
“A good decision is based on knowledge
and not on numbers.” – Plato

“Once you make a decision, the universe
conspires to make it happen.” – Ralph

Waldo Emerson

“The quality of decision is like the well-
timed swoop of a falcon which enables it
to strike and destroy its victim.” – Sun Tzu

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

1

Announcements

• HW4 is posted, due this Sunday

N-1&2: Decision Making, FSMs

1. How can we describe decision making, (function of what to what?)?
2. What makes FSMs so attractive? What is difficult to do with them?
3. Two drawbacks of FSMs and how to fix?
4. What are the performance dimensions we tend to assess?
5. What are two methods we discussed to learn about changes in the world

state?
6. FSMs/Btrees: R___ :: Planning : D____
7. When is R__ good? When is D__?
8. H______ have helped in most approaches.
9. What are two methods we discussed to learn about changes in the world

state?

FSMS CONTINUED. EXAMPLES…

* Usually animations are linked to states, transitions, or both.

Prey Example

Hierarchical FSM Example

• Equivalent to regular FSMs
• Easier to think about encapsulation

FSM: Quake dog monster
SPAWN

IDLE

ATTACK

DIE

Main input event act. Dog specific act. (gen.) monster act.h
tt

p
:/

/a
i-

d
e

p
o

t.
co

m
/F

in
it

eS
ta

te
M

ac
h

in
e

s/
FS

M
-F

ra
m

ew
o

rk
.h

tm
l

FSM Examples

• Pac-Man

• FPSs

– What might be states?

– NPCs only?

FSM Examples

• Pac-Man

• FPSs

• Sports Simulations

– What might be states?

FSM Examples

• Pac-Man

• FPSs

• Sports Simulations

• RTSs

– What might be states?

UnrealScript Example

off on idle

1st 2nd

reverse

turn key on

turn key off

turn key on

turn key off

shift up

shift up

shift down

shift down

shift up

shift down

stall

stall

public void runStateMachine (Event e)

{

switch (state) {
case 0: //off

if (e.isTurnOn()) { power=true; state=1;}
break;

case 1: //on
if (e.isTurnOn()) { startEngine(); state=2;}
else if (e.isTurnOff()) { power=false; state=0;}
break;

case 2: //idle
makeEngineSound();
if (e.isUpShift()) { gear=1; state=3;}
else if (e.isDownShift()) { gear=-1; state=9;}
else if (e.isTurnOff()) { stopEngine(); state=1;}
break;

…
}

}

FSM IMPLEMENTATIONS

Choices have consequences

Implementations

• Centralized conditionals
– If / then statements
– Throw it all in a switch statement

• Simple, but not extendable

– Macros

• Distributed / Object oriented
– State as class; transition rules within

• Agent carries reference to current
state. Extendable

• State as table (central or distrib)
– Can be stored separately, easier for

designers

void RunLogic(int state) {
switch(state) {

case 0: //Wander
Wander();
if(SeeEnemy())

state = 1;
if(Dead())

state = 2;
break;
case 1: //Attack

Attack();
state = 0;
if(Dead())

state = 2;
break;

case 2: //Dead
SlowlyRot()
break;

}

Impl: Centralized Conditionals

• Simplest method

• After an action, the state
might change.

• Requires a recompile for
changes (hard-coded)

• No pluggable AI

• Not accessible to non-
programmers

• No set structure

• Can be a bottleneck.

void RunLogic(int *state) {

switch(*state) {

case 0: //Wander

Wander();

if(SeeEnemy())

*state = 1;

if(Dead())

*state = 2;

break;

case 1: //Attack

Attack();

*state = 0;

if(Dead())

*state = 2;

break;

case 3: //Dead

SlowlyRot()

break;

}

… in Game Loop (w/ enum)
public enum State {STATE1, STATE2, STATE3};
State state = State.STATE1;
void tick ()
{

switch (state) {
case STATE1:

PlayAnimation(…);
if (…) state = newstate;
else if (…) state = newstate;
else if …
else …

case STATE2:
PlayAnimation(…);
if (…) state = newstate;
else if…
else if…
else …

}
}

Implementation: Macros

…
BeginStateMachine

State(WANDER)
Begin:

Wander();
if (SeeEnemy()) GotoState(ATTACK);
if (Incapacitated()) GotoState(INCAPACITATED);

State(INCAPACITATED)
Begin:

…
Moan:

PlaySound(moan);
goto ‘Moan’;

EndStateMachine

Impl: State Transition Tables

Current
State

Condition
State

Transition

RunAway Safe Patrol

Attack WeakerThanEnemy RunAway

Patrol
Threatened &&

StrongerThanEnemy
Attack

Patrol
Threatened &&

WeakerThanEnemy
RunAway

If Kitty_Hungry AND NOT Kitty_Playful SWITCH_CARTRIDGE eat_fish

See Buckland Ch2 for Kitty example

Impl: Tables Alt

Event 
State ↓

E1 E2 E3

S1 ---- A1/S2 A3/S1

S2 … … …

S3 … … …

S: state, E: event, A: action, ----: illegal transition

Impl: State Transition Tables Alt Alt

Current State Condition
State

Transition
Action

RunAway Safe Patrol

Attack WeakerThanEnemy RunAway

Patrol
Threatened &&

StrongerThanEnemy
Attack

Patrol
Threatened &&

WeakerThanEnemy
RunAway

Implementation: Virtual FSM

State Name Conditions Actions

Current state
name

Entry Outputs…

Exit Outputs…

Condition 1… Outputs…

Condition 2… Outputs…

Next state name Condition X Outputs…

Next state name Condition Y Outputs…

… … …

https://en.wikipedia.org/wiki/Virtual_finite-state_machine

https://en.wikipedia.org/wiki/Virtual_finite-state_machine

Implementation: Virtual FSM

State Name Conditions Actions

Patrol Entry SwingKeys()

Exit DropClipboard()

Happy() Whistle()

NearDog() PetDog()

Flee Overwhelmed() Scream()

Attack EnemyNear() TakeOutGun()

… … …

Impl: Distributed State Design Pattern

• Rules for transition contained within the states themselves

• Good encapsulation – OOP

• Can swap in/out states easier

• AKA

– “State Design Pattern” (Buckland italics)

– “Embedded rules” (Buckland subheading)

Eat_fish cartridge knows when to switch to Use_litterbox

Impl: Distributed / Object Oriented
interface Entity

{

void update () ;

//void changeState (State newstate);

}

interface State

{

void execute (Entity thing);

void onEnter (Entity thing);

void onExit (Entity thing);

}

Where “thinking” happens.

Impl: Distributed
class Troll implements Entity
{ int liveTime=0;

State currentstate, previousState;
@Override
void update () {

liveTime++;
currentstate.execute(this);

}
//@Override
void changeState (State newstate) {

previousState = currentState;
currentstate.onExit(this);
currentstate = newstate;
currentState.onEnter(this);

}
}

Class CoolState implements State
{ @Override

void execute (Entity thing) {}
void execute (Troll thing) {

if (thing.liveTime = 0) {
thing.playAnimation(ani1);
thing.changeState(new st);

}
else thing.doSomething();

}

@Override
void onEnter (Entity thing) {…}
@Override
void onExit (Entity thing) {…}

}

http://www.ai-junkie.com/architecture/state_driven/tut_state1.html

http://www.ai-junkie.com/architecture/state_driven/tut_state1.html

Impl: Consolidated, Distributed
class StateMachine //implements Entity?
{ State currSt, prevSt, globalSt;

Entity owner;

StateMachine(Entity e){ owner = e; }

void update () {
if(globalSt != null)

globalSt.execute(owner);
currentstate.execute(owner);

}
void changeState (State newstate) {

previousState = currentState;
currentstate.onExit(owner);
currentstate = newstate;
currentState.onEnter(owner);

}
void revertToPrev(){ changeState(prevSt); }
boolean isInState(State st) { …}

}

class Troll implements Entity

{ StateMachine fsm;

Troll(){

fsm = new StateMachine(this);

fsm.setGlobalState(

TrollGlobalState.singleton());

fsm.setLocalState(

TrollSleepInCave.singleton());

}

void update(){

liveTime++;

fsm.update();

}

StateMachine getFSM()(return fsm; }

}

Global States

• May have multiple states that could happen at any time

• Want to avoid authoring many transitions from every other
state to these

• Create a global state that is called every update cycle

• State “blips” (return to previous after global)

Impl: Python-like
class StateMachine:

states #list of states
initST
curST = initST

def update():
triggeredT = None
for t in curST.transitions():

if t.isTriggered():
triggeredT = t
break

if triggeredT:
targetST = triggeredT.getTargetState()
actions = curST.getExitAction()
actions += triggeredT.getAction()
actions += targetST.getEntryAction()
curST = targetST
return actions

else: return curST.getAction()

class State:

actions

def getAction(): return actions

entryActs

def getEntryAction(): return entryActs

exitActs

def getExitAction(): return exitActs

transitions

def getTransitions(): return transitions

class Transition:

condition

def isTriggered(): return condition.test()

targetState

def getTargetState(): return targetState

actions

def getAction(): return actions

FSM Extensions

• Extending States
– Adding onEnter() and onExit() states can help handle state changes

gracefully.

• Stack Based FSM’s
– Push new state onto stack, when it’s done pop stack for next state

• Allows an AI to switch states, then return to a previous state.

– Gives the AI ‘memory’

– More realistic behavior

– Subtype: Hierarchical FSM’s

Motivating FSM Stacks

• Original version
doesn’t remember
what the previous
state was.

• One solution is to
add another state
to remember if you
heard a sound
before attacking.

Spawn

D

Inspect

~E

D

Attack

E,~D~E

E

E

D

S
Patrol

E

~S

S

D

E

Attack-P

E,S,~D

~E

~S

S

D

E: Enemy in sight; S: hear a sound; D: dead

Motivating FSM Stacks (2)

Spawn

D

(-E,-S,-L)

Wander
-E,-D,-S,-L

E

-S
Attack-E

E,-D,-S,-L

E

Chase

-E,-D,S,-L

S

D

S

D

D

Retreat-E

E,-D,-S,L

L

-E

Retreat-S

-E,-D,S,L

Wander-L
-E,-D,-S,L

Retreat-ES

E,-D,S,L

Attack-ES

E,-D,S,-L

E

E

-E

-L

-S

L

-E E

L
-L

-L

-L

L

D

Worst case:
Each extra state

variable can add 2n

extra states
n = number of
existing states

Using a stack would
allow much of this

behavior without the
extra states.

E: Enemy in sight; S: hear a sound; D: dead

Stack FSM – Thief 3

Stack allows AI to
move back and
forth between

states.

Leads to more
realistic behavior

without increasing
FSM complexity.

Hierarchical FSMs

• Expand a state into its own sub-FSM

• Some events move you around the same level in the hierarchy,
some move you up a level

• When entering a state, have to choose a state for it’s child in
the hierarchy

– Set a default, and always go to that

– Random choice

– Depends on the nature of the behavior

Hierarchical FSM Example

• Equivalent to regular FSMs,
adding recursive multi-level
evaluation

• Easier to think about
encapsulation

• Hierarchical approach addresses
entry, update, exit and any
(wildcard) at multiple levels

• But how to deal with transition
from lower level state?

Hierarchical FSM

• Changes in world state event (input vocabulary) can be used
for transitions at any level in hierarchy

• If a low-level state does not handle a potential transition event,
the unhandled event is dealt with at a higher level

• Allows designer to avoid duplicating transitions

• …but you need a way for low-level state to transition out once
high level transition has been identified…

Hierarchical FSM

• Recursive algorithm
– Highest level transitions are always

honored, bypassing lower level
updates

– Hierarchical states remember what
child state they are in

– All actions, whether associated with
entry, update, or exit are deferred.
These are collated in order of recursive
evaluation and only executed once the
entire HFSM is evaluated

– Furthermore, transitions that change
levels in the hierarchy are deferred
when transitioning up (recursively
chained when going down) M&F 5.19

Hierarchical FSMs in
Destroy All Humans 2

http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php

http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php

Hierarchical FSMs in
Destroy All Humans 2

• Active (blue), pending (orange)

• Only active behaviors update

• Only active behaviors have children

• If * children startable, rank

• States can be marked as non-

interruptable or non-blocking

Hierarchical FSMs in
Destroy All Humans 2

• Self-contained behaviors

– When to activate

– What activates it, interrupts it

– What to do on start, exit

– What children it starts

• Code-supported behaviors exist
for complex, non-generalizable
cases

Hierarchical FSMs in
Destroy All Humans 2

More FSM Extensions

• Fuzzy State Machines
– Degrees of truth allow multiple FSM’s to

contribute to character actions.

• Multiple FSM’s
– High level FSM coordinates several smaller

FSM’s.

• Polymorphic FSM’s
– Allows common behavior to be shared.

– Soldier -> German -> Machine Gunner

Probabilistic State Machines

• Personalities

– Change probability that character will perform a
given action under certain conditions

Aggressive Passive

Attack 50% 5%
Evade 5% 60%
Random 10% 10%
Flock 20% 20%
Pattern 15% 5%

Probabilistic Example

Fire At Enemy

Run out of
Range

Enemy Within Hand-

to-Hand Range

50%

Far Enough to

Take Shot

Run Away

Enemy Within Hand-

to-Hand Range

50%

Probabilistic State Machines

• Other aspects:
– Sight

– Memory

– Curiosity

– Fear

– Anger

– Sadness

– Sociability

• Modify probabilities on the fly?

Non-Deterministic Hierarchical FSM

Polymorphic FSMs

• Small changes to low level behaviors may be needed for
different types of entities

• Polymorphism allows multiple versions of a single FSM to be
executed on NPC state

Polymorphic FSM Example

Soldier

Rifleman Officer

British Soviet

American German

Machine Gunner

British Soviet

American German

British Soviet

American German

Other FSM extensions

• Inter-character concurrent FSM
– Coordination of multiple characters

• Intra-character concurrent FSM
– Coordination of multiple behaviors within one NPC

• Levels of detail (LODs)
– Analogous to LOD in graphs

– E.g. crowd simulation
• Close NPCs use fully elaborated FSM

• Faraway NPCs use simpler FSMs or worse

Impl: Data Driven

• Developer creates scripting language to control AI.

• Script is translated to C++ or bytecode.

• Requires a vocabulary for interacting with the game engine.

• A ‘glue layer’ must connect scripting vocabulary to game
engine internals.

• Allows pluggable AI modules, even after the game has been
released.

Scripted AI

• Many game engines are virtual machines

• Script is a program written in a programming language that
makes calls into the game engine

• AI is the script

• Examples: Lua, Ruby, UnrealScript

• Powerful when paired with trigger systems

Game Engine Interfacing

• Simple hard coded approach
– Allows arbitrary parameterization

– Requires full recompile

• Function pointers
– Pointers are stored in a singleton

or global

– Implementation in DLL
• Allows for pluggable AI.

• Data Driven
– An interface must provide glue

from engine to script engine.

Engine AI

Engine AIDLL

Engine

S. Interface

AI

Compiler

Byte Code

Processing Paradigms

• Polling
– Simple and easy to debug.
– Inefficient since FSM’s are always evaluated.

• Event Driven Model
– FSM registers which events it is interested in.
– Requires Observer model in engine.
– Hard to balance granularity of event model.

• Multithreaded
– Each FSM assigned its own thread.
– Requires thread-safe communication.
– Conceptually elegant.
– Difficult to debug.
– Can be made more efficient using microthreads.

Single-threaded execution

Object 1 Object 2

Multi-threaded execution

Object 1 Object 2 Object 3

Messaging/Triggers vs Polling

• Well-designed games tend to be event driven

• Examples (broadcast to relevant objs)

– Wizard throws fireball at orc

– Football player passes to teammate

– Character lights a match (delayed dispatch match)

• Events / callbacks, publish / subsribe, Observers (GoF)

– See Buckland Ch 2: Adding Messaging (pp69)

Time Management

• Helps manage time spent in processing FSM’s.

• Scheduled Processing
– Assigns a priority that decides how often that particular FSM is

evaluated.

– Results in uneven (unpredictable) CPU usage by the AI subsystem.
• Can be mitigated using a load balancing algorithm.

• Time Bounded
– Places a hard time bound on CPU usage.

– More complex: interruptible FSM’s

FSM Pros & Cons

Pro

• Ubiquitous (not only in digital games)

• Quick and simple to code

• (can be) Easy* to debug

• Very fast: Small computational overhead

• Intuitive

• Flexible

• Easy for designers without coding
knowledge

• Non-deterministic FSM can make behavior
unpredictable

Con

• When it fails, fails hard:
– A transition from one state to another

requires forethought (get stuck in a state or
can’t do the “correct” next action)

• Number of states can grow fast
– Exponentially with number of events in world

(multiple ways to react to same event given
other variables): s=2e

• Number of transitions/arcs can grow even
faster: a=s2

• Doesn’t work with sequences of
actions/memory

References / See Also

• AI Game Programming Wisdom 2
• Web

– http://ai-depot.com/FiniteStateMachines
– http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.

php
– https://en.wikipedia.org/wiki/Virtual_finite-state_machine

• Buckland Ch 2
– http://www.ai-junkie.com/architecture/state_driven/tut_state1.html

• Millington Ch 5
• Jarret Raim’s slides (Dr. Munoz-Avila’s GAI class 2005)

– http://www.cse.lehigh.edu/~munoz/CSE497/classes/FSM_In_Games.ppt

• Mark Riedl, Brian O’Neill, and Brian Magerko

http://ai-depot.com/FiniteStateMachines/FSM-Framework.html
http://www.gamasutra.com/view/feature/130279/creating_all_humans_a_datadriven_.php
https://en.wikipedia.org/wiki/Virtual_finite-state_machine
http://www.ai-junkie.com/architecture/state_driven/tut_state1.html
http://www.cse.lehigh.edu/~munoz/CSE497/classes/FSM_In_Games.ppt

Trajectory Update

• HW4: A*

• To come: More decision making

– Planning

– Decision trees

– Behavior trees

– Rule based systems

– Fuzzy Logic

– Markov Systems

