Announcements

- HW1 grades, distribution in flux
- HW2 (path network) due Sunday night, January 28 @ 11:55pm
- HW3 much more difficult. Start ASAP
- Verification of course participation see piazza, and complete before 10am Friday, January 26
 - First poll: 149/179 (30 noshows). 10 to 15 minutes, or 23% said 'any'
 - 2nd poll: 82 votes so far
- Webpage!

– <u>https://www.cc.gatech.edu/~surban6/2018sp-gameAI/</u>

PREVIOUSLY ON...

Modelling and Navigating the Game World

Graphs, Graphs, Graphs...

Graph Search: Sorting Successors

- Uninformed (all nodes are same)
 - Greedy
 - DFS (stack lifo), BFS (queue fifo)
 - Iterative-deepening (Depth-limited)
- Informed (pick order of node expansion)
 - Dijkstra guarantee shortest path (Elog₂N)
 - Floyd-Warshall
 - A* (IDA*).... Dijkstra + heuristic
 - D*
- Hierarchical can help

- 1. What kind of solution does greedy search find? Why might this be useful?
- 2. What kind of solution does A* find?
- 3. What are some of the insights behind A*?
- 4. What's a good data structure to use with A*? Why?

Crawl down the Wikipedia rabbit hole rather than books for this one AI Game Programming wisdom 2, CH 2 Buckland CH 8 Millington CH 4

SEARCH CONTINUED

https://www.xkcd.com/342/ 8

Non-Admissible Heuristics

• What happens if you have a non-admissible heuristic?

Non-Admissible Heuristics

- What happens if you have a non-admissible heuristic?
- You get "short-cuts": find a path to a node on the closed list that is shorter than before
- Shortcuts happen because h(n) overestimates

Non-admissible heuristics

- Discourage agent from being in particular states
- Encourage agent to be in particular states

Dijkstra's algorithm

- 1956: A single-source, multi-target shortest path algorithm
- Tells you path from any one node to all other nodes
- Special case of A*, where the heuristic is always zero.
- Time complexity for single vertex: O(E log V)
 - Run for each vertex: O(VE Log V) which can go (V³ Log V) in worst case
- "This is asymptotically the fastest known single-source shortest-path algorithm for arbitrary directed graphs with unbounded non-negative weights." (source: Wikipedia)

```
Given: G=(V,E), source
```

```
For each vertex v in G, set dist[v] to infinity
Set dist[source] = 0
Let Q = all vertices in G
While Q is not empty:
       Let u = get vertex in Q with smallest distance value
       Remove u from Q
      For each neighbor v of u:
             d = dist[u] + distance(u, v)
              if d < dist[v] then:
                    dist[v] = d
                     parent[v] = u
Return dist[]
```


Dest	Cost	Parent
1	0	
2	Inf	
3	Inf	
4	Inf	
5	Inf	
6	Inf	

Q=[1,2,3,4,5,6] U=1

Let u = get vertex in Q with smallest distance value (node 1)

dist[v]

Dest	Cost	Parent
1	0	
2	7	1
3	Inf	
4	Inf	
5	Inf	
6	Inf	

Q=[1,2,3,4,5,6] U=1 V=2

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	Inf	
5	Inf	
6	Inf	

Q=[1,2,3,4,5,6] U=1 V=3

16

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	Inf	
5	Inf	
6	14	1

Q=[1,2,3,4,5,6] U=1 V=6

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	Inf	
5	Inf	
6	14	1

Q=[2,3,4,5,6] U=2 V=

Let u = get vertex in Q with smallest distance value (node 2)

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	Inf	
5	Inf	
6	14	1

Q=[2,3,4,5,6] U=2 V=3

Q=[2,3,4,5,6] U=2 V=4

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	22	2
5	Inf	
6	14	1

Q=[3,4,5,6] U=3 V=

Let u = get vertex in Q with smallest distance value (node 3)

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	20	3
5	Inf	
6	14	1

Q=[3,4,5,6] U=3 V=4

Cost	Parent
0	
7	1
9	1
20	3
Inf	
11	3
	0 7 9 20 Inf

Q=[3,4,5,6] U=3 V=6

23

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	20	3
5	Inf	
6	11	3

Q=[4,5,6] U=6 V=

Let u = get vertex in Q with smallest distance value (node 6)

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	20	3
5	20	6
6	11	3

Q=[4,5,6] U=6 V=5

Cost	Parent
0	
7	1
9	1
20	3
20	6
11	3
	7 9 20 20

Q=[4,5] U=4 V=

Let u = get vertex in Q with smallest distance value (node 4)

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	20	3
5	20	6
6	11	3

Q=[4,5] U=4 V=

Dest	Cost	Parent
1	0	
2	7	1
3	9	1
4	20	3
5	20	6
6	11	3

Q=[5] U=5 V=

Let u = get vertex in Q with smallest distance value (node 5)

Dest	Cost	Parent
1	0	1
2	7	1
3	9	1
4	20	3
5	20	6
6	11	3

Q=[] U=5 V=

* We now know the shortest distance and shortest path to all nodes from node 1.

Reconstructing the path from lookup table

Want to go from node 1 to v (e.g. v=5)

if parent[v] is empty then return null path
path = (v)
while v != 1 do:
 v = parent[v]
 path.prepend(v)
return path

All pairs shortest path (APSP)

- We talked about this briefly as a "navigation table"
- A look-up table of the form table[node1,node2]-> node 3

 Where node3 is the next node to go to if you want to go from node1 to node2
- Intuition: Find the shortest distance/path between all pairs of nodes
 - Use this to construct the look-up table

Floyd-Warshall algorithm

- 1962: All-pairs shortest path algorithm
- Tells you path from all nodes to all other nodes in weighted graph
- Positive or negative edge weights, but no negative cycles (edges sum to negative)
- Incrementally improves estimate
- O(|V|³)
- Makes use of dynamic programming
- Compares all possible paths through the graph between each pair of vertices
- Use Dijkstra from each starting vertex when the graph is sparse and has non-negative edges

Given: G=(V,E), |V| = number of vertices

```
For each edge (u, v) do:
   dist[u][v] = weight of edge (u, v) or infinity
   next[u][v] = v
For k = 0 to |V| do:
                                   ← Intermediate node
   for i = 0 to |V| do:
                            ← Start node
      for j = 0 to |V| do: \leftarrow End node
          if dist[i][k] + dist[k][j] < dist[i][j] then:</pre>
             dist[i][i] = dist[i][k] + dist[k][i]
              next[i][j] = next[i][k]
```


Distance

	0	1	2	3	4
0	INF	9	9	INF	INF
1	9	INF	9	INF	INF
2	9	9	INF	1	6
3	INF	INF	1	INF	3
4	INF	INF	6	3	INF

Next

	0	1	2	3	4
0		1	2		
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

k = 0

i = 0

j = 0

Distance							
	0	4					
0	INF	9	(9)	INF	INF		
1	9	INF	9	INF	INF		
2	9	9	INF		6		
3	INF	INF	1	INF	3		
4	INF	INF	6	3	INF		

Next

k = 2	
i = 0	

j = 3 9 + 1 < INF

	0	1	2	3	4
0		1	2		
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

Distance							
	0	1	2	3	4		
0	INF	9	9	10	INF		
1	9	INF	9	INF	INF		
2	9	9	INF	1	6		
3	INF	INF	1	INF	3		
4	INF	INF	6	3	INF		

Next

		0	1	2	3	4
	0		1	2	2	
	1	0		2		
	2	0	1		3	4
	3			2		4
to 2	4			2	3	

k = 2

i = 0

j = **3** 0 -> 3: dist 10, goto 2

Distance								
	0	1	2	3	4			
0	INF	9	(9)	10	INF			
1	9	INF	9		INF			
2	9	9	INF	1	(6)			
3	INF	INF	1	INF)ო			
4	INF	INF	6	3	INF			

	0	1	2	3	4
0		1	2	2	
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

Distance								
	0	1	2	3	4			
0	INF	9	9	10	15			
1	9	INF	9	INF	INF			
2	9	9	INF	1	6			
3	INF	INF	1	INF	3			
4	INF	INF	6	3	INF			

	0	1	2	3	4
0		1	2	2	2
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

i = 0

j = 4 0 -> 3: dist 10, goto 2

Distance								
	0	1	2	3	4			
0	INF	9	9	(10)	15			
1	9	INF	9	INF	INF			
2	9	9	INF	1	6			
3	INF	INF	1	INF	(3)			
4	INF	INF	6	3	INF			

	0	1	2	3	4
0		1	2	2	2
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

Distance

	0	1	2	3	4
0	INF	9	9	10	13
1	9	INF	9	INF	INF
2	9	9	INF	1	6
3	INF	INF	1	INF	3
4	INF	INF	6	3	INF

	0	1	2	3	4
0		1	2	2	2
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

j = 4 1 + 3 < 6

Distance INF

	0	1	2	3	4
0		1	2	2	2
1	0		2		
2	0	1		3	4
3			2		4
4			2	3	

Distance							
	0	1	2	3	4		
0	INF	9	9	10	13		
1	9	INF	9	INF	INF		
2	9	9	INF	1	4		
3	INF	INF	1	INF	3		
4	INF	INF	6	3	INF		

	0	1	2	3	4
0		1	2	2	2
1	0		2		
2	0	1		3	3
3			2		4
4			2	3	

Distance

	0	1	2	3	4
0	INF	9	9	10	13
1	9	INF	9	10	13
2	9	9	INF	1	4
3	10	10	1	INF	3
4	13	13	4	3	INF

	0	1	2	3	4
0		1	2	2	2
1	0		2	2	2
2	0	1		3	3
3	2	2	2		4
4	3	3	3	3	

Reconstructing the path from lookup table

Want to go from u to v (E.g. u=0, v=4)

if next[u][v] is empty then return null path
path = (u)
while u <> v do:

u = next[u][v] path.append(u) return path

u=next[0][4]=2; path=0,2 u=next[2][4]=3; path=0,2,3 u=next[3][4]=4; path=0,2,3,4

Detecting Negative Cycles

	0	1	2	3	4	
0	-3	-9	-9	8	4	
1	-9	-3	-9	INF	INF	
2	-9	-9	-3	1	4	
3	INF	INF	1	INF	3	
4	INF	INF	6	3	INF	

Distance

When to use A* and APSP

- 1. If the environment is small and static?
- 2. If the environment is dynamic?
- 3. If the environment is large and static?
 - 1. If runtime memory is an issue?
 - 2. If runtime memory isn't an issue?
- 4. If the environment is large and dynamic?

Fixing awkward agent movement:

- String pulling
- Splines
- Hierarchical A*

SOLVING WEIRD FINAL PATHS

Weird: path doesn't consider environment

- Add extra heuristic to mark certain grid cells as more "costly" to step through.
 - Cells near obstacles
 - Cells that an agent can get "caught" on
 - Cells that an agent can get "trapped" in

Path Smoothing via "String pulling"

- Zig-zagging from point to point looks unnatural
- Post-search smoothing can elicit better paths

Quick Path-Smoothing

- Given a path, look at first two edges, E1 & E2
 - 1. Get E1_src and E2_dest
 - If unobstructed path between the two, set E1_dest = E2_dest, then delete E2 from the path. Set next edge as E2.
 - 3. Else, increment E1 and E2.
 - 4. Repeat until E2_dest == goal.

Slow Path-Smoothing

- Given a path, look at first two edges, E1 & E2
 - 1. Get E1_src and E2_dest
 - If unobstructed path between the two, set E1_dest = E2_dest, then delete E2 from the path. Set E1 and E2 from beginning of path.
 - 3. Else, increment E1 and E2.
 - 4. Repeat until E2_dest == goal.

SOLVING LONG PATH SEARCH TIMES

Solution to Long Search Times

- Precompute paths (if you can)
 - Dijkstra: Single source shortest path (SSSP; O(E log V))
 - Run for each vertex: O(VE Log V) which can go (V³ Log V) in worst case
 - Floyd-warshall: All pairs shortest path (APSP, $O(|V|^3)$)
- Register search requests
 - Works best with lots of agents. Prevents heavy load to CPU.
 - Let agents wander or seek toward a goal while waiting for a search response. (Although they might wander in the wrong direction)
- Hierarchical Path Planning

Precomputing Paths

- Faster than computation on the fly esp. large maps and many agents
- Use Dijkstra's or Floyd-warshall algorithm to create lookup tables

• Lookup cost tables

• What is the main problem with pre-computed paths?

Sticky Situations: Movable objects, fog of war, memory issues, and other burps – precomputed paths do no good

SOLVING WHEN WE CAN'T PRECOMPUTE

Sticky Situations

- Dynamic environments can ruin plans; memory issues can inhibit precomputing
- What do we do when an agent has been pushed back through a doorway that it has already "visited"?
- What do we do in "fog of war" situations?
- What if we have a moving target?

Dynamic environments

- Terrain can change
 - Jumpable?
 - Kickable?
 - Too big to jump/kick?
- Typically: destructible environments
- Path network edges can be eliminated
- Path network edges can be created

Other Heuristic Search Speedups

- A* (Iterative deepening)
- Hierarchical A*
- Real-time A*
- Real-time A* with lookahead
- D* lite

Hierarchical Path Planning

• Used to reduce CPU overhead of graph search

• Plan with coarse-grained and fine-grained maps

• Example: Planning a trip to NYC based on states, then individual roads

Hierarchical A*

- <u>http://www.cs.ualberta.ca/~mmueller/ps/hpastar.pdf</u>
- <u>http://aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/</u>
- Within 1% of optimal path length, but up to 10 times faster

Hierarchical A*

• People think hierarchically (more efficient)

• We can prune a large number of states

How high up do you go? As high as you can without start and end being in the same node.

Path Smoothing in Hierarchical A*

- 1. Build clusters. Can be arbitrary
- 2. Find transitions, a (possibly empty) set of obstacle-free locations.
- 3. Inter-edges: Place a node on either side of transition, and link them (cost 1).
- 4. Intra-edges: Search between nodes inside cluster, record cost.
 - * Can keep optimal intra-cluster paths, or discard for memory savings.

- 1. Start cluster: Search within cluster to the border
- 2. Search across clusters to the goal cluster
- 3. Goal cluster: Search from border to goal
- 4. Path smoothing

* Really just adds start and goal to the hierarchy graph

Real Time A*

- Reduces execution time of A* by limiting search horizon of A*
- Online search: execute as you search
 - Because you can't look at a state until you get there
 - You can't backtrack
 - No open list
- Modified cost function f()
 - g(n) is actual distance from n to current state (instead of initial state)
- Use a hash-table to keep track of h() for nodes you have visited (because you might visit them again)
- Pick node with lowest f-value from immediate successors
- Execute move immediately
- After you move, update previous location
 - h(prev) = second best f-value
 - Second best f-value represents the estimated cost of returning to the previous state (and then add g)

RTA* with lookahead

- At every node you can see some distance
- DFS, then back up the value (think of it as minimin with alphapruning)
- Search out to known limit
- Pick best, then move
- Repeat, because something might change in the environment that change our assessment
 - Things we discover as our horizon moves
 - Things that change behind us

D* Lite

- 1994: Incremental search: replan often, but reuse search space if possible
- In unknown terrain, assume anything you don't know is clear (optimistic)
- Perform A*, execute plan until discrepancy, then replan
- D* Lite achieves 2x speedup over A* (when replanning)

D* Lite

Sven Koenig

College of Computing Georgia Institute of Technology Atlanta, GA 30312-0280 skoenig@cc.gatech.edu

Maxim Likhachev

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 maxim+@cs.cmu.edu

Fog of war

"Omniscient optimal": given complete information

"Optimistic optimal": assume empty for parts you don't know.

Heuristic Search Recap

• A*

- Use when we can't precompute
 - Dynamic environments
 - Memory issues
- Optimal when heuristic is admissible (and assuming no changes)
- Replanning can be slow on really big maps
- Hierarchical A* is the ~same, but faster
 - Within 1% of A* optimality but up to 10x faster

- Real-time A*
 - Stumbling in the dark, 1 step lookahead
 - Replan every step, but fast!
 - Realistic? For a blind agent that knows nothing
 - Optimal when completely blind
- Real-time A* with lookahead
 - Good for fog-of-war
 - Replan every step, with fast bounded lookahead to edge of known space
 - Optimality depends on lookahead

Heuristic Search Recap

- D* Lite
 - Assume everything is open/clear
 - Replan when necessary
 - Worst case: Runs like Real-Time A*
 - Best case: Never replans
 - Optimal including changes

See Also

- Al Game Programming wisdom 2, CH 2
- Buckland CH 8
- Millington CH 4
- Wikipedia rabbit hole
- Monte Carlo Tree Search (MCTS)