
Reinforcement Learning

2019-11-13



Announcements

• HW7 done; HW 8 is posted (due Dec 2, 23:55)

– Grad/Ugrad both RL



Poll

• Who is familiar with reinforcement learning?

• Who feels able to implement Q learning?

https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/
https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/
https://www.youtube.com/watch?v=V1eYniJ0Rnk


REINFORCEMENT LEARNING

Reinforcement Learning: An introduction. 
Richard Sutton and Andrew Bartow, 2nd ed, MIT Press, 2017.
http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html


Situating this Lecture

• At the beginning of the semester we drew a hard line between 
AI and Game AI
– AAA

– Indie

– Academic

• Besides some occasional weird stuff (Black & White), we are 
now totally in the realm of academic Game AI.
– Or are we?



Situating RL

• The BLUF: RL is about learning from interaction about how to map 
situations to actions to maximize reward. Key elements:
– Trial-and-error search: must discover which actions yield most reward by 

trying them

– Delayed reward: actions may affect both immediate reward and also next 
situation and all subsequent rewards

• Different from:
– Supervised learning: training set of labeled examples

– Unsupervised learning: finding latent structure in unlabeled data

• RL: maximize reward signal rather than discover hidden structure



Sutton & Bartow, Fig 3.1By Megajuice - Own work, CC0, 
https://commons.wikimedia.org/w/index.php?curid=57895741



Fundamental Classes of Methods

• Dynamic programming
– Mathematically well understood but require a complete and accurate 

model of the environment

• Monte Carlo methods
– Model free and conceptually simple, but not well suited for step-by-step 

incremental computation

• Temporal-difference learning
– Model free and fully incremental, but difficult to analyze

Also differ in efficiency/speed of convergence



RL Has Revolutionized AI Gameplay

• Reinforcement Learning has been shown to be able to master many computer 
games
– most Atari Games, Backgammon, Go, DOTA2, and StarCraft II.

• Reinforcement Learning (RL) is a class of algorithms that solve a Markov Decision 
Process. That is, the agent is given:
– S: A set of all states the agent could encounter. Games: S is all configurations of pixels 

that the game engine can render
– A: A set of all actions. Games: all player commands
– T: A transition function that indicates the probability of transitioning from one state to 

another state if a particular action is chosen. We will assume that T is unknown.
– R: A reward function that computes a score for every state in S. Games: reward given 

either based on in-game score, or for finishing a level, or achieving an objective.



http://karpathy.github.io/2016/05/31/rl/

http://karpathy.github.io/2016/05/31/rl/


https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-
search-introduction-algorithm-deepmind-alphago/

https://www.youtube.com/watch?v=0g9SlVdv1PY

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/
https://www.youtube.com/watch?v=0g9SlVdv1PY


https://openai.com/blog/openai-baselines-ppo/

https://openai.com/blog/openai-baselines-ppo/
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https://openai.com/blog/how-to-train-your-openai-five/


Reinforcement Learning in Games



http://incompleteideas.net/book/the-book-2nd.html



One-armed Bandit Problem



One-armed Bandit Process
Pull # Response Believed

Probability of 
Jackpot

1 WIN (1.0) 1.0

2 LOSS (0.0) 0.5

3 LOSS (0.0) 0.33…

4 LOSS (0.0) 0.25

… … …

N. LOSS (0.0) 0.1

Unknown True Probability



Multi-armed Bandit Problem

“Through repeated action selections you are to maximize your winnings by concentrating your actions on the 

best levers.” – Sutton & Barto



Now what?

• We can’t just keep playing one bandit to figure 
out its potential for reward (money)

• Want to maximize reward across all bandits

• We need to trade off making money with 
current knowledge and gaining knowledge
– Exploitation vs. Exploration



Just Exploitation

Greedy Strategy where we always pick the machine 
we think will give us the best reward (reminder: 
machines give rewards according to a probability)

50% 25% 10%

Machin
e

Response Belief
(G,R,B)

B LOSS (-,-,0.0)

R WIN (0,1,0)

G LOSS (0,1,0)

R LOSS (0,0.5,0)

… … …



Just Exploration

Always just pick a random machine, no matter 
what we believe.

50% 25% 10%

Machin
e

Response Belief
(G,R,B)

B LOSS (-,-,0.0)

R WIN (0,1,0)

G LOSS (0,1,0)

B LOSS (0,1,0)

… … …



Epsilon (ϵ) Greedy
(ϵ-Greedy)

(ϵ=0.1)

– 90% of the time try the best machine according to our current beliefs

– 10% of the time take random action

Now we can “escape” from early greedy mistakes!



Regret

• Imagine a perfect agent, who always takes the best action

• We can compare that agent’s payout with our agent’s payout 
for each action to get the regret for that step

• Summing regret across all time steps gives us the total regret

• Maximize total reward == minimize total regret



Different Strategies and Regret



Decaying ϵ-Greedy

• Drop ϵ lower and lower according to some schedule 

• Now: logarithmic asymptotic regret

• Downside: we need to have enough domain knowledge to 
come up with a schedule beforehand



What does this have to do with games?

We can imagine 
mapping this onto a 
video game domain

Each distinct machine 
is now a distinct 
action

Reward: Not dying, 
end of level, etc.

left right

jump



But these values will probably differ based on 
context…

Value of going left versus right will be different if an enemy is to the left 
or the right.



State

• Multi-armed bandit 
problem is a “single state” 
or “stateless” Markov 
Decision Process

• But in games (and most 
cases we care about) 
there is more than one 
state

Andrey Markov



Markov Decision Process

• S: finite set of states

• A: finite set of actions

• P(s,s1): Probability that action a takes us from state s to state s1

• R(s,s1): Reward for transitioning from state s to state s1

• y: Discount factor ([0-1]). Demonstrates the difference in 
importance between future awards and present awards



High-level Idea

If the multi-armed 
bandit problem was a 
single state MDP, we 
can think of learning a 
strategy to play a 
game as solving this 
problem for every 
state of the game

left right

jump



Markovian State

• We call a state representation Markovian if it 
has all the information we need to make an 
optimal decision



State Representation Examples

List of facts

-enemy to right

-powerup above

-fire mario

-on ground

-etc…



State Representation Examples

Grid Representations
– Segment all locations 

to tiles

– All enemies 
represented 
individually? Or just as 
“enemy”

– How much of the level 
to include in the 
state? Just screen? 
Smaller? Larger?



State Representation Examples

What pixels are 
present on the screen 
at this time?



State Representation Tradeoffs

• More complex state representations ensure that an agent has 
all info needed

• Less complex state representations speed up training (more 
states “look” the same)

• Goal: find the middle ground. Simplest state representation 
that still allows for optimal performance



Question

What state representations would you use for the following? 
Why?

• Tic-Tac-Toe

• A simple platformer

• A real time strategy game (Civilization/Starcraft)



Possible Answers

• Tic-Tac-Toe: The Gameboard

• Simple platformer: grid of screen width and height, with values 
for collideable elements, breakable elements, empty spaces,
and enemy types (flying, etc)

• RTS: World map (?) + list of facts about currently running 
commands (building troops, moving troops, upgrading 
building, etc) (?)



Markov Decision Process

• S: finite set of states

• A: finite set of actions
– What are they in Tic-Tac-Toe? Platformers? RTS?

• P(s,s1): Probability that action a takes us from state s to state s1

• R(s,s1): Reward for transitioning from state s to state s1

• γ: Discount factor ([0-1]). Demonstrates the difference in 
importance between future awards and present awards

What is the optimal action a to take for every state s?



Goal of the MDP

• Find the optimal action a to take for every state s

• We refer to this strategy as the policy

• Policy is represented as π(s): S  A

– What is the optimal action to take in state s?



MDP: Reward Function

• Better understood as “feedback”

– An MDP’s reward can be positive or negative

• How to give reward? And what reward to give?



MDP: Transition function (P(s|s1,a))

• Also sometimes called a forward model

• Gives probability of transition from one state to another given a 
particular action

• Typically this is defined at a high level, not an individual state
– E.g. When trying to move forward there is a 50% change of moving 

forward, a 25% change of moving to the left and a 25% chance of moving 
to the right

– Not “when mario is at position (10,15) there is a 80% chance moving right 
gets mario to (11,15)



Value Iteration

Value Iteration: 
– every state has a value V(s), generally represented as a table

– Known transition probabilities

– Known reward for every transition

Algorithm
– Start with arbitrary values for all V(s)

– Every iteration we update the value of every state according to the 
rewards we can get from nearby states

– Stop when values are no longer changing



Value Iteration Update

Vk+1(s) = maxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

See page 83 in S&B book linked earlier



Value Iteration Update

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)



Value Iteration Update

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)

^This probably looks like gibberish huh?



Value Iteration Update

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Translation: 

The value of a particular action a in state s =

• the sum across all neighboring states of the 

• the probability of going from state s to state s’ given action a 
multiplied by

• The reward of entering state s’ by action a from state s plus the 
discount factor γ multiplied by the current value of state s’



Value Iteration Update

Vk(s) = maxa Qk(s,a)

The new value of state s is then

• the max value within Qk(s,a)



Value Iteration Algorithm

assign V0[S] arbitrarily   

k ←0 

repeat 

k ←k+1 

for each state s do:

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)

until Vk(s) –Vk+1(s) < θ:



Get Policy From Value Table

Remember we want the optimal action a for each state s

π[s] = argmaxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk[s']) 
Translation:
Take the value of a that gives the max value…
• For each neighboring state and action a

– Multiply the transition probability from state s to state s’ with action a by
– The sum of 

• the reward for entering s’ from s with a and 
• The product of the discount value by the Value table for s’



Question

Give me all the pieces needed to run an MDP for the simple
game of your choice

S is the set of all states 

A is the set of all actions 

P is state transition function specifying P(s'|s,a) 

R is a reward function R(s,a,s') 



Pros/Cons

Pros

• Once value iteration is done running we have an agent that can act 
optimally in any state very, very quickly (table lookup)

Cons:

• Once value iteration is done running

• What if we don’t have a transition function? IE we don’t know 
probability of getting from s to s’?
– What if we have a black box that allows us to simulate it…



Seems like we have some extra stuff we don’t really 
need huh?

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)



Seems like we have some extra stuff we don’t really 
need huh?

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)

Traditionally, there was a preference for keeping track of V(s) 
over Q(s,a) as it was smaller



Q-table Update

Q[s,a] ← Q[s,a] + α * (r+γ * maxa’Q[s’,a’]-Q[s,a])

A Q-table enumerates all possible states and all possible actions 
and gives the utility of each action in each state



Q-learning algorithm

Assign Q[S,A] arbitrarily   

observe current state s

repeat 

select and carry out an action a

observe reward r and state s’

Q[s,a] ← Q[s,a] + α * (r+γ * maxa’Q[s’,a’]-Q[s,a])

until termination

the learned action-value function, Q, directly approximates the optimal

action-value function, independent of the policy being followed

learning rate, α, ranges (0,1]
1 if env is deterministic
often 0.1

discount factor, γ, ranges [0,1]
0 is myopic, 1 long-term

See page 131 in S&B book linked earlier



Q Learning

Pros

• We don’t need to have a forward model/transition function

• Means we can go into an environment blind

Cons

• Takes up more memory than Value Iteration as we have to hold 
a |S|*|A| table instead of just an |S|-sized table

– Can be ameliorated with function approximation 

• Bigger table means (at times) longer to converge



Q Learning

• The most general game playing/decision making 
technique we’ve seen so far

• Only needs a reward function, list of actions, and 
state representation

• But that state space sure is too massive to be 
useful huh?


