
“A good decision is based on knowledge
and not on numbers.” – Plato

“Once you make a decision, the universe
conspires to make it happen.” – Ralph

Waldo Emerson

“The quality of decision is like the well-
timed swoop of a falcon which enables it
to strike and destroy its victim.” – Sun Tzu

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

1

N-1&2: Decision Making, FSMs

1. How can we describe decision making?
2. What makes FSMs so attractive? What is difficult to do with them?
3. Two drawbacks of FSMs and how to fix?
4. What are the performance dimensions we tend to assess?
5. What are two methods we discussed to learn about changes in the world

state?
6. FSMs/Btrees: R___ :: Planning : D____
7. When is the R__ good? When is D__?
8. H______ have helped in most approaches.
9. What are two methods we discussed to learn about changes in the world

state?

Decision Making: (Decision & Behavior)
Trees

2018-02-20

DECISION TREES (M CH 5.2)

5

Decision Trees

• Fast, simple, easily implemented, easy to grok
• Modular & easy to create
• Simplest decision making technique
• Used extensively to control

– Characters
– In-game decision making (eg animation); complex strategic and tactical AI

• Can be learned (rare in games)
– Learned tree still easy to grok: rules have straightforward interpretation
– Can be robust in the presence of errors, missing data, and large numbers of

attributes
– Do not require long training times

• w/out learning, it’s essentially a GUI (or fancy structure) for conditionals

6

D-Tree Structure

• Dtree made of
connected decision
points
– root == starting

decision
– leaves == actions

• For each decision, one
of 2+ options is
selected

• Typically use global
game state

7

Decisions

• Can be of multiple types

– Boolean

– Enumeration

– Numeric range

– etc.

• No explicit AND or OR, but representable

– Tree structure represents combinations

8

AND / OR in D-Tree

9
Can these be translated into rules? If so, how?

Branching

• N-ary trees

– Usually ends up as if/then statements

– Can be faster if using enums w/ array access

– Speedup often marginal & not worth the
effort

• Binary trees

– Easier to optimize

– ML techniques typically require binary trees

– Can be a graph, so long as it’s a DAG

M&F Figs 5.7, 5.8 10

Knowledge Representation

• Typically work directly w/ primitive types

• Requires no translation of knowledge

– Access game state directly

– Can cause HARD-TO-FIND bugs

• Rare decisions

• Structure of game-state changes

– Cons avoidable w/ careful world interface

• See Millington CH 10

11

Tree Balancing

• More balanced faster (theory)
– Balance ~= same number of leaves on each

branch
– O(N) vs O(Log2 N)

• Short path to likely action faster
(practice)
– O(1)
– Defer time consuming decisions ‘til last

• Performance tuning
– Dark art – since fast anyway, rarely important
– Balance, but keep common paths short &

bury long decisions
M&F Fig 5.9

12

See M Ch 5.2

class DecisionTreeNode:
def makeDecision() #recursively walk tree

class Action:
def makeDecision():

return this

class FloatDecision(Decision):
minValue
maxValue
def getBranch():

if max >= test >= min:
return trueNode

else:
return falseNode

class Decision(DecisionTreeNode):
trueNode
falseNode
testValue
def getBranch()
def makeDecision() :

branch = getBranch() #runs test
return branch.makeDecision() #recursive walk

13

Randomness

• Predictable == bad

• Can add a random decision node

• Keep track of decision from last cycle

• Reset after a timeout or new decision

• See M 5.2.10 for implementation deets M&F 5.12

14

Learning Decision Trees

• Real power of D-trees comes from learning

• Problem: Construct a decision tree from examples of inputs
and actions

• Sol’n: Quinlan’s “Induction of Decision Trees”
– ID3, C4.5, See5

• http://en.wikipedia.org/wiki/ID3_algorithm

– J48 (GPL java implementation)
• http://www.opentox.org/dev/documentation/components/j48

• See Weka (GNU GPL)

15

http://en.wikipedia.org/wiki/ID3_algorithm
http://www.opentox.org/dev/documentation/components/j48

Learning Decision Trees

• A simple technique whereby the computer learns to predict human
decision-making

• Can also be used to learn to classify

– A decision can be thought of as a classification problem

• An object or situation is described as a set of attributes

– Attributes can have discrete or continuous values

• Predict an outcome (decision or classification)

– Can be discrete or continuous

– We assume positive (true) or negative (false)

16

Basic Concept

• Given the current set of decisions, what attribute can best split
them?

• Choose the “best one” and create a new decision node

– Best == most information gained

• Good attributes make homogeneous sets

• Recursively go down each edge

17

Example
Example Attributes Target

WaitAlt Bar Fri Hun Pat Price Rain Res Type Est

X1 T F F T Some $$$ F T French 0-10 T

X2 T F F T Full $ F F Thai 30-60 F

X3 F T F F Some $ F F Burger 0-10 T

X4 T F T T Full $ F F Thai 10-30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0-10 T

X7 F T F F None $ T F Burger 0-10 F

X8 F F F T Some $$ T T Thai 0-10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10-30 F

X11 F F F F None $ F F Thai 0-10 F

X12 T T T T Full $ F F Burger 10-60 T
18

Choosing an Attribute

• Idea: A good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

• Patrons? is a better choice

19

Attack?

• Attributes:
– Bypass? Can be bypassed

– Loot? Has valuable items/treasure

– Achievement? Will unlock an achievement if you win

– On Quest? You are on a quest

– Experience. How much experience points you get

– Environment. How favorable is the terrain?

– Mini-boss? Is this a mini-boss, preventing further progress?

– Element. The elemental properties (earth, air, fire, water)

– Estimated Time. How long will this combat take (quick, short, long, very long)?

– Team size. How many monsters in the team (none, small, large)?

20

Team size

Est. Time

Bypass? On quest?

Mini-boss? Achievement?

Loot?

Bypass?

Environment

No Yes

No Yes

Yes

No Yes

No Yes

Yes

Yes

No Yes

Single
Few

Many

Very long
Long Short

Quick

F T

F T

F T

F T

F T

F T

F T

Attack?

21

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

22

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Element

Pos: 1
Neg: 5

Pos: 6
Neg: 10

Pos: 4 8
Neg: 2 11

Pos: 3 12
Neg: 7 8

water

fire air

earth

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

23

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: nil
Neg: 7 11

Pos: 1 3 6 8
Neg: nil

Pos: 4 12
Neg: 2 5 9 10

single

few
many

On quest?

Pos: nil
Neg: 5 9

Pos: 4 12
Neg: 2 10

TF

NO YES

NO

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

24

• Learned from the 12 examples

• Why doesn’t it look
like the previous tree?

– Not enough examples

– No reason to use
environment or mini-boss

– Hasn’t seen all cases

• Learning is only as good
as your training data

• Supervised learning

– Training set

– Test set

Team size

On quest?No Yes

Single
Few Many

Element

NoYes

water

fire

Yes

earth

Achievement?

air

No

T F

No Yes

F T

25

Which attribute to choose?

• The one that gives you the most information (aka the most
diagnostic)

• Information theory

– Answers the question: how much information does something contain?

– Ask a question

– Answer is information

– Amount of information depends on how much you already knew
(information gain)

• Example: flipping a coin

26

Entropy

• Measure of information in set of examples

– That is, amount of agreement between examples

– All examples are in the same action, E = 0

– Even distributed and different, E = 1

• If there are n possible answers, v1…vn and
vi has probability P(vi) of being the right answer, then the
amount of information is:

H P(v1),...,P(vn)() = - P(vi)log2 P(vi)
i=1

n

å
27

• For a training set:
p = # of positive examples

n = # of negative examples

• For our attack behavior
– p = n = 6

– H() = 1

– Would not be 1 if training set weren’t 50/50 yes/no,
but the point is to arrange attributes to increase gain
(decrease entropy)

H
p

p+n
,
n

p+n

æ

è
ç

ö

ø
÷ = -

p

p+n
log2

p

p+n
-
n

p+n
log2

n

p+n

Probability of
a positive example

Probability of
a negative example

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

28

Measuring attributes
• Remainer(A) is amount of entropy remaining after

applying an attribute
– If I use attribute A next, how much less entropy will I have?

– Use this to compare attributes

pi +ni

p+n
H

pi

pi +ni
,
ni

pi +ni

æ

è
ç

ö

ø
÷

i=1

v

åRemainder(A) =

Different answers

attribute

Total answers

Instances of
the attribute

Positive examples
for this answer to A

Negative examples
for this answer to A

Examples classified by A

29

2

12
I

1

2
,
1

2

æ

è
ç

ö

ø
÷ +

2

12
I

1

2
,
1

2

æ

è
ç

ö

ø
÷ +

4

12
I

2

4
,
2

4

æ

è
ç

ö

ø
÷ +

4

12
I

2

4
,
2

4

æ

è
ç

ö

ø
÷

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Element

Pos: 1
Neg: 5

Pos: 6
Neg: 10

Pos: 4 8
Neg: 2 11

Pos: 3 12
Neg: 7 8

water

fire air

earth

Remainder(element) =

water fire air earth

= 1 bit

30

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: nil
Neg: 7 11

Pos: 1 3 6 8
Neg: nil

Pos: 4 12
Neg: 2 5 9 10

single

few
many

2

12
I

0

2
,
2

2

æ

è
ç

ö

ø
÷ +

4

12
I

4

4
,
0

4

æ

è
ç

ö

ø
÷ +

6

12
I

2

6
,
4

6

æ

è
ç

ö

ø
÷ Remainder(teamsize) =

single few many

≈ 0.459 bit

31

• Not done yet

• Need to measure information gained by an attribute

• Pick the biggest

• Example:
– Gain(element) = H(½,½) –

– Gain(teamsize) = H(½,½) –

H
p

p+n
,
n

p+n

æ

è
ç

ö

ø
÷Gain(A) = - remainder(A)

2

12
H

1

2
,
1

2

æ

è
ç

ö

ø
÷+

2

12
H

1

2
,
1

2

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

2

12
H

0

2
,
2

2

æ

è
ç

ö

ø
÷+

4

12
H

4

4
,
0

4

æ

è
ç

ö

ø
÷+

6

12
H

2

6
,
4

6

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

= 0 bits

≈ 0.541 bits

32

H
2

12
,

4

12

æ

è
ç

ö

ø
÷-

2

12
H

0

2
,
2

2

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
úGain(quest) =

= 0.959 – [0 + (4/12)(1)]

≈ 0.626 bits

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: 4 12
Neg: 2 5 9 10

Many

On Quest

Pos: nil
Neg: 5 9

Pos: 4 12
Neg: 2 10

T
F

no yes

teamsize=many, onquest=F

teamsize=many, onquest=T

33

Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default

ELSE IF all examples have same classification THEN RETURN classification

ELSE IF attributes is empty RETURN majority-value(examples)

ELSE

best = choose(attributes, example)

tree = new decision tree with best as root

m = majority-value(examples)

FOREACH answer vi of best DO

examplesi = {elements of examples with best=vi}

subtreei = decision-tree-learning(examplesi, attributes-{best}, m)

add a branch to tree based on vi and subtreei

RETURN tree

Where gain happens

34

How many hypotheses?

• How many distinct trees?

– N attributes

= # of boolean functions

= # of distinct truth tables with 2n rows

= 2^2^n

– With 6 attributes: > 18 quintillion possible trees

• 18,446,744,073,709,551,616

35

How do we assess?

• How do we know hypothesis ≈ true decision function?
• A learning algorithm is good if it produces hypotheses that do a good job of

predicting decisions/classifications from unseen examples
1. Collect a large set of examples (with answers)
2. Divide into training set and test set
3. Use training set to produce hypothesis h
4. Apply h to test set (w/o answers)

– Measure % examples that are correctly classified

5. Repeat 2-4 for different sizes of training sets, randomly selecting examples for
training and test
– Vary size of training set m
– Vary which m examples are training

36

• Plot a learning curve
– % correct on test set, as a function of training set size

• As training set grows, prediction quality should increase
– Called a “happy graph”

– There is a pattern in the data AND the algorithm is picking it up!

37

Noise

• Suppose 2 or more examples with same description (Same
assignment of attributes) have different answers

• Examples: on two identical* situations, I do two different
things

• You can’t have a consistent hypothesis (it must contradict at
least one example)

• Report majority classification or report probability

38

Overfitting

• Learn a hypothesis that is consistent using irrelevant attributes
– Coincidental circumstances result in spurious distinctions among examples
– Why does this happen?

• You gave a bunch of attributes because you didn’t know what would be important
• If you knew which attributes were important, you might not have had to do learning in the

first place

• Example: Day, month, or color of die in predicting a die roll
– As long as no two examples are identical, we can find an exact hypothesis
– Should be random 1-6, but if I roll once every day and each day results in a

different number, the learning algorithm will conclude that day determines the
roll

• Applies to all learning algorithms

39

Black and White

40
http://www.ign.com/games/black-and-white

Black and White

• Creature must learn what to do in different situations
• Player can reward or punish the creature

– Tells the creature whether they made the right choice of
action or not

• Creature learns to predict the feedback it will receive
from the player

Continuous DTs must
discretize the variables
by deciding where to split
the continuous range.

41

No Free Lunch

• ID3
– Must discretize continuous attributes

– Offline only (online = adjust to new examples)

– Too inefficient with many examples

• Incremental methods (C4.5, See5, ITT, etc)
– Starts with a d-tree

– Each node holds examples that reach that node

– Any node can update self given new example

– Can be unstable (new trees every cycle; rare in
practice)

42

BEHAVIOR TREES (M CH. 5.4)

43

But first…

• “What Makes Good AI – Game Maker’s Toolkit”

– https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s

– https://www.patreon.com/GameMakersToolkit

– React/adapt to the player – no learning required (authoring is)

– Communicate what you’re thinking

– Illusion of intelligence; more health & aggression can be a proxy for
smarts

– Predictability is (usually) a good thing

• Too much NPC stupidity can ruin an otherwise good game

44

https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s
https://www.patreon.com/GameMakersToolkit

Next Class

• More decision making!

– Behavior trees

– Production / Rule Based systems

– Fuzzy logic + probability

– Planning

45

