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Situating RL

• The BLUF: RL is about learning from interaction about how to map 
situations to actions to maximize reward. Key elements:
– Trial-and-error search: must discover which actions yield most reward by 

trying them

– Delayed reward: actions may affect both immediate reward and also next 
situation and all subsequent rewards

• Different from:
– Supervised learning: training set of labeled examples

– Unsupervised learning: finding latent structure in unlabeled data

• RL: maximize reward signal rather than discover hidden structure



Organizing our thoughts

http://www.legalexecutiveinstitute.com/artificial-intelligence-
in-law-the-state-of-play-2016-part-1/

https://blogs.oracle.com/bigdata/difference-ai-machine-

learning-deep-learning

http://www.legalexecutiveinstitute.com/artificial-intelligence-in-law-the-state-of-play-2016-part-1/
https://blogs.oracle.com/bigdata/difference-ai-machine-learning-deep-learning


Mind Map / Family Tree

https://www.techleer.com/articles/203-machine-learning-
algorithm-backbone-of-emerging-technologies/

https://blog.eloquent.ai/2018/08/15/the-ai-landscape/

https://www.techleer.com/articles/203-machine-learning-algorithm-backbone-of-emerging-technologies/
https://blog.eloquent.ai/2018/08/15/the-ai-landscape/


High-level Idea

If the multi-armed 
bandit problem was a 
single state MDP, we 
can think of learning a 
strategy to play a 
game as solving this 
problem for every 
state of the game

left right

jump



Now what?

• We can’t just keep playing one bandit to figure 
out its potential for reward (money)

• Want to maximize reward across all bandits

• We need to trade off making money with 
current knowledge and gaining knowledge
– Exploitation vs. Exploration



Epsilon (ϵ) Greedy
(ϵ-Greedy)

(ϵ=0.1)

– 90% of the time try the best machine according to our current beliefs

– 10% of the time take random action

Decaying: Drop ϵ lower and lower according to some schedule 

Now we can “escape” from early greedy mistakes!



Different Strategies and Regret



State Representation Examples

List of facts

-enemy to right

-powerup above

-fire mario

-on ground

-etc…



State Representation Examples

Grid Representations
– Segment all locations 

to tiles

– All enemies 
represented 
individually? Or just as 
“enemy”

– How much of the level 
to include in the 
state? Just screen? 
Smaller? Larger?



State Representation Examples

What pixels are 
present on the screen 
at this time?



State Representation Tradeoffs

• More complex state representations ensure that an agent has 
all info needed

• Less complex state representations speed up training (more 
states “look” the same)

• Goal: find the middle ground. Simplest state representation 
that still allows for optimal performance



Question

What state representations would you use for the following? 
Why?

• Tic-Tac-Toe

• A simple platformer

• A real time strategy game (Civilization/Starcraft)



Possible Answers

• Tic-Tac-Toe: The Gameboard

• Simple platformer: grid of screen width and height, with values 
for collideable elements, breakable elements, empty spaces,
and enemy types (flying, etc)

• RTS: World map (?) + list of facts about currently running 
commands (building troops, moving troops, upgrading 
building, etc) (?)



REINFORCEMENT LEARNING

Reinforcement Learning: An introduction. 
Richard Sutton and Andrew Bartow, 2nd ed, MIT Press, 2017.
http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html


http://incompleteideas.net/book/the-book-2nd.html



Some RL Successes

• Learned the world’s best player of Backgammon (Tesauro 1995)

• Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al 2006+)

• Widely used in the placement and selection of advertisements and pages 
on the web (e.g., A-B tests)

• Used to make strategic decisions (DD) in Jeopardy! (IBM’s Watson 2011)

• Achieved human-level performance on Atari games from pixel-level visual 
input, in conjunction with deep learning (Google Deepmind 2015)

In all these cases, performance was better than could be obtained by any 
other method, and was obtained without human instruction

Credit: Sutton & Barto
http://incompleteideas.net/609%20dropbox/slides%20(pdf%20and%20keynote)/1-intro-and-singularity.pdf



RL + Deep Learning, applied to Classic Atari Games

• Learned to play 49 games for the 
Atari 2600 game console, without 
labels or human input, from self-
play and the score alone

• Learned to play better than all 
previous algorithms and at human 
level for more than half the games; 
same alg applied to all 49, without 
human tuning

Google Deepmind 2015, Bowling et al. 2012

Credit: Sutton & Barto



https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-
search-introduction-algorithm-deepmind-alphago/

https://www.youtube.com/watch?v=0g9SlVdv1PY

https://www.analyticsvidhya.com/blog/2019/01/monte-carlo-tree-search-introduction-algorithm-deepmind-alphago/
https://www.youtube.com/watch?v=0g9SlVdv1PY


Fundamental Classes of Methods

• Dynamic programming
– Mathematically well understood but require a complete and accurate 

model of the environment

• Monte Carlo methods
– Model free and conceptually simple, but not well suited for step-by-step 

incremental computation

• Temporal-difference learning
– Model free and fully incremental, but difficult to analyze

Also differ in efficiency/speed of convergence



Unified View

Credit: R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Markovian State

• Multi-armed bandit problem is a “single 
state” or “stateless” Markov Decision 
Process

• Markov property: given the present, 
the future does not depend on the 
past. IE ‘memoryless’

• We call a state representation 
Markovian if it has all the information 
we need to make an optimal decision

Andrey Markov



Markov Decision Process

• S: finite set of states

• A: finite set of actions

• P(s1|s,a): Probability action a takes us from state s to state s1

• R(s,s1): Reward for transitioning from state s to state s1

• y: Discount factor ([0-1]). Demonstrates the difference in 
importance between future awards and present awards

http://incompleteideas.net/609%20dropbox/slides%20(pdf%20and%20keynote)/11-12-TD.pdf



Markov Decision Process

• S: finite set of states

• A: finite set of actions
– What are they in Tic-Tac-Toe? Platformers? RTS?

• P(s1|s,a): Probability action a takes us from state s to state s1

• R(s,s1): Reward for transitioning from state s to state s1

• γ: Discount factor ([0-1]). Demonstrates the difference in 
importance between future awards and present awards

What is the optimal action a to take for every state s?



Goal of the MDP

• Find the optimal action a to take for every state s

• We refer to this strategy as the policy

• Policy is represented as π(s)

– What is the optimal action to take in state s?



MDP: Reward Function

• R(s,s1): Reward for transitioning from state s to state s1

• Better understood as “feedback”

– An MDP’s reward can be positive or negative

• How to give reward? And what reward to give?



MDP: Transition function

• P(s1|s,a): Probability action a takes us from state s to state s1

• Also sometimes called a forward model

• Gives probability of transition from one state to another given a particular action

• Typically this is defined at a high level, rather for an individual state
– E.g. When trying to move forward there is a 50% change of moving forward, a 25% 

change of moving to the left and a 25% chance of moving to the right
– Not “when mario is at position (10,15) there is a 80% chance moving right gets mario to 

(11,15)



Value Iteration

Value Iteration: 
– every state has a value V(s), generally represented as a table

– Known transition probabilities

– Known reward for every transition

Algorithm
– Start with arbitrary values for all V(s)

– Every iteration we update the value of every state according to the 
rewards we can get from nearby states

– Stop when values are no longer changing



Value Iteration Update

Vk+1(s) = maxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

See page 83 in S&B book linked earlier



Value Iteration Update

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)



Value Iteration Update

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Translation: 

The value of a particular action a in state s =

• the sum across all neighboring states of the 

• the probability of going from state s to state s’ given action a 
multiplied by

• The reward of entering state s’ by action a from state s plus the 
discount factor γ multiplied by the current value of state s’



Value Iteration Update

Vk(s) = maxa Qk(s,a)

The new value of state s is then

• the max value within Qk(s,a)



Value Iteration Algorithm

assign V0[S] arbitrarily   

k ←0 

repeat 

k ←k+1 

for each state s do:

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)

until Vk(s) –Vk+1(s) < θ:



Get Policy From Value Table

Remember we want the optimal action a for each state s

π[s] = argmaxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk[s']) 
Translation:
Take the value of a that gives the max value…
• For each neighboring state and action a

– Multiply the transition probability from state s to state s’ with action a by
– The sum of 

• the reward for entering s’ from s with a and 
• The product of the discount value by the Value table for s’



Question

Give me all the pieces needed to run an MDP for the simple
game of your choice

S is the set of all states 

A is the set of all actions 

P is state transition function specifying P(s'|s,a) 

R is a reward function R(s,a,s') 



Pros/Cons

Pros

• Once learning is done running we have an agent that can act 
optimally in any state very, very quickly (table lookup)

Cons:

• Once learning is done running

• What if we don’t have a transition function? IE we don’t know 
probability of getting from s to s’?
– What if we have a black box that allows us to simulate it…



Seems like we have some extra stuff we don’t really 
need huh?

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) 

Vk(s) = maxa Qk(s,a)

Traditionally, there was a preference for keeping track of V(s) 
over Q(s,a) as it was smaller



Q-learning

• Model-free, TD learning
– Well… states and actions still needed

– Learn from history of interaction with 
environment

• The learned action-value function Q 
directly approximates the optimal 
one, independent of the policy being 
followed

• Q: S x A  R
– This is what we are learning!

– Iteratively approximating best action a in 
state s to maximize cumulative reward

Initialize Q

Choose a from Q

Perform a

Receive reward

Update Q

ϵ-Greedy 

https://www.youtube.com/watch?v=79pmNdyxEGo
https://youtu.be/aCEvtRtNO-M?t=205

https://www.youtube.com/watch?v=79pmNdyxEGo
https://youtu.be/aCEvtRtNO-M?t=205


Q-learning

• S: finite set of states

• A: finite set of actions

• P(s,s1): Probability that action a takes us from state s to state s1

• Environment in which to act (simulated or real)

• R(s,a): Reward function mapping s,a to a real value

• γ: Discount factor ([0-1]). Demonstrates the difference in 
importance between future awards and present awards

What is the optimal action a to take for every state s?



Q-table Update

Q[s,a] ← Q[s,a] + α * (r+γ * maxa’Q[s’,a’]-Q[s,a])

A Q-table enumerates all possible states and all possible actions 
and gives the utility of each action in each state



Q-learning algorithm

Assign Q[S,A] arbitrarily   

observe current state s

repeat 

select and carry out an action a

observe reward r and state s’

Q[s,a] ← Q[s,a] + α * (r+γ * maxa’Q[s’,a’]-Q[s,a])

until termination

the learned action-value function, Q, directly approximates the optimal

action-value function, independent of the policy being followed

learning rate, α, ranges (0,1]
1 if env is deterministic
often 0.1

discount factor, γ, ranges [0,1]
0 is myopic, 1 long-term

See page 131 in S&B book linked earlier

the max value within Q[s’,*]

ϵ-Greedy 



Q Learning

Pros

• We don’t need to have a forward model/transition function

• Means we can go into an environment blind

Cons

• Takes up more memory than Value Iteration as we have to hold 
a |S|*|A| table instead of just an |S|-sized table

– Can be ameliorated with function approximation 

• Bigger table means (at times) longer to converge



No free lunch

“One of the greatest challenges in applying reinforcement learning to real-world 
problems is deciding how to represent and store value functions and/or policies. 
Unless the state set is finite and small enough to allow exhaustive representation 
by a lookup table […] one must use a parameterized function approximation 
scheme. […]

Most successful applications of reinforcement learning owe much to sets of 
features carefully handcrafted based on human knowledge and intuition about 
the specific problem to be tackled. […]

in all the examples of which we are aware, the most impressive demonstrations 
required the network's input to be represented in terms of specialized features 
handcrafted for the given problem”

Sutton & Barto, 2nd ed, section 16.5



We can’t always iterate through all spaces

• Start at a possible start state

• Follow this current policy to the end (or almost perfectly follow 
it)

• Once we hit an end (or horizon) return all the way back up to 
the start



Q Learning

• The most general game playing/decision making 
technique we’ve seen so far

• Only needs a reward function, list of actions, and 
state representation (besides env & discount)

• But that state space sure is too massive to be 
useful huh?



Artificial Neural Nets

Warren McCulloch and Walter Pitts (1943)



Deep Neural Networks



Convolutional Neural Networks



So what if we…



So what if we…



Deep Q-learning

• Our CNN now acts as our Q table, transforming from the input 
image/state and giving the action vector for that state

• We can then give it feedback in terms of how off it was from 
the “true” quality of taking the suggested actions



Learning via self play

• DeepMind
– https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
– https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-

agent-reinforcement-learning
– https://youtu.be/V1eYniJ0Rnk?t=25

• https://www.youtube.com/watch?v=oo0TraGu6QY
• Google's self-learning AI AlphaZero masters chess in 4 hours

– https://www.youtube.com/watch?v=0g9SlVdv1PY

• OpenAI
– https://www.theverge.com/2018/8/28/17787610/openai-dota-2-bots-ai-lost-international-

reinforcement-learning
– https://venturebeat.com/2019/04/22/openais-dota-2-bot-defeated-99-4-of-players-in-public-

matches/
– OpenAI Five Beats World Champion DOTA2 Team 2-0

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/AlphaStar-Grandmaster-level-in-StarCraft-II-using-multi-agent-reinforcement-learning
https://youtu.be/V1eYniJ0Rnk?t=25
https://www.youtube.com/watch?v=oo0TraGu6QY
https://www.youtube.com/watch?v=0g9SlVdv1PY
https://www.theverge.com/2018/8/28/17787610/openai-dota-2-bots-ai-lost-international-reinforcement-learning
https://venturebeat.com/2019/04/22/openais-dota-2-bot-defeated-99-4-of-players-in-public-matches/
https://www.youtube.com/watch?v=tfb6aEUMC04


Deep Q Learning Comparisons

Pro:

• Massively cuts back on search space

• Massively speeds up learning

• CNN almost as fast as look up table

Con:

• Needs a lot of training data to perform well

• Some state spaces are still too complicated (real life)


