Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the topic. They are neither a substitute for attending the lectures nor for reading the assigned material.

	ENGINEERING	FLOWCHART				
	DOES I	T MOVE?				
)	YES				
SHOUL	D IT?	SHOULD IT?				
NO	YES	YES	NO			
NO		NO PROBLEM				
,	10-40		10			
	100 M					

FSM Pros & Cons

Pro

- Ubiquitous (not only in digital games)
- Quick and simple to code
- (can be) Easy* to debug
- Very fast: Small computational overhead
- Intuitive
- Flexible
- Easy for designers without coding knowledge
- Non-deterministic FSM can make behavior unpredictable

Con

- When it fails, fails hard:
 - A transition from one state to another requires forethought (get stuck in a state or can't do the "correct" next action)
- Number of states can grow fast
 - Exponentially with number of events in world (multiple ways to react to same event given other variables): s=2^e
- Number of transitions/arcs can grow even faster: a=s²
- Doesn't work with sequences of actions/memory

More problems with FSM

- Maintainability:
 - Addition/removal of state requires change of conditions of all other states that have transition to the new or old one. Susceptible to errors
- Scalability:
 - FSMs with many states lose readability, becoming rats nest.
- Reusability:
 - Coupling between states is strong; often impossible to use the same behavior in multiple projects
- Parallelism:
 - With a FSM, how do you run two different states at once?

Decision Making: (Decision & Behavior) Trees

2019-09-30 M&F Ch 5.2

Decision Trees

M&F 5.3

Decision Trees

- Fast, simple, easily implemented, easy to grok (simple ones)
- Modular & easy to create
- Simplest decision making technique
- Used extensively to control
 - Characters
 - In-game decision making (eg animation); complex strategic and tactical AI
- Can be learned (rare in games)
 - Learned tree still easy to grok: rules have straightforward interpretation
 - Can be robust in the presence of errors, missing data, and large numbers of attributes
 - Do not require long training times
- w/out learning, it's essentially a GUI (or fancy structure) for conditionals

D-Tree Structure

- Dtree made of connected decision points
 - root == starting decision
 - leaves == actions
- For each decision, one of 2+ options is selected
- Typically use global game state

Decisions

- Can be of multiple types
 - Boolean
 - Enumeration
 - Numeric range
 - etc.
- No explicit AND or OR, but representable
 - Tree structure represents combinations

AND / OR in D-Tree

Can these be translated into rules? If so, how?

D-Tree Decisions

Enemy Visible OR Audible?

...or...

Enemy NOT Visible AND Audible?

- No explicit AND or OR, but representable
 - A AND B: serial TRUE decisions:
 - A?->TRUE->B?->TRUE
 - A OR B: TRUE if either of:
 - A TRUE (and B TRUE or FALSE)
 - A ?FALSE->B? TRUE
 - Tree structure represents combinations
 - Lack of compound Boolean sentences is more a convention, as granularity of decisions has benefits for automated restructuring tree later

Decision Complexity and Efficiency

- Tree structure affords shared condition evaluation
 - Number of decisions in tree usually much smaller than number of decisions in tree
 - E.g. 15 different decisions w/ 16 actions, but only 4 considered
- This insight exploited by RETE (later)
- Must tree be binary?

M&F 5.6

Branching

- N-ary trees
 - Usually ends up as if/then statements
 - Can be faster if using enums w/ array access
 - Speedup often marginal & not worth the effort
- Binary trees
 - Easier to optimize
 - ML techniques typically require binary trees
 - Can be a graph, so long as it's a DAG

Knowledge Representation

- Typically work directly w/ primitive types
- Requires no translation of knowledge
 - Access game state directly
 - Since whole tree isn't evaluated, expensive to query knowledge can be lazy/on-demand for performance improvement (consider in comparison to rule based system)
 - Can cause HARD-TO-FIND bugs
 - Rare decisions \rightarrow when do pop up, weird effects
 - Structure of game-state changes \rightarrow breaks things
 - Cons avoidable w/ careful world interface
 - See Millington CH 10

Tree Balancing

- More balanced \rightarrow faster (theory)
 - Balance ~= same number of leaves on each branch
 - O(N) vs O(Log2 N)
- Short path to likely action → faster (practice)
 - O(1)
 - Defer time consuming decisions 'til last
- Performance tuning
 - Dark art since fast anyway, rarely important
 - Balance, but keep common paths short & bury long decisions

M&F Fig 5.9

See M Ch 5.2

class DecisionTreeNode: def makeDecision() #recursively walk tree

class Action: def makeDecision(): return this

```
class FloatDecision(Decision):
  minValue
  maxValue
  def getBranch():
    if max >= test >= min:
       return trueNode
    else:
       return falseNode
```

class Decision(DecisionTreeNode):
 trueNode
 falseNode
 testValue
 def getBranch()
 def makeDecision() :
 branch = getBranch() #runs test
 return branch.makeDecision() #recursive walk

Randomness

- Predictable == bad
- Can add a random decision node

 random behavior choice adds
 unpredictability, interest, and variation
- Keep track of decision from last cycle
 - Random choice made at every frame can make unstable behavior
 - Add timeout so behavior can change
- See M 5.2.10 for implementation deets

M&F 5.12

D-Trees VS FSMs?

• Decision tree: same set of decisions is always used. Any action can be reached through the tree.

Root to leaf every time

- FSM: only transitions from the current state are considered. Not every action can be reached.
 - FSM update function called (each frame, or based on transition condition)
 - If transition "triggered", schedule for "fire" the associated actions (onExit, transition action, onEnter

Learning Decision Trees

- Real power of D-trees comes from learning
- Problem: Construct a decision tree from examples of inputs and actions
- Sol'n: Quinlan's "Induction of Decision Trees"
 - ID3, C4.5, See5
 - <u>http://en.wikipedia.org/wiki/ID3_algorithm</u>
 - J48 (GPL java implementation)
 - <u>http://www.opentox.org/dev/documentation/components/j48</u>
 - See Weka (GNU GPL)

Andrew Ng – The State of AI (December 15, 2017)

- "99% of the economic value created by AI today is through one type of AI: which is learning a mapping A → B, or input to output maps"
 - Falls under category of supervised learning
- Other types (ordered falloff)
 - Transfer learning
 - Unsupervised learning
 - Reinforcement learning

Input	Output
Picture	Is it you? (0/1)
Loan application	Will the applicant repay the loan? (0/1)
Online: (Ad, User)	Will you click? (0/1)
Voice input	Text transcript
English	French
Car: image, radar/lidar	Positions of other cars

Learning Decision Trees

- A simple technique whereby the computer learns to predict human decision-making
- Can also be used to learn to classify

A decision can be thought of as a classification problem

- An object or situation is described as a set of attributes
 - Attributes can have discrete or continuous values
- Predict an outcome (decision or classification)
 - Can be discrete (classification) or continuous (regression)
 - We assume positive (true) or negative (false)

Learned D-tree: how well do they work?

- Many case studies have shown that decision trees are at least as accurate as human experts.
 - study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time; the decision tree classified 72% correct
 - British Petroleum designed a decision tree for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system
 - Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

Basic Concept

- Given the current set of decisions, what attribute can best split them?
- Choose the "best one" and create a new decision node
 - Best == most information gained == smallest entropy
 - Keeps tree small
- Good attributes make homogeneous sets
- Recursively go down each edge

Example

Example	Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Wait	
X ₁	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	т	
X ₂	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F	
X ₃	F	Т	F	F	Some	\$	F	F	Burger	0-10	т	
X ₄	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	т	
X ₅	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F	
X ₆	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	т	
X ₇	F	Т	F	F	None	\$	Т	F	Burger	0-10	F	
X ₈	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	т	
X ₉	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F	
X ₁₀	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F	
X ₁₁	F	F	F	F	None	\$	F	F	Thai	0-10	F	
X ₁₂	Т	Т	Т	Т	Full	\$	F	F	Burger	10-60	Т	

Choosing an Attribute

• Idea: A good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

• *Patrons?* is a better choice

Attack?

- Attributes:
 - Bypass? Can be bypassed
 - Loot? Has valuable items/treasure
 - Achievement? Will unlock an achievement if you win
 - On Quest? You are on a quest
 - Experience. How much experience points you get
 - Environment. How favorable is the terrain?
 - Mini-boss? Is this a mini-boss, preventing further progress?
 - Element. The elemental properties (earth, air, fire, water)
 - Estimated Time. How long will this combat take (quick, short, long, very long)?
 - Team size. How many monsters in the team (none, small, large)?

#	Bypass?	Loot?	Achie ve.	On quest	Team size	Exp.	Env.	Mini- Boss	Elem ent	Est. Time	Atta ck?
1	Т	F	F	Т	few	Lot	Bad	Т	water	quick	Y
2	Т	F	F	Т	many	Little	Bad	F	air	long	Ν
3	F	Т	F	F	few	Little	Bad	F	earth	quick	Y
4	Т	F	Т	Т	many	Little	Bad	F	air	med	Y
5	Т	F	Т	F	many	Lot	Bad	Т	water	v. long	Ν
6	F	Т	F	Т	few	Med	Good	Т	fire	quick	Y
7	F	Т	F	F	single	Little	Good	F	earth	quick	Ν
8	F	F	F	Т	few	Med	Good	Т	air	quick	Y
9	F	Т	Т	F	many	Little	Good	F	earth	v. long	Ν
10	Т	Т	Т	Т	many	Lot	Bad	Т	fire	med	Ν
11	F	F	F	F	single	Little	Bad	F	air	quick	Ν
12	Т	Т	Т	Т	many	Little	Bad	F	earth	long	Y

#	Bypass?	Loot?	Achie ve.	On quest	Team size	Exp.	Env.	Mini- Boss	Elem ent	Est. Time	Atta ck?
1	Т	F	F	Т	few	Lot	Bad	Т	water	quick	Y
2	Т	F	F	Т	many	Little	Bad	F	air	long	Ν
3	F	Т	F	F	few	Little	Bad	F	earth	quick	Y
4	Т	F	Т	Т	many	Little	Bad	F	air	med	Y
5	Т	F	Т	F	many	Lot	Bad	Т	water	v. long	Ν
6	F	Т	F	Т	few	Med	Good	Т	fire	quick	Y
7	F	Т	F	F	single	Little	Good	F	earth	quick	Ν
8	F	F	F	Т	few	Med	Good	Т	air	quick	Y
9	F	Т	Т	F	many	Little	Good	F	earth	v. long	Ν
10	Т	Т	Т	Т	many	Lot	Bad	Т	fire	med	Ν
11	F	F	F	F	single	Little	Bad	F	air	quick	Ν
12	Т	Т	Т	Т	many	Little	Bad	F	earth	long	Y

- Learned from the 12 examples
- Why doesn't it look like the previous tree?
 - Not enough examples
 - No reason to use environment or mini-boss
 - Hasn't seen all cases
- Learning is only as good as your training data
- Supervised learning
 - Training set
 - Test set

Which attribute to choose?

- The one that gives you the most information (aka the most diagnostic)
- Information theory
 - Answers the question: how much information does something contain?
 - Ask a question
 - Answer is information
 - Amount of information depends on how much you already knew (information gain)
- Example: flipping a coin

Entropy

- Measure of information in set of examples
 - That is, amount of agreement between examples
 - All examples are the same, E = 0
 - Even distributed and different, E = 1
- If there are n possible answers, v₁...v_n and v_i has probability P(v_i) of being the right answer, then the amount of information is:

$$H(P(v_1),...,P(v_n)) = - \overset{n}{\underset{i=1}{\otimes}} P(v_i) \log_2 P(v_i)$$

• For a training set:

p = # of positive examples

n = # of negative examples

$$H_{c}^{\mathfrak{A}} \underbrace{p}_{\mathfrak{P}+n}, \frac{n}{p+n\mathfrak{g}} = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

Probability of Probability of a positive example a negative example

• For our attack behavior

- H() = 1

Pos: 13468 12 Neg: 25791011

 Would not be 1 if training set weren't 50/50 yes/no, but the point is to arrange attributes to increase gain (decrease entropy)

Measuring attributes

- Remainer(A) is amount of entropy remaining after applying an attribute
 - If I use attribute A next, how much less entropy will I have?
 - Use this to compare attributes

- Not done yet
- Need to measure information gained by an attribute

Gain(A) =
$$H_{c}^{\hat{a}} \frac{p}{p+n}, \frac{n}{p+n\emptyset}^{\ddot{0}}$$
 - remainder(A)

- Pick the biggest
- Example:

- Gain(element) = H(
$$\frac{1}{2}$$
, $\frac{1}{2}$) - $\frac{\overset{\text{a}}{c}}{\overset{2}{c}}\frac{2}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{1}{2}$, $\frac{1}{\overset{\text{o}}{c}}^{\overset{\text{a}}{c}}+\frac{2}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{1}{2}$, $\frac{1}{\overset{\text{o}}{c}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}\frac{2}{\overset{\text{o}}{d}}^{\overset{\text{a}}{c}}$

= 0 bits

- Gain(teamsize) = H(
$$\frac{1}{2}$$
, $\frac{1}{2}$) $-\frac{\overset{\text{a}}{c}}{\overset{\text{c}}{c}}\frac{2}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}0, \frac{2}{2}\overset{\text{o}}{\vartheta}^{\overset{\text{c}}{c}}+\frac{4}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}4, \frac{0}{4}\overset{\text{o}}{\vartheta}^{\overset{\text{o}}{c}}+\frac{6}{12}H_{\overset{\text{c}}{c}}^{\overset{\text{a}}{c}}2, \frac{4}{6}\overset{\text{o}}{\vartheta}^{\overset{\text{o}}{c}}$

≈ 0.541 bits

Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default

ELSE IF all examples have same classification THEN RETURN classification

ELSE IF attributes is empty RETURN majority-value(examples)

ELSE

tree = new decision tree with best as root

m = majority-value(examples)

```
FOREACH answer v<sub>i</sub> of best DO
```

examples_i = {elements of examples with best=v_i}

subtree_i = decision-tree-learning(examples_i, attributes-{best}, m)

add a branch to tree based on v_i and subtree_i

RETURN tree

How many hypotheses?

- How many distinct trees?
 - N attributes
 - = # of boolean functions
 - = # of distinct truth tables with 2ⁿ rows

= 2^2^n

- With 6 attributes: > 18 quintillion possible trees
 - 18,446,744,073,709,551,616

How do we assess?

- How do we know hypothesis ≈ true decision function?
- A learning algorithm is good if it produces hypotheses that do a good job of predicting decisions/classifications from unseen examples
- 1. Collect a large set of examples (with answers)
- 2. Divide into training set and test set
- 3. Use training set to produce hypothesis h
- 4. Apply h to test set (w/o answers)
 - Measure % examples that are correctly classified
- 5. Repeat 2-4 for different sizes of training sets, randomly selecting examples for training and test
 - Vary size of training set m
 - Vary which m examples are training

- Plot a learning curve
 - % correct on test set, as a function of training set size

- As training set grows, prediction quality should increase
 - Called a "happy graph"
 - There is a pattern in the data AND the algorithm is picking it up!

Noise

- Suppose 2 or more examples with same description (Same assignment of attributes) have different answers
- Examples: on two identical* situations, I do two different things
- You can't have a consistent hypothesis (it must contradict at least one example)
- Report majority classification or report probability

Overfitting

- Learn a hypothesis that is consistent using irrelevant attributes
 - Coincidental circumstances result in spurious distinctions among examples
 - Why does this happen?
 - You gave a bunch of attributes because you didn't know what would be important
 - If you knew which attributes were important, you might not have had to do learning in the first place
- Example: Day, month, or color of die in predicting a die roll
 - As long as no two examples are identical, we can find an exact hypothesis
 - Should be random 1-6, but if I roll once every day and each day results in a different number, the learning algorithm will conclude that day determines the roll
- Applies to all learning algorithms

Black and White

http://www.ign.com/games/black-and-white

Black and White

- Creature must learn what to do in different situations
- Player can reward or punish the creature
 - Tells the creature whether they made the right choice of action or not
- Creature learns to predict the feedback it will receive from the player

Example	Attributes			Target
	Allegiance	Defense	Tribe	Feedback
D1	Friendly	Weak	Celtic	-1.0
D2	Enemy	Weak	Celtic	0.4
D3	Friendly	Strong	Norse	-1.0
D4	Enemy	Strong	Norse	-0.2
D5	Friendly	Weak	Greek	-1.0
D6	Enemy	Medium	Greek	0.2
D7	Enemy	Strong	Greek	-0.4
D8	Enemy	Medium	Aztec	0.0
D9	Friendly	Weak	Aztec	-1.0

Continuous DTs must discretize the variables by deciding where to split the continuous range.

No Free Lunch

- ID3
 - Must discretize continuous attributes
 - Offline only (online = adjust to new examples)
 - Too inefficient with many examples
- Incremental methods (C4.5, See5, ITT, etc)
 - Starts with a d-tree
 - Each node holds examples that reach that node
 - Any node can update self given new example
 - Can be unstable (new trees every cycle; rare in practice)

But first...

- "What Makes Good AI Game Maker's Toolkit"
 - <u>https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s</u>
 - <u>https://www.patreon.com/GameMakersToolkit</u>
 - React/adapt to the player no learning required (authoring is)
 - Communicate what you're thinking
 - Illusion of intelligence; more health & aggression can be a proxy for smarts
 - Predictability is (usually) a good thing
 - Too much NPC stupidity can ruin an otherwise good game

Next Class

- More decision making!
 - Behavior trees
 - Production / Rule Based systems
 - Fuzzy logic + probability
 - Planning

BEHAVIOR TREES (M CH. 5.4)

Next Class

- More decision making!
 - Behavior trees
 - Production / Rule Based systems
 - Fuzzy logic + probability
 - Planning