.gScore + dist(current, neighbor)
if neighbor not in openSet:

openSet.add(neighbor)
else if gScore< openSet.get(neighbor).gScore

openSet.replace(openSet.get(neighbor), neighbor)

19



A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Heuristic Distance, AB

21



Evaluation function f(n) = g(n) + h(n)

Open: A(366)
Closed:

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

22



Open: S(253+140=393), T(329+118=447), Z(374+75=449)
Closed: A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

23



Open: R(220+193=413), F(239+176=415), T(329+118=447), Z(374+75=449), O(291+380=671)
Closed: S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

24



Open: F(239+176=415), P(317+100=417), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

25



Open: P(317+100=417), T(329+118=447), Z(374+75=449), B(450+0=450), C(366+160=526), O(291+380=671)
Closed: F(415), R(413), S(393), A(366)

Backtrack!

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

26



Open: B(418+0=418), T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: P(417), F(415), R(413), S(393), A(366)

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

27



Open: T(329+118=447), Z(374+75=449), C(366+160=526), O(291+380=671)
Closed: B(418), P(417), F(415), R(413), S(393), A(366)

Solution: A-S-R-P-B

A 366
B 0
C 160
D 242
E 161
F 176
G 77
H 151
I 226
L 244
M 241
N 234
O 380
P 100
S 253
T 329
U 80
V 199
Z 374

Evaluation function f(n) = g(n) + h(n)

28



A* Search

• A* is optimal…

• …but only if you use an admissible heuristic

• An admissible heuristic is mathematically guaranteed to 
underestimate the cost of reaching a goal

• What is an admissible heuristic for path finding on a path 
network?

29


