Reinforcement Learning

2019-11-13

Announcements

e HW7 done; HW 8 is posted (due Dec 2, 23:55)
— Grad/Ugrad both RL

Poll

 Who is familiar with reinforcement learning?

* Who feels able to implement Q learning?

https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/
https://www.youtube.com/watch?v=V1eYniJORnk

https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-reinforcement-learning/
https://www.youtube.com/watch?v=V1eYniJ0Rnk

Reinforcement Learning: An introduction.
Richard Sutton and Andrew Bartow, 2" ed, MIT Press, 2017.
http://incompleteideas.net/book/the-book-2nd.html

REINFORCEMENT LEARNING

http://incompleteideas.net/book/the-book-2nd.html

Situating this Lecture

* At the beginning of the semester we drew a hard line between
Al and Game Al

— AAA
— Indie
— Academic

* Besides some occasional weird stuff (Black & White), we are
now totally in the realm of academic Game Al.

— Or are we?

Situating RL

* The BLUF: RL is about learning from interaction about how to map
situations to actions to maximize reward. Key elements:

— Trial-and-error search: must discover which actions yield most reward by
trying them

— Delayed reward: actions may affect both immediate reward and also next
situation and all subsequent rewards

* Different from:
— Supervised learning: training set of labeled examples
— Unsupervised learning: finding latent structure in unlabeled data

* RL: maximize reward signhal rather than discover hidden structure

4/ffﬁfﬂg;vwonnqent
_< RE*War
Inte rpreter

reward

action

R, A
k} ™ R.“+l (
ta 1 .
e, Environment
Agent
By Megajuice - Own work, CCO, Sutton & Bartow, Fig 3.1

https://commons.wikimedia.org/w/index.php?curid=57895741

Fundamental Classes of Methods

* Dynamic programming

— Mathematically well understood but require a complete and accurate
model of the environment

e Monte Carlo methods

— Model free and conceptually simple, but not well suited for step-by-step
incremental computation

* Temporal-difference learning
— Model free and fully incremental, but difficult to analyze

Also differ in efficiency/speed of convergence

RL Has Revolutionized Al Gameplay

* Reinforcement Learning has been shown to be able to master many computer
games

— most Atari Games, Backgammon, Go, DOTA2, and StarCraft II.
* Reinforcement Learning (RL) is a class of algorithms that solve a Markov Decision
Process. That is, the agent is given:

— S: A set of all states the agent could encounter. Games: S is all configurations of pixels
that the game engine can render

— A: A set of all actions. Games: all player commands

— T: A transition function that indicates the probability of transitioning from one state to
another state if a particular action is chosen. We will assume that T is unknown.

— R: Areward function that computes a score for every state in S. Games: reward given
either based on in-game score, or for finishing a level, or achieving an objective.

Deep Reinforcement Learning: Pong from Pixels

May 31, 2016

This is a long overdue blog post on Reinforcement Learning (RL). RL is hotl You may have noticed that
computers can now automatically learn to play ATARI games (from raw game pixelsl), they are beating world
champions at Go, simulated quadrupeds are learming to run and leap, and robots are learning how to perform
complex manipulation tasks that defy explicit programming. It turns out that all of these advances fall under the
umbrella of RL research. | also became interested in RL myself over the last ~year: | worked through Richard
Sutton’s book, read through David Silver’s course, watched John Schulmann’s lectures, wrote an RL library in
Javascript, over the summer interned at DeepMind working in the DeepRL group, and most recently pitched in a
little with the design/development of OpenAl Gym, a new RL benchmarking toolkit. So I've certainly been on this
funwagon for at least a year but until now | haven’t gotten around to writing up a short post on why RL is a big
deal, what it's about, how it all developed and where it might be going.

.
ua i s s
o
EEEEE

o a o a a
o
o
CLFEPEEEHL L
T
T

=1
s

o

_l

Examples of RL in the wild. From left to right: Deep Q Learning network playing ATARI, AlphaGo, Berkeley robot stacking
Legos, physically-simulated quadruped leaping over terrain.

It's interesting to reflect on the nature of recent progress in RL. | broadly like to think about four separate factors
that hold back Al

1. Compute (the obvious one: Moore's Law, GPUs, ASICs),

2. Data (in a nice form, not just out there somewhere on the internet - e.g. ImageNet),

J. Algorithms (research and ideas, e.g. backprop, CNN, LSTM), and

4. Infrastructure (software under you - Linux, TCP/IP, Git, ROS, PR2, AWS, AMT, TensorFlow, etc.).

http://karpathy.github.io/2016/05/31/rl/

http://karpathy.github.io/2016/05/31/rl/

Components of the AlphaGo
The core parts of the Alpha Go comprise of:

* Monte Carlo Tree Search: Al chooses its next move using MCTS
» Residual CNNs (Convolutional Neural Networks): Al assesses new positions using these networks
» Reinforcement learning: Trains the Al by using the current best agent to play against itself

In this blog, we will focus on the working of Monte Carlo Tree Search only. This helps AlphaGo and AlphaGo Zero
smartly explore and reach interesting/good states in a finite time period which in turn helps the Al reach human
level performance.

It's application extends beyond games. MCTS can theoretically be applied to any domain that can be described in
terms of {state, action} pairs and simulation used to forecast outcomes. Don't worry if this sounds too complex
right now, we'll break down all these concepts in this article.

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-
search-introduction-algorithm-deepmind-alphago/

https://www.youtube.com/watch?v=0g9SIVdv1PY

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/
https://www.youtube.com/watch?v=0g9SlVdv1PY

Proximal Policy Optimization

Wa're.'rele_asing a new class of reinforcement learning algorithms, Proximal

Policy Optimization (PPO), which perform comparably or better than state-
of-the-art approaches while being much simpler to implement and tune.
PPO has become the default reinforcement learning algorithm at OpenAI
because of its ease of use and good performance.

PPO lets us train AT policies in challenging environments, like the Roboschool one shown above
where an agent tries to reach a target (the pink sphere), learning to walk, run, turn, use its momentum
to recover from minor hits, and how to stand up from the ground when it is knocked over.

Policy gradient methods are fundamental to recent breakthroughs in using deep
neural networks for control, from video games, to 3D locomotion, to Go. But getting
good results via policy gradient methods is challenging because they are sensitive to
the choice of stepsize — too small, and progress is hopelessly slow; too large and
the signal is overwhelmed by the noise, or one might see catastrophic drops in
performance. They also often have very poor sample efficiency, taking millions (or
billions) of timesteps to learn simple tasks.

https://openai.com/blog/openai-baselines-ppo/

https://openai.com/blog/openai-baselines-ppo/

Why Dota?

We started OpenAl Five in order to work on a problem that felt outside of the reach
of existing deep reinforcement learning!! algorithms. We hoped that by working on
a problem that was unsolvable by current methods, we'd need to make a big
increase in the capability of our tools. We were expecting to need sophisticated
algorithmic ideas, such as hierarchical reinforcement learning, but we were
surprised by what we found: the fundamental improvement we needed for this
problem was scale. Achieving and utilizing that scale wasn’t easy and was the bulk
of our research effort!

Human View Al View Human View

>

L

purpose learning code whether those numbers represent the state of a Dota game (about 20,000

numbers) or robotic hand (about 200)

To build OpenAl Five, we created a system called Rapid which let us run PPO at
previously unprecedented scale. The results exceeded our wildest expectations, and
we produced a world-class Dota bot without hitting any fundamental

performance limits.

https://openai.com/blog/how-to-train-your-openai-five/

https://openai.com/blog/how-to-train-your-openai-five/

Reinforcement Learning in Games

F fCHed meets Wolf)] 3
Increase | ™ = I

[!} Fizht 2 Fight ¥\ Tak I f_:"’;ifﬁ

s |/ Py =5

C Hed meets Wnlf>) C Red meets Wle_))

Combat Dialogue { Combat :{ Dialogue
kil Neo/ End | | kil \e2/ End
{"Alone in Forest) {Alone in Forest .
E:qpfzjre ---------- Expmre Jr':'
¢__Traveller in Need) 'Iéﬁnﬁiéﬁ@’e}?ﬁiéﬁéﬁ
| Heb lgnore™ | |2, Fight l/ \ Flee

Reinforcement Learning: An Introduction

Richard S. Sutton
and Andrew G. Barto

Second Edition, in progress
MIT Press, Cambridge, MA, 2017

Cnline draft New Code Solutions Course Materials

16 Applications and Case Studies

16.1 TD-Gammon
16.2 Samuel’s Checkers Player
16.3 Watson’s Daily-Double Wagering .
16.4 Optimizing Memory Control
16.5 Human-level Video Game Play . .
16.6 Mastering the Game of Go.

16.6.1 AlphaGo

16.6.2 AlphaGo Zero.

Personalized Web Services

—_ =
o
o0 =]

Thermal Soaring

Scholarly articles for sutton and barto reinforcement learning
Reinforcement learning: An introduction - Sutton - Cited by 25899

Reinforcement learning is direct adaptive optimal ... - Sutton - Cited by 348 http://incompleteideas.net/book/the-book-an.html

One-armed Bandit Problem

\\.’/ Scholarly articles for sutton and barto reinforcement learning

Reinforcement learning: An introduction - Sutton - Cited by 25899
Reinforcement learning is direct adaptive optimal ... - Sutton - Cited by 348

One-armed Bandit Process

Pull # | Response Believed
Probability of
Jackpot

1 WIN (1.0) 1.0

2 LOSS (0.0) 0.5

3 LOSS (0.0) 0.33...

4 LOSS (0.0) 0.25

N. LOSS (0.0) 0.1

Unknown True Probability

Multi-armed Bandit Problem

4 . 4

“Through repeated action selections you are to maximize your winnings by concentrating your actions on the
best levers.” — Sutton & Barto

Now what?

 We can’t just keep playing one bandit to figure
out its potential for reward (money)

e \Want to maximize reward across all bandits

 We need to trade off making money with
current knowledge and gaining knowledge

— Exploitation vs. Exploration

Just Exploitation

Greedy Strategy where we always pick the machine

we think will give us the best reward (reminder:

machines give rewards according to a probability)

Machin | Response | Belief

e (G,R,B)
B LOSS (-,-,0.0)
R WIN (0,1,0)
G LOSS (0,1,0)

R LOSS (0,0.5,0)

Just Exploration

Always just pick a random machine, no matter
what we believe.

Machin | Response | Belief
e (G,R,B)
B LOSS (-,-,0.0)
R WIN (0,1,0)
G LOSS (0,1,0)
B LOSS (0,1,0)
50% 25% 10%

Epsilon (€) Greedy
(e-Greedy)
(e=0.1)

— 90% of the time try the best machine according to our current beliefs
— 10% of the time take random action

Now we can “escape” from early greedy mistakes!

Regret

Imagine a perfect agent, who always takes the best action

We can compare that agent’s payout with our agent’s payout
for each action to get the regret for that step

Summing regret across all time steps gives us the total regret

Maximize total reward == minimize total regret

Different Strategies and Regret

Total regret ‘
decaying e-greedy

0 1 2 4 4 5 [T B g 10 1 12 13 14 15 16 17 18 19

Time-steps

Decaying e-Greedy

* Drop € lower and lower according to some schedule
* Now: logarithmic asymptotic regret

* Downside: we need to have enough domain knowledge to
come up with a schedule beforehand

What does this have to do wit games?

We can imagine
mapping this onto a
video game domain

Each distinct machine
is now a distinct
action

Reward: Not dying,
end of level, etc.

But these values will probably differ based on

context...
ﬁ - ﬁ -
& o &

Value of going left versus right will be different if an enemy is to the left
or the right.

State

e Multi-armed bandit
problem is a “single state
or “stateless” Markov
Decision Process

’)

e But in games (and most
cases we care about)
there is more than one
state

Andrey Markov

Markov Decision Process

S: finite set of states

A: finite set of actions

P(s,s,): Probability that action a takes us from state s to state s,
R(s,s,): Reward for transitioning from state s to state s,

y: Discount factor ([0-1]). Demonstrates the difference in
importance between future awards and present awards

High-level Idea

If the multi-armed
bandit problem was a
single state MDP, we
can think of learning a
strategy to play a
game as solving this
problem for every
state of the game

Markovian State

* We call a state representation Markovian if it
has all the information we need to make an
optimal decision

State Representation Examples

MAR IO HORLD TIME
223150 A r 8= 364

List of facts ¢

-enemy to right
-powerup above
-fire mario

-on ground
-etc...

ol

A

| FLFLFLF | i |
Jof pofl P o R ooy P o) |
|

State Representation Examples

Grid Representations

— Segment all locations
to tiles

— All enemies
represented
individually? Or just as
“enemy”

— How much of the level
to include in the
state? Just screen?
Smaller? Larger?

MORLI)
g2

T [ME
6

State Representation Examples

What pixels are
present on the screen
at this time?

State Representation Tradeoffs

 More complex state representations ensure that an agent has
all info needed

* Less complex state representations speed up training (more
states “look” the same)

* Goal: find the middle ground. Simplest state representation
that still allows for optimal performance

Question

What state representations would you use for the following?
Why?

* Tic-Tac-Toe

 Asimple platformer
* A real time strategy game (Civilization/Starcraft)

Possible Answers

* Tic-Tac-Toe: The Gameboard

* Simple platformer: grid of screen width and height, with values
for collideable elements, breakable elements, empty spaces,
and enemy types (flying, etc)

e RTS: World map (?) + list of facts about currently running
commands (building troops, moving troops, upgrading
building, etc) (?)

Markov Decision Process

S: finite set of states

A: finite set of actions
— What are they in Tic-Tac-Toe? Platformers? RTS?

P(s,s,): Probability that action a takes us from state s to state s,
R(s,s;): Reward for transitioning from state s to state s,

y: Discount factor ([0-1]). Demonstrates the difference in
importance between future awards and present awards

What is the optimal action a to take for every state s?

Goal of the MDP

* Find the optimal action a to take for every state s
* We refer to this strategy as the policy

* Policy is represented as 1i(s): S 2 A

— What is the optimal action to take in state s?

MDP: Reward Function

e Better understood as “feedback”

— An MIDP’s reward can be positive or negative

* How to give reward? And what reward to give?

MDP: Transition function (P(s /s, a))

e Also sometimes called a forward model

* Gives probability of transition from one state to another given a
particular action

* Typically this is defined at a high level, not an individual state

— E.g. When trying to move forward there is a 50% change of moving

forward, a 25% change of moving to the left and a 25% chance of moving
to the right

— Not “when mario is at position (10,15) there is a 80% chance moving right
gets mario to (11,15)

Value lteration

Value lteration:
— every state has a value V(s), generally represented as a table
— Known transition probabilities
— Known reward for every transition

Algorithm
— Start with arbitrary values for all V(s)

— Every iteration we update the value of every state according to the
rewards we can get from nearby states

— Stop when values are no longer changing

See page 83 in S&B book linked earlier

Value Iteration Update

V,,.(s) =max, >. P(s'|s,a) (R(s,a,s')+ yV,(s"))

Value Iteration Update

Qk+1(5,a) = Zs- P(SI | S/a) (R(s,a,s')+ ka(S'))
V\(s) = max, Q,(s,a)

Value Iteration Update

Qk+1(5,a) = Zs- P(SI | S/a) (R(s,a,s')+ ka(S'))
V\(s) = max, Q,(s,a)

AThis probably looks like gibberish huh?

Value Iteration Update
Qk+1(5,a) = Zs- P(SI | S/a) (R(s,a,s')+ ka(Sl))

Translation:
The value of a particular action a in state s =
* the sum across all neighboring states of the

* the probability of going from state s to state s’ given action a
multiplied by

* The reward of entering state s’ by action a from state s plus the
discount factor y multiplied by the current value of state s’

Value Iteration Update

V,(s) = max, Q(s,a)

The new value of state s is then
* the max value within Q,(s,a)

Value Iteration Algorithm

assign VOIS] arbitrarily
k <0
repeat
k <k+1
for each state s do:
Q.(s,a) = 24 P(s'[s,a) (R(s,a,s')+ yV,(s"))
V. (s) = max, Q,(s,a)
until V,(s) =V,,(s) < 6:

Get Policy From Value Table

Remember we want the optimal action a for each state s

n[s] = argmax, Y. P(s'|s,a) (R(s,a,s')+ yV,[s'])
Translation:
Take the value of a that gives the max value...

* For each neighboring state and action a
— Multiply the transition probability from state s to state s’ with action a by
— The sum of

* the reward for entering s’ from s with a and
* The product of the discount value by the Value table for s’

Question

Give me all the pieces needed to run an MDP for the simple
game of your choice

S is the set of all states

A is the set of all actions

P is state transition function specifying P(s'|s,a)
R is a reward function R(s,a,s')

Pros/Cons

Pros

* Once value iteration is done running we have an agent that can act
optimally in any state very, very quickly (table lookup)

Cons:
* Once value iteration is done running

 What if we don’t have a transition function? |[E we don’t know
probability of getting from sto s’?

— What if we have a black box that allows us to simulate it...

Seems like we have some extra stuff we don’t really
need huh?

Qy.4(s,a) = 35 P(s'[s,a) (R(s,a,s')+ yV,(s'))
V,(s) = max, Q,(s,a)

Seems like we have some extra stuff we don’t really
need huh?

Q.,(s,a) =2, P(s'|s,a) (R(s,a,s')+ yV,(s'))
V,(s) = max, Q,(s,a)

Traditionally, there was a preference for keeping track of V(s)
over Q(s,a) as it was smaller

Q-table Update

Q[s,a] €< Q[s,a] + a * (r+y * max,Q[s’,a’]-Q[s,a])

A Q-table enumerates all possible states and all possible actions
and gives the utility of each action in each state

States Action 1 Action 2 Action 3 Action 4 Action 5
s 0.1 0.5 0.9 0.4 0.0
s 0.8 0.2 0.1 0.0 -1.0

s3 0.0 0.0 0.0 0.0 0.0

See page 131 in S&B book linked earlier

Q-learning algorithm

Assign Q][S,A] arbitrarily learning rate, a, ranges (0,1]
1 if env is deterministic
observe current state s often 0.1
discount factor, y, ranges [0,1]
repeat 0 is myopic, 1 long-term

select and carry out an action a

observe reward r and state s’

Q[s,a] €< Q[s,a] + a * (r+y * max,Q[s’,a’]-Q[s,a])
until termination

the learned action-value function, Q, directly approximates the optimal
action-value function, independent of the policy being followed

Q Learning

Pros
 We don’t need to have a forward model/transition function

* Means we can go into an environment blind

Cons

* Takes up more memory than Value Iteration as we have to hold
a |S|*|A| table instead of just an |S|-sized table

— Can be ameliorated with function approximation

* Bigger table means (at times) longer to converge

Q Learning

* The most general game playing/decision making
technique we’ve seen so far

* Only needs a reward function, list of actions, and
state representation

e But that state space sure is too massive to be
useful huh?

Episodic Actor Critic, Conservative
REPS PILCO " : , LSPI
Natural Actor Critic Policy lteration
Direct Policy Value-Based
Search RL
Evolutionary Policy Model-based REPS ﬁ“?nﬁfgs Q-Learning,
Strategies, Gradients, PS by Trajectory eighte Fitted Q

CMA-ES eNAC Optimization Regression

