
“I may not have gone where I intended to go, but I think I have ended 
up where I needed to be.” –Douglas Adams

“All you need is the plan, the road map, and the courage to press on 
to your destination.” –Earl Nightingale

“If I cease searching, then, woe is me, I am lost. That is how I look at it 
- keep going, keep going come what may.” – Vincent van Gogh 

Disclaimer: I use these notes as a guide rather than a 
comprehensive coverage of the topic. They are neither a 
substitute for attending the lectures nor for reading the 
assigned material.

1



Announcements

• Attendance verification: please take piazza poll!

– https://piazza.com/class/jzhausy9bho1iu?cid=88

• Hw3 (navmesh) posted

2

https://piazza.com/class/jzhausy9bho1iu?cid=88


PREVIOUSLY ON…

3



Modelling and Navigating the Game World

4



Graphs, Graphs, Graphs…

5



Graph Search: Sorting Successors

• Uninformed (all nodes are same)
– DFS (stack – lifo), BFS (queue – fifo)
– Iterative-deepening (Depth-limited)

• Informed (pick order of node expansion)
– Greedy Best First
– Dijkstra – guarantee shortest path (Elog2N)
– Floyd-Warshall
– A* (IDA*)…. Dijkstra + heuristic, Memory Bounded A*
– D*

• Hierarchical can help

http://en.wikipedia.org/wiki/A*_search_algorithm
6



CS 4455 7

Greedy Search

• Expand the node that yields the minimum cost 
– Expand the node that is closest to target
– Depth first
– Minimize the heuristic cost function h(n)

• Not Complete! 
• “Greedy” implies that working solution is not revised

– Note, A* is best-first, but not greedy (incorporates distance from start)

• Local Minima/Maxima (dead end)

• https://cs.stanford.edu/people/abisee/tutorial

https://cs.stanford.edu/people/abisee/tutorial


Iterative Deepening (DFS)

• mid 1970s 
• Idea: perform depth-limited DFS repeatedly, with an increasing 

depth limit, until a solution is found.
• Each repetition of depth-limited DFS needlessly duplicates all prior 

work? 
– Duplication is not significant because a branching factor b > 1 implies that 

the number of nodes at depth k  exactly is much greater than the total 
number of nodes at all depths k-1 and less.

– That is: most nodes are in the bottom level.

• The space required by DFS is O(tree depth); BFS is O(#tree nodes ~= 
branchingdepth); IDDFS O(depth * branching factor)



Admissible Heuristic

• An admissible heuristic is one that guarantees that the shortest 
path can be found with the search because it never overestimates 
the cost of reaching the goal
– A heuristic that does not overestimate is admissible

– Otherwise we say a heuristic is inadmissible

• Euclidean Distance is admissible

• In games: perfectly acceptable to use either admissible or 
inadmissible
– “Overestimates can make A* faster if they are almost perfect but home 

in on the goal more quickly” – M&F



N-1

1. What kind of solution does greedy search find? Why might 
this be useful?

2. What kind of solution does A* find?

3. What are some of the insights behind A*?

4. What’s a good data structure to use with A*? Why?

10



A* Search

• 1968: Single source, single target graph search

• Guaranteed to return the optimal path if the heuristic is 
admissible

• Evaluate each state: f(n) = g(n) + h(n)

• Open list: nodes that are known and waiting to be visited

• Closed list: nodes that have been visited

11



Pathfinding List (Open and Closed Sets)

• Critical Operations:

– Adding an entry to the list

– Removing an entry from the list

– Finding the smallest element

– Finding an entry in the list corresponding to a particular node (find() 
or contains())

• Must find a balance between these four operations for best 
performance



GRAPH SEARCH – PATH PLANNING CONCLUDED

Excellent slides available here: https://cs.stanford.edu/people/abisee/gs.pdf

Supporting interactive animations: https://cs.stanford.edu/people/abisee/tutorial

We can also thank Stanford for A*

13

https://cs.stanford.edu/people/abisee/gs.pdf
https://cs.stanford.edu/people/abisee/tutorial


Efficiency of A*

• “maximally efficient”: 
– For a given heuristic function, no optimal algorithm is guaranteed to do 

less work in terms of nodes expanded.

• Search cost involves both the cost to expand nodes and the cost to 
apply heuristic function.
– Trade-off between heuristic function cost & performance: must consider 

the cost to execute the heuristic function relative to the cost of expanding 
nodes and the reduction in nodes expanded.

– Can we have a h() with perfect estimation?

• A* requires open (& close?) list for remembering nodes
– Can lead to very large storage requirements

14



Tradeoffs

• IDA* is asymptotically same time as A* but only O(d) in space -
versus O(bd) for A* 

– Also complete and optimal

– ID tends to increase search time in exchange for reduced memory

– does not go to the same depth everywhere in the search tree: 

• Begins with an f-bound equal to the f-value of the initial state; performs 
depth-first search bounded by the f-bound instead of a depth bound

• ie threshold < f=g+h rather than depth

15



All pairs shortest path (APSP)

• We talked about this briefly as a “navigation table”

• A look-up table of the form table[node1,node2]-> node 3
– Where node3 is the next node to go to if you want to go from node1 to 

node2

• Intuition: Find the shortest distance/path between all pairs of 
nodes
– Use this to construct the look-up table

16



Floyd-Warshall algorithm

• 1962: All-pairs shortest path algorithm

• Tells you path from all nodes to all other nodes in weighted graph

• Positive or negative edge weights, but no negative cycles (edges 
sum to negative)

• Incrementally improves estimate

• O(|V|3)

• Makes use of dynamic programming

• [Use Dijkstra from each starting vertex when the graph is sparse 
and has non-negative edges]

17



Given: G=(V,E), |V| = number of vertices

For each edge (u, v) do:

dist[u][v] = weight of edge (u, v) or infinity

next[u][v] = v

For k = 0 to |V| do:

for i = 0 to |V| do:

for j = 0 to |V| do:

if dist[i][k] + dist[k][j] < dist[i][j] then:

dist[i][j] = dist[i][k] + dist[k][j]

next[i][j] = next[i][k]

 Intermediate node

 End node

 Start node

18



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 INF INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 0

i = 0

j = 0

Distance

Next

19



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 INF INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 3 9 + 1  < INF

Distance

Next

20



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 3 0 -> 3: dist 10, goto 2

Distance

Next

21



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 INF

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 4 9 + 6  < INF

Distance

Next

22



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 15

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 2

i = 0

j = 4 0 -> 3: dist 10, goto 2

Distance

Next

23



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 15

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 3

i = 0

j = 4 10 + 3  < 15

Distance

Next

24



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 3

i = 0

j = 4 0 -> 4: dist 13, goto 2

Distance

Next

25



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 INF INF

2 9 9 INF 1 6

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 4

3 2 4

4 2 3

k = 3

i = 2

j = 4 1 + 3  < 6

Distance

Next

26



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 INF INF

2 9 9 INF 1 4

3 INF INF 1 INF 3

4 INF INF 6 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2

2 0 1 3 3

3 2 4

4 2 3

k = 3

i = 2

j = 4 2 -> 4: dist 4, goto 3

Distance

Next

27



0

1 2

3

4

9 9

9
1

6

3

0 1 2 3 4

0 INF 9 9 10 13

1 9 INF 9 10 13

2 9 9 INF 1 4

3 10 10 1 INF 3

4 13 13 4 3 INF

0 1 2 3 4

0 1 2 2 2

1 0 2 2 2

2 0 1 3 3

3 2 2 2 4

4 3 3 3 3

k = 3

i = 2

j = 4 2 -> 4: dist 4, goto 3

Distance

Next

Finally...

28



Reconstructing the path from lookup table

Want to go from u to v (E.g. u=0, v=4)

if next[u][v] is empty then return null path

path = (u)

while u <> v do:

u = next[u][v]

path.append(u)

return path

0 1 2 3 4

0 1 2 2 2

1 0 2 2 2

2 0 1 3 3

3 2 2 2 4

4 3 3 3 3

u=next[0][4]=2; path=0,2
u=next[2][4]=3; path=0,2,3
u=next[3][4]=4; path=0,2,3,4

path=0

29



Detecting Negative Cycles

0

1 2

3

4

-9 -9

-9
1

6

3

0 1 2 3 4

0 -3 -9 -9 8 4

1 -9 -3 -9 INF INF

2 -9 -9 -3 1 4

3 INF INF 1 INF 3

4 INF INF 6 3 INF

Distance

30



Reweighting is no help in networks with 
negative cycles: The operation does not 
change the weight of any cycle, so we 
cannot remove negative cycles by 
reweighting. But for networks with no 
negative cycles, we can seek to discover a 
set of vertex weights such that 
reweighting leads to edge weights that 
are nonnegative, no matter what the 
original edge weights. With nonnegative 
edge weights, we can then solve the all-
pairs shortest-paths problem with the all-
pairs version of Dijkstra's algorithm.

31

http://www.informit.com/articles/article.aspx?p=169575&seq
Num=8

http://www.informit.com/articles/article.aspx?p=169575&seqNum=8


When to use A* and APSP

• If the environment is small and static?

• If the environment is dynamic?

• If the environment is large and static?

– If runtime memory is an issue?

– If runtime memory isn’t an issue?

• If the environment is large and dynamic?

41



What to do if…

• the open list has gotten so large that you are running out of 
memory?

• you are running out of time and you have not yet reached an 
answer?

• there are a number of nodes on the open list whose h value is 
very small?

42



SOLVING WEIRD FINAL PATHS

43



Fixing awkward 
agent movement:

• String pulling

• Splines

• Hierarchical A*

• Simple stupid 
funnel

44



Path Smoothing via “String pulling”

• Zig-zagging from point to point looks 
unnatural

• Post-search smoothing can elicit 
better paths

46



Quick Path-Smoothing

• Given a path, look at first two edges, E1 & E2

1. Get E1_src and E2_dest

2. If unobstructed path between the two, set E1_dest = E2_dest, then 
delete E2 from the path. Set next edge as E2.

3. Else, increment E1 and E2.

4. Repeat until E2_dest == goal.

47



Slow Path-Smoothing

• Given a path, look at first two edges, E1 & E2

1. Get E1_src and E2_dest

2. If unobstructed path between the two, set E1_dest = E2_dest, then 
delete E2 from the path. Set E1 and E2 from beginning of path.

3. Else, increment E1 and E2.

4. Repeat until E2_dest == goal.

48



Stupid Simple Funnel

• Check if the left and right points are 
inside the current funnel (described 
by the blue and red lines), 
– if they are, we simple narrow the 

funnel (A-D).

• If the new left endpoint is outside 
the funnel, the funnel is not 
updated (E-F)
If the new left end point is over 
right funnel edge (F), 
– add the right funnel as a corner in the 

path and place the apex of the funnel 
at the right funnel point location and 
restart the algorithm from there (G).

49
http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html

http://digestingduck.blogspot.com/2010/03/simple-stupid-funnel-algorithm.html


SOLVING LONG PATH SEARCH TIMES

50



Solution to Long Search Times

• Precompute paths (if you can)
– Dijkstra: Single source shortest path (SSSP; O(E log V))

• Run for each vertex: O(VE Log V) which can go (V3 Log V) in worst case

– Floyd-warshall: All pairs shortest path (APSP, O(|V|3))

• Register search requests
– Works best with lots of agents. Prevents heavy load to CPU.

– Let agents wander or seek toward a goal while waiting for a search 
response. (Although they might wander in the wrong direction)

• Hierarchical Path Planning
– Within 1% of optimal path length, but up to 10 times faster

51



Precomputing Paths

• Faster than computation on the fly esp. large maps and many 
agents

• Use Dijkstra’s or Floyd-warshall algorithm to create lookup 
tables

• What is the main problem with pre-computed paths?

52



SOLVING WHEN WE CAN’T PRECOMPUTE

Sticky Situations: Movable objects, fog of war, memory issues, and other burps – precomputed 
paths do no good

53



Sticky Situations

• Dynamic environments can ruin plans; memory issues can inhibit 
precomputing

• What do we do when an agent has been pushed back through a 
doorway that it has already “visited”?

• What do we do in “fog of war” situations?

• What if we have a moving target?

54



Dynamic environments

• Terrain can change: destructible environments

– Jumpable?

– Kickable?

– Too big to jump/kick?

• Path network edges can be created/eliminated

55



Heuristic Search

• A* (Iterative deepening, memory bounded)

• Hierarchical A*

• Real-time A*

• Real-time A* with lookahead

• D* lite

56



Hierarchical Path Planning

• Used to reduce CPU overhead of graph search

• Plan with coarse-grained and fine-grained maps

• Example: Planning a trip to NYC based on states, then 
individual roads

57



Hierarchical A*

• http://www.cs.ualberta.ca/~mmueller/ps/hpastar.pdf

• http://aigamedev.com/open/review/near-optimal-hierarchical-
pathfinding/

• Within 1% of optimal path length, but up to 10 times faster

58

http://www.cs.ualberta.ca/~mmueller/ps/hpastar.pdf
http://aigamedev.com/open/review/near-optimal-hierarchical-pathfinding/


Hierarchical A*

• People think hierarchically (more efficient)

• We can prune a large number of states

59



How high up do you go? As high as you can without 
start and end being in the same node.

60



Path Smoothing in Hierarchical A*

61



1. Build clusters. Can be arbitrary
2. Find transitions, a (possibly empty) set of obstacle-free locations.  
3. Inter-edges: Place a node on either side of transition, and link them (cost 1).
4. Intra-edges: Search between nodes inside cluster, record cost.

* Can keep optimal intra-cluster paths, or discard for memory savings.

62



1. Start cluster: Search within cluster to the border
2. Search across clusters to the goal cluster
3. Goal cluster: Search from border to goal
4. Path smoothing

* Really just adds start and goal to 
the hierarchy graph

63



Real Time A*

• “One should backtrack to a previously visited real world state 
when the estimate of solving the problem from that state plus 
the cost of returning to that state is less than the estimated 
cost of going forward from the current state.” - Korf

• Tracks states/nodes that have been visited by an actual move 
in the real world of the problem solver

64
Thad StArner says: bidirectional a star path search still has research available 
to be done on determining your terminal case.



Real Time A*

• Online search: execute as you search
– Because you can’t look at a state until you get there. No backtracking
– No open list

• Modified cost function f()
– g(n) is actual distance from n to current state (instead of initial state)
– Use a hash-table to keep track of h() for nodes you have visited (because you might visit 

them again)

• Pick node with lowest f-value from immediate successors
• Execute move immediately
• After you move, update previous location

– h(prev) = second best f-value
– Second best f-value represents the estimated cost of returning to the previous state (and 

then add g)

65



RTA* with lookahead

• At every node you can see some distance

• DFS, then back up the value (think of it as minimin with alpha-
pruning)

• Search out to known limit

• Pick best, then move

• Repeat, because something might change in the environment that 
changes our assessment
– Things we discover as our horizon moves

– Things that change behind us

66



D* Lite

• 1994: Incremental search: replan often, but reuse search space 
if possible

• In unknown terrain, assume anything you don’t know is clear 
(optimistic)

• Perform A*, execute plan until discrepancy, then replan

• D* Lite achieves 2x speedup over A* (when replanning)

67



“Omniscient optimal”: given complete information

68



“Optimistic optimal”: assume empty for parts you don’t know.

69



Heuristic Search Recap

• A*
– Use when we can’t precompute

• Dynamic environments

• Memory issues

– Optimal when heuristic is admissible 
(and assuming no changes)

– Replanning can be slow on really big 
maps

• Hierarchical A* is the ~same, but 
faster
– Within 1% of A* optimality but up to 

10x faster

• Real-time A*
– Stumbling in the dark, 1 step 

lookahead

– Replan every step, but fast!

– Realistic? For a blind agent that knows 
nothing

– Optimal when completely blind

• Real-time A* with lookahead
– Good for fog-of-war

– Replan every step, with fast bounded 
lookahead to edge of known space

– Optimality depends on lookahead

70



Heuristic Search Recap

• D* Lite

– Assume everything is open/clear

– Replan when necessary

– Worst case: Runs like Real-Time A*

– Best case: Never replan

– Optimal including changes

71



See Also

• AI Game Programming wisdom 2, CH 2

• Buckland CH 8

• Millington CH 4

• Wikipedia rabbit hole

• https://cs.stanford.edu/people/abisee/gs.pdf

– https://cs.stanford.edu/people/abisee/tutorial

• http://mas.cs.umass.edu/classes/cs683/lectures-2010/

72

https://cs.stanford.edu/people/abisee/gs.pdf
https://cs.stanford.edu/people/abisee/tutorial
http://mas.cs.umass.edu/classes/cs683/lectures-2010/

