Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the topic. They are neither a substitute for attending the lectures nor for reading the assigned material.

FSM Pros \& Cons

Pro

- Ubiquitous (not only in digital games)
- Quick and simple to code
- (can be) Easy* to debug
- Very fast: Small computational overhead
- Intuitive
- Flexible
- Easy for designers without coding knowledge
- Non-deterministic FSM can make behavior unpredictable

Con

- When it fails, fails hard:
- A transition from one state to another requires forethought (get stuck in a state or can't do the "correct" next action)
- Number of states can grow fast
- Exponentially with number of events in world (multiple ways to react to same event given other variables): $s=2^{e}$
- Number of transitions/arcs can grow even faster: $\mathrm{a}=\mathrm{s}^{2}$
- Doesn't work with sequences of actions/memory

More problems with FSM

- Maintainability:
- Addition/removal of state requires change of conditions of all other states that have transition to the new or old one. Susceptible to errors
- Scalability:
- FSMs with many states lose readability, becoming rats nest.
- Reusability:
- Coupling between states is strong; often impossible to use the same behavior in multiple projects
- Parallelism:
- With a FSM, how do you run two different states at once?

Decision Making: (Decision \& Behavior) Trees

2019-09-30

M\&F Ch 5.2

Decision Trees

Decision Trees

- Fast, simple, easily implemented, easy to grok (simple ones)
- Modular \& easy to create
- Simplest decision making technique
- Used extensively to control
- Characters
- In-game decision making (eg animation); complex strategic and tactical AI
- Can be learned (rare in games)
- Learned tree still easy to grok: rules have straightforward interpretation
- Can be robust in the presence of errors, missing data, and large numbers of attributes
- Do not require long training times
- w/out learning, it's essentially a GUI (or fancy structure) for conditionals

D-Tree Structure

- Dtree made of connected decision points
- root == starting decision
- leaves == actions
- For each decision, one of $2+$ options is selected
- Typically use global game state

Decisions

- Can be of multiple types
- Boolean
- Enumeration
- Numeric range
- etc.
- No explicit AND or OR, but representable
- Tree structure represents combinations

AND / OR in D-Tree

Can these be translated into rules? If so, how?

D-Tree Decisions

- No explicit AND or OR, but representable
- A AND B: serial TRUE decisions:
- A?->TRUE->B?->TRUE
- A OR B: TRUE if either of:
- A TRUE (and B TRUE or FALSE)
- A ?FALSE->B? TRUE
- Tree structure represents combinations

- Lack of compound Boolean sentences is more a convention, as granularity of decisions has benefits for automated restructuring tree later

Decision Complexity and Efficiency

- Tree structure affords shared condition evaluation
- Number of decisions in tree usually much smaller than number of decisions in tree
- E.g. 15 different decisions w/ 16 actions, but only 4 considered
- This insight exploited by RETE (later)
- Must tree be binary?

Branching

- N-ary trees
- Usually ends up as if/then statements
- Can be faster if using enums w/ array access
- Speedup often marginal \& not worth the effort
- Binary trees
- Easier to optimize
- ML techniques typically require binary trees
- Can be a graph, so long as it's a DAG

Knowledge Representation

- Typically work directly w/ primitive types
- Requires no translation of knowledge
- Access game state directly
- Since whole tree isn't evaluated, expensive to query knowledge can be lazy/on-demand for performance improvement (consider in comparison to rule based system)
- Can cause HARD-TO-FIND bugs
- Rare decisions \rightarrow when do pop up, weird effects
- Structure of game-state changes \rightarrow breaks things
- Cons avoidable w/ careful world interface
- See Millington CH 10

Tree Balancing

- More balanced \rightarrow faster (theory)
- Balance ${ }^{\sim}=$ same number of leaves on each branch
- O(N) vs O(Log2 N)
- Short path to likely action \rightarrow faster (practice)
- O(1)
- Defer time consuming decisions 'til last
- Performance tuning
- Dark art - since fast anyway, rarely important
- Balance, but keep common paths short \& bury long decisions

M\&F Fig 5.9

See M Ch 5.2

class DecisionTreeNode:
def makeDecision() \#recursively walk tree
class Action:
def makeDecision():
return this
class FloatDecision(Decision):
minValue
maxValue
def getBranch():
if $\max >=$ test $>=\min$:
return trueNode
else:
return falseNode
class Decision(DecisionTreeNode):
trueNode
falseNode
testValue
def getBranch()
def makeDecision() :
branch = getBranch() \#runs test
return branch.makeDecision() \#recursive walk

Randomness

- Predictable == bad
- Can add a random decision node
- random behavior choice adds unpredictability, interest, and variation
- Keep track of decision from last cycle

- Random choice made at every frame can make unstable behavior
- Add timeout so behavior can change
- See M 5.2.10 for implementation deets

D-Trees VS FSMs?

- Decision tree: same set of decisions is always used. Any action can be reached through the tree.
- Root to leaf every time
- FSM: only transitions from the current state are considered. Not every action can be reached.
- FSM update function called (each frame, or based on transition condition)
- If transition "triggered", schedule for "fire" the associated actions (onExit, transition action, onEnter

Learning Decision Trees

- Real power of D-trees comes from learning
- Problem: Construct a decision tree from examples of inputs and actions
- Sol'n: Quinlan's "Induction of Decision Trees"
- ID3, C4.5, See5
- http://en.wikipedia.org/wiki/ID3 algorithm
- J48 (GPL java implementation)
- http://www.opentox.org/dev/documentation/components/j48
- See Weka (GNU GPL)

Andrew Ng - The State of AI (December 15, 2017)

- " 99% of the economic value created by Al today is through one type of AI: which is learning a mapping $A \rightarrow B$, or input to output maps"
- Falls under category of supervised learning
- Other types (ordered falloff)
- Transfer learning
- Unsupervised learning
- Reinforcement learning

Input	Output
Picture	Is it you? (0/1)
Loan application	Will the applicant repay the loan? (0/1)
Online: (Ad, User)	Will you click? (0/1)
Voice input	Text transcript
English	French
Car: image, radar/lidar	Positions of other cars

Learning Decision Trees

- A simple technique whereby the computer learns to predict human decision-making
- Can also be used to learn to classify
- A decision can be thought of as a classification problem
- An object or situation is described as a set of attributes
- Attributes can have discrete or continuous values
- Predict an outcome (decision or classification)
- Can be discrete (classification) or continuous (regression)
- We assume positive (true) or negative (false)

Learned D-tree: how well do they work?

- Many case studies have shown that decision trees are at least as accurate as human experts.
- study for diagnosing breast cancer had humans correctly classifying the examples 65% of the time; the decision tree classified 72% correct
- British Petroleum designed a decision tree for gas-oil separation for offshore oil platforms that replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example

Basic Concept

- Given the current set of decisions, what attribute can best split them?
- Choose the "best one" and create a new decision node
- Best == most information gained == smallest entropy
- Keeps tree small
- Good attributes make homogeneous sets
- Recursively go down each edge

Example

Example	Attributes										Target Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
χ_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	10-60	T

Choosing an Attribute

- Idea: A good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

- Patrons? is a better choice

Attack?

- Attributes:
- Bypass? Can be bypassed
- Loot? Has valuable items/treasure
- Achievement? Will unlock an achievement if you win
- On Quest? You are on a quest
- Experience. How much experience points you get
- Environment. How favorable is the terrain?
- Mini-boss? Is this a mini-boss, preventing further progress?
- Element. The elemental properties (earth, air, fire, water)
- Estimated Time. How long will this combat take (quick, short, long, very long)?
- Team size. How many monsters in the team (none, small, large)?

$\#$	Bypass?	Loot?	Achie ve.	On quest	Team size	Exp.	Env.	Mini- Boss	Elem ent	Est. Time	Atta ck?
1	T	F	F	T	few	Lot	Bad	T	water	quick	Y
2	T	F	F	T	many	Little	Bad	F	air	long	N
3	F	T	F	F	few	Little	Bad	F	earth	quick	Y
4	T	F	T	T	many	Little	Bad	F	air	med	Y
5	T	F	T	F	many	Lot	Bad	T	water	v. long	N
6	F	T	F	T	few	Med	Good	T	fire	quick	Y
7	F	T	F	F	single	Little	Good	F	earth	quick	N
8	F	F	F	T	few	Med	Good	T	air	quick	Y
9	F	T	T	F	many	Little	Good	F	earth	v. long	N
10	T	T	T	T	many	Lot	Bad	T	fire	med	\mathbf{N}
11	F	F	F	F	single	Little	Bad	F	air	quick	\mathbf{N}
12	T	T	T	T	many	Little	Bad	F	earth	long	\mathbf{Y}

\#	Bypass?	Loot?	Achie ve.	On quest	Team size	Exp.	Env.	Mini- Boss	Elem ent	Est. Time	Atta ck?
1	T	F	F	T	few	Lot	Bad	T	water	quick	Y
2	T	F	F	T	many	Little	Bad	F	air	long	N
3	F	T	F	F	few	Little	Bad	F	earth	quick	Y
4	T	F	T	T	many	Little	Bad	F	air	med	Y
5	T	F	T	F	many	Lot	Bad	T	water	v. long	N
6	F	T	F	T	few	Med	Good	T	fire	quick	Y
7	F	T	F	F	single	Little	Good	F	earth	quick	N
8	F	F	F	T	few	Med	Good	T	air	quick	Y
9	F	T	T	F	many	Little	Good	F	earth	v. long	N
10	T	T	T	T	many	Lot	Bad	T	fire	med	N
11	F	F	F	F	single	Little	Bad	F	air	quick	N
12	T	T	T	T	many	Little	Bad	F	earth	long	Y

Pos: 1346812
 Neg: 25791011

- Learned from the 12 examples
- Why doesn't it look like the previous tree?
- Not enough examples
- No reason to use environment or mini-boss
- Hasn't seen all cases
- Learning is only as good as your training data
- Supervised learning

- Training set
- Test set

Which attribute to choose?

- The one that gives you the most information (aka the most diagnostic)
- Information theory
- Answers the question: how much information does something contain?
- Ask a question
- Answer is information
- Amount of information depends on how much you already knew (information gain)
- Example: flipping a coin

Entropy

- Measure of information in set of examples
- That is, amount of agreement between examples
- All examples are the same, $\mathrm{E}=0$
- Even distributed and different, $\mathrm{E}=1$
- If there are n possible answers, $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$ and v_{i} has probability $P\left(v_{i}\right)$ of being the right answer, then the amount of information is:

$$
H\left(P\left(v_{1}\right), \ldots, P\left(v_{n}\right)\right)={ }_{i=1}^{n} P\left(v_{i}\right) \log _{2} P\left(v_{i}\right)
$$

- For a training set:
$p=\#$ of positive examples
$\mathrm{n}=\#$ of negative examples

$$
\begin{aligned}
& H \frac{p}{p+n}, \frac{n}{p+n} \div=\frac{p}{p+n} \log _{2} \frac{p}{p+n} \frac{n}{p+n} \log _{2} \frac{n}{p+n} \\
& \begin{array}{c}
\text { Probability of } \\
\text { a positive example } \quad \text { Probability of } \\
\text { a negative example }
\end{array}
\end{aligned}
$$

- For our attack behavior
$-\mathrm{p}=\mathrm{n}=6$

Pos: 1346812
Neg: 25791011
$-H()=1$

- Would not be 1 if training set weren't 50/50 yes/no, but the point is to arrange attributes to increase gain (decrease entropy)

Measuring attributes

- Remainer(A) is amount of entropy remaining after applying an attribute
- If I use attribute A next, how much less entropy will I have?
- Use this to compare attributes

$\begin{array}{cc}\text { Remainder(element) }= & \frac{2}{12} I \frac{1}{2}, \frac{1}{2} \div+\frac{2}{12} I \frac{1}{2}, \frac{1}{2} \div+\frac{4}{12} I \frac{2}{4}, \frac{2}{4} \div+\frac{4}{12} I \frac{2}{4}, \frac{2}{4} \div=1 \text { bit } \\ \uparrow & \uparrow \text { water } \\ \text { wire } & \text { air }\end{array}$

- Not done yet
- Need to measure information gained by an attribute

$$
\text { Gain }(\mathrm{A})=H \frac{p}{p+n}, \frac{n}{p+n} \div \text { - remainder }(\mathrm{A})
$$

- Pick the biggest
- Example:
- Gain(element) $=\mathrm{H}(1 / 2,1 / 2)-\frac{2}{12} H \frac{1}{2}, \frac{1}{2}+\frac{2}{12} H \frac{1}{2}, \frac{1}{2}+\frac{4}{12} H \frac{2}{4} \cdot \frac{2}{4} \div+\frac{4}{12} H \frac{2}{4}, \frac{2}{4} \div \frac{1}{2}$

$$
=0 \mathrm{bits}
$$

- Gain(teamsize) $=\mathrm{H}(1 / 2,1 / 2)-\frac{2}{12} H \frac{0}{2}, \frac{2}{2}+\frac{4}{12} H \frac{4}{4}, \frac{0}{4} \div+\frac{6}{12} H \frac{2}{6}, \frac{4}{6} \div$

$$
\approx 0.541 \text { bits }
$$

Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default
ELSE IF all examples have same classification THEN RETURN classification
ELSE IF attributes is empty RETURN majority-value(examples)
ELSE
best $=$ choose(attributes, example) \longleftarrow Where gain happens
tree $=$ new decision tree with best as root
m = majority-value(examples)
FOREACH answer v_{i} of best DO
examples $_{i}=\left\{\right.$ elements of examples with best $\left.=v_{i}\right\}$
subtree $_{\mathrm{i}}=$ decision-tree-learning(examples $_{\mathrm{i}}$, attributes-\{best $\left.\}, \mathrm{m}\right)$ add a branch to tree based on v_{i} and subtree ${ }_{i}$

RETURN tree

How many hypotheses?

- How many distinct trees?
- N attributes
= \# of boolean functions
= \# of distinct truth tables with 2^{n} rows
$=2^{\wedge} 2^{\wedge} n$
- With 6 attributes: > 18 quintillion possible trees
- 18,446,744,073,709,551,616

How do we assess?

- How do we know hypothesis \approx true decision function?
- A learning algorithm is good if it produces hypotheses that do a good job of predicting decisions/classifications from unseen examples

1. Collect a large set of examples (with answers)
2. Divide into training set and test set
3. Use training set to produce hypothesis h
4. Apply h to test set (w/o answers)

- Measure \% examples that are correctly classified

5. Repeat 2-4 for different sizes of training sets, randomly selecting examples for training and test

- Vary size of training set m
- Vary which m examples are training
- Plot a learning curve
- \% correct on test set, as a function of training set size

- As training set grows, prediction quality should increase
- Called a "happy graph"
- There is a pattern in the data AND the algorithm is picking it up!

Noise

- Suppose 2 or more examples with same description (Same assignment of attributes) have different answers
- Examples: on two identical* situations, I do two different things
- You can't have a consistent hypothesis (it must contradict at least one example)
- Report majority classification or report probability

Overfitting

- Learn a hypothesis that is consistent using irrelevant attributes
- Coincidental circumstances result in spurious distinctions among examples
- Why does this happen?
- You gave a bunch of attributes because you didn't know what would be important
- If you knew which attributes were important, you might not have had to do learning in the first place
- Example: Day, month, or color of die in predicting a die roll
- As long as no two examples are identical, we can find an exact hypothesis
- Should be random 1-6, but if I roll once every day and each day results in a different number, the learning algorithm will conclude that day determines the roll
- Applies to all learning algorithms

Black and White

http://www.ign.com/games/black-and-white

Black and White

- Creature must learn what to do in different situations
- Player can reward or punish the creature
- Tells the creature whether they made the right choice of action or not
- Creature learns to predict the feedback it will receive from the player

| Example | Attributes | | | Target |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Allegiance | Defense | Tribe | Feedback |
| D1 | Friendly | Weak | Celtic | -1.0 |
| D2 | Enemy | Weak | Celtic | 0.4 |
| D3 | Friendly | Strong | Norse | -1.0 |
| D4 | Enemy | Strong | Norse | -0.2 |
| D5 | Friendly | Weak | Greek | -1.0 |
| D6 | Enemy | Medium | Greek | 0.2 |
| D7 | Enemy | Strong | Greek | -0.4 |
| D8 | Enemy | Medium | Aztec | 0.0 |
| D9 | Friendly | Weak | Aztec | -1.0 |

Continuous DTs must discretize the variables by deciding where to split the continuous range.

No Free Lunch

- ID3
- Must discretize continuous attributes
- Offline only (online = adjust to new examples)
- Too inefficient with many examples
- Incremental methods (C4.5, See5, ITT, etc)
- Starts with a d-tree
- Each node holds examples that reach that node
- Any node can update self given new example
- Can be unstable (new trees every cycle; rare in practice)

But first...

- "What Makes Good AI - Game Maker's Toolkit"
- https://www.youtube.com/watch?v=9bbhJiONBkk\&t=0s
- https://www.patreon.com/GameMakersToolkit
- React/adapt to the player - no learning required (authoring is)
- Communicate what you're thinking
- Illusion of intelligence; more health \& aggression can be a proxy for smarts
- Predictability is (usually) a good thing
- Too much NPC stupidity can ruin an otherwise good game

Next Class

- More decision making!
- Behavior trees
- Production / Rule Based systems
- Fuzzy logic + probability
- Planning

BEHAVIOR TREES (M CH. 5.4)

Next Class

- More decision making!
- Behavior trees
- Production / Rule Based systems
- Fuzzy logic + probability
- Planning

