
Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

1

FSM Pros & Cons

Pro

• Ubiquitous (not only in digital games)

• Quick and simple to code

• (can be) Easy* to debug

• Very fast: Small computational overhead

• Intuitive

• Flexible

• Easy for designers without coding
knowledge

• Non-deterministic FSM can make behavior
unpredictable

Con

• When it fails, fails hard:
– A transition from one state to another

requires forethought (get stuck in a state or
can’t do the “correct” next action)

• Number of states can grow fast
– Exponentially with number of events in world

(multiple ways to react to same event given
other variables): s=2e

• Number of transitions/arcs can grow even
faster: a=s2

• Doesn’t work with sequences of
actions/memory

More problems with FSM

• Maintainability:
– Addition/removal of state requires change of conditions of all other states

that have transition to the new or old one. Susceptible to errors

• Scalability:
– FSMs with many states lose readability, becoming rats nest.

• Reusability:
– Coupling between states is strong; often impossible to use the same

behavior in multiple projects

• Parallelism:
– With a FSM, how do you run two different states at once?

4

Decision Making: (Decision & Behavior)
Trees

2019-09-30

M&F Ch 5.2

Decision Trees

M&F 5.3

Decision Trees

• Fast, simple, easily implemented, easy to grok (simple ones)
• Modular & easy to create
• Simplest decision making technique
• Used extensively to control

– Characters
– In-game decision making (eg animation); complex strategic and tactical AI

• Can be learned (rare in games)
– Learned tree still easy to grok: rules have straightforward interpretation
– Can be robust in the presence of errors, missing data, and large numbers of

attributes
– Do not require long training times

• w/out learning, it’s essentially a GUI (or fancy structure) for conditionals

8

D-Tree Structure

• Dtree made of connected
decision points

– root == starting decision

– leaves == actions

• For each decision, one of 2+
options is selected

• Typically use global game state

9

Decisions

• Can be of multiple types

– Boolean

– Enumeration

– Numeric range

– etc.

• No explicit AND or OR, but representable

– Tree structure represents combinations

10

AND / OR in D-Tree

11Can these be translated into rules? If so, how?

D-Tree Decisions

• No explicit AND or OR, but
representable
– A AND B: serial TRUE decisions:

• A?->TRUE->B?->TRUE

– A OR B: TRUE if either of:
• A TRUE (and B TRUE or FALSE)

• A ?FALSE->B? TRUE

– Tree structure represents combinations

– Lack of compound Boolean sentences
is more a convention, as granularity of
decisions has benefits for automated
restructuring tree later

12

Enemy Visible OR Audible?
…or…
Enemy NOT Visible AND Audible?

Decision Complexity and Efficiency

• Tree structure affords shared
condition evaluation

– Number of decisions in tree usually
much smaller than number of
decisions in tree

– E.g. 15 different decisions w/ 16
actions, but only 4 considered

• This insight exploited by RETE
(later)

• Must tree be binary?

13M&F 5.6

Branching

• N-ary trees

– Usually ends up as if/then statements

– Can be faster if using enums w/ array access

– Speedup often marginal & not worth the
effort

• Binary trees

– Easier to optimize

– ML techniques typically require binary trees

– Can be a graph, so long as it’s a DAG

M&F Figs 5.7, 5.8 14

Knowledge Representation

• Typically work directly w/ primitive types
• Requires no translation of knowledge

– Access game state directly
– Since whole tree isn’t evaluated, expensive to query knowledge can be
lazy/on-demand for performance improvement (consider in comparison to
rule based system)

– Can cause HARD-TO-FIND bugs
• Rare decisions when do pop up, weird effects
• Structure of game-state changes breaks things

– Cons avoidable w/ careful world interface
• See Millington CH 10

15

Tree Balancing

• More balanced faster (theory)
– Balance ~= same number of leaves on each

branch
– O(N) vs O(Log2 N)

• Short path to likely action faster
(practice)
– O(1)
– Defer time consuming decisions ‘til last

• Performance tuning
– Dark art – since fast anyway, rarely important
– Balance, but keep common paths short &

bury long decisions
M&F Fig 5.9

16

See M Ch 5.2

class DecisionTreeNode:
def makeDecision() #recursively walk tree

class Action:
def makeDecision():

return this

class FloatDecision(Decision):
minValue
maxValue
def getBranch():

if max >= test >= min:
return trueNode

else:
return falseNode

class Decision(DecisionTreeNode):
trueNode
falseNode
testValue
def getBranch()
def makeDecision() :

branch = getBranch() #runs test
return branch.makeDecision() #recursive walk

17

Randomness

• Predictable == bad
• Can add a random decision node

– random behavior choice adds
unpredictability, interest, and variation

• Keep track of decision from last cycle
– Random choice made at every frame can

make unstable behavior
– Add timeout so behavior can change

• See M 5.2.10 for implementation deets

M&F 5.12

18

D-Trees VS FSMs?

• Decision tree: same set of decisions is always used. Any action
can be reached through the tree.
– Root to leaf every time

• FSM: only transitions from the current state are considered.
Not every action can be reached.
– FSM update function called (each frame, or based on transition

condition)

– If transition “triggered”, schedule for “fire” the associated actions
(onExit, transition action, onEnter

19

Learning Decision Trees

• Real power of D-trees comes from learning

• Problem: Construct a decision tree from examples of inputs
and actions

• Sol’n: Quinlan’s “Induction of Decision Trees”
– ID3, C4.5, See5

• http://en.wikipedia.org/wiki/ID3_algorithm

– J48 (GPL java implementation)
• http://www.opentox.org/dev/documentation/components/j48

• See Weka (GNU GPL)

20

http://en.wikipedia.org/wiki/ID3_algorithm
http://www.opentox.org/dev/documentation/components/j48

Andrew Ng – The State of AI (December 15, 2017)

• “99% of the economic value
created by AI today is through
one type of AI: which is learning
a mapping A B, or input to
output maps”
– Falls under category of supervised

learning

• Other types (ordered falloff)
– Transfer learning

– Unsupervised learning

– Reinforcement learning

Input Output

Picture Is it you? (0/1)

Loan application Will the applicant repay
the loan? (0/1)

Online: (Ad, User) Will you click? (0/1)

Voice input Text transcript

English French

Car: image, radar/lidar Positions of other cars

https://www.youtube.com/watch?v=NKpuX_yzdYs

https://www.youtube.com/watch?v=NKpuX_yzdYs

Learning Decision Trees

• A simple technique whereby the computer learns to predict human
decision-making

• Can also be used to learn to classify

– A decision can be thought of as a classification problem

• An object or situation is described as a set of attributes

– Attributes can have discrete or continuous values

• Predict an outcome (decision or classification)

– Can be discrete (classification) or continuous (regression)

– We assume positive (true) or negative (false)

22

Learned D-tree: how well do they work?

• Many case studies have shown that decision trees are at least
as accurate as human experts.
– study for diagnosing breast cancer had humans correctly classifying

the examples 65% of the time; the decision tree classified 72%
correct

– British Petroleum designed a decision tree for gas-oil separation for
offshore oil platforms that replaced an earlier rule-based expert
system

– Cessna designed an airplane flight controller using 90,000 examples
and 20 attributes per example

23
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

Basic Concept

• Given the current set of decisions, what attribute can best split
them?

• Choose the “best one” and create a new decision node

– Best == most information gained == smallest entropy

– Keeps tree small

• Good attributes make homogeneous sets

• Recursively go down each edge

24

Example
Example Attributes Target

WaitAlt Bar Fri Hun Pat Price Rain Res Type Est

X1 T F F T Some $$$ F T French 0-10 T

X2 T F F T Full $ F F Thai 30-60 F

X3 F T F F Some $ F F Burger 0-10 T

X4 T F T T Full $ F F Thai 10-30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0-10 T

X7 F T F F None $ T F Burger 0-10 F

X8 F F F T Some $$ T T Thai 0-10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10-30 F

X11 F F F F None $ F F Thai 0-10 F

X12 T T T T Full $ F F Burger 10-60 T
25

Choosing an Attribute

• Idea: A good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

• Patrons? is a better choice

26

Attack?

• Attributes:
– Bypass? Can be bypassed

– Loot? Has valuable items/treasure

– Achievement? Will unlock an achievement if you win

– On Quest? You are on a quest

– Experience. How much experience points you get

– Environment. How favorable is the terrain?

– Mini-boss? Is this a mini-boss, preventing further progress?

– Element. The elemental properties (earth, air, fire, water)

– Estimated Time. How long will this combat take (quick, short, long, very long)?

– Team size. How many monsters in the team (none, small, large)?

27

Team size

Est. Time

Bypass? On quest?

Mini-boss? Achievement?

Loot?

Bypass?

Environment

No Yes

No Yes

Yes

No Yes

No Yes

Yes

Yes

No Yes

Single
Few

Many

Very long
Long Short

Quick

F T

F T

F T

F T

F T

F T

F T

Attack?

28

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

29

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Element

Pos: 1
Neg: 5

Pos: 6
Neg: 10

Pos: 4 8
Neg: 2 11

Pos: 3 12
Neg: 7 8

water

fire air

earth

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

30

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: nil
Neg: 7 11

Pos: 1 3 6 8
Neg: nil

Pos: 4 12
Neg: 2 5 9 10

single

few
many

On quest?

Pos: nil
Neg: 5 9

Pos: 4 12
Neg: 2 10

TF

NO YES

NO

Bypass? Loot? Achie
ve.

On
quest

Team
size

Exp. Env. Mini-
Boss

Elem
ent

Est.
Time

Atta
ck?

1 T F F T few Lot Bad T water quick Y

2 T F F T many Little Bad F air long N

3 F T F F few Little Bad F earth quick Y

4 T F T T many Little Bad F air med Y

5 T F T F many Lot Bad T water v. long N

6 F T F T few Med Good T fire quick Y

7 F T F F single Little Good F earth quick N

8 F F F T few Med Good T air quick Y

9 F T T F many Little Good F earth v. long N

10 T T T T many Lot Bad T fire med N

11 F F F F single Little Bad F air quick N

12 T T T T many Little Bad F earth long Y

31

• Learned from the 12 examples

• Why doesn’t it look
like the previous tree?

– Not enough examples

– No reason to use
environment or mini-boss

– Hasn’t seen all cases

• Learning is only as good
as your training data

• Supervised learning

– Training set

– Test set

Team size

On quest?No Yes

Single
Few Many

Element

NoYes

water

fire

Yes

earth

Achievement?

air

No

T F

No Yes

F T

32

Which attribute to choose?

• The one that gives you the most information (aka the most
diagnostic)

• Information theory

– Answers the question: how much information does something contain?

– Ask a question

– Answer is information

– Amount of information depends on how much you already knew
(information gain)

• Example: flipping a coin

33

Entropy

• Measure of information in set of examples

– That is, amount of agreement between examples

– All examples are the same, E = 0

– Even distributed and different, E = 1

• If there are n possible answers, v1…vn and
vi has probability P(vi) of being the right answer, then the
amount of information is:

H P(v1),...,P(vn)() = - P(vi)log2 P(vi)
i=1

n

å
34

• For a training set:
p = # of positive examples

n = # of negative examples

• For our attack behavior
– p = n = 6

– H() = 1

– Would not be 1 if training set weren’t 50/50 yes/no,
but the point is to arrange attributes to increase gain
(decrease entropy)

H
p

p+n
,
n

p+n

æ

è
ç

ö

ø
÷ = -

p

p+n
log2

p

p+n
-
n

p+n
log2

n

p+n

Probability of
a positive example

Probability of
a negative example

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

35

Measuring attributes
• Remainer(A) is amount of entropy remaining after

applying an attribute
– If I use attribute A next, how much less entropy will I have?

– Use this to compare attributes

pi +ni

p+n
H

pi

pi +ni
,
ni

pi +ni

æ

è
ç

ö

ø
÷

i=1

v

åRemainder(A) =

Different answers

attribute

Total answers

Instances of
the attribute

Positive examples
for this answer to A

Negative examples
for this answer to A

Examples classified by A

36

2

12
I

1

2
,
1

2

æ

è
ç

ö

ø
÷ +

2

12
I

1

2
,
1

2

æ

è
ç

ö

ø
÷ +

4

12
I

2

4
,
2

4

æ

è
ç

ö

ø
÷ +

4

12
I

2

4
,
2

4

æ

è
ç

ö

ø
÷

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Element

Pos: 1
Neg: 5

Pos: 6
Neg: 10

Pos: 4 8
Neg: 2 11

Pos: 3 12
Neg: 7 8

water

fire air

earth

Remainder(element) =

water fire air earth

= 1 bit

37

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: nil
Neg: 7 11

Pos: 1 3 6 8
Neg: nil

Pos: 4 12
Neg: 2 5 9 10

single

few
many

2

12
I

0

2
,
2

2

æ

è
ç

ö

ø
÷ +

4

12
I

4

4
,
0

4

æ

è
ç

ö

ø
÷ +

6

12
I

2

6
,
4

6

æ

è
ç

ö

ø
÷ Remainder(teamsize) =

single few many

≈ 0.459 bit

38

• Not done yet

• Need to measure information gained by an attribute

• Pick the biggest

• Example:
– Gain(element) = H(½,½) –

– Gain(teamsize) = H(½,½) –

H
p

p+n
,
n

p+n

æ

è
ç

ö

ø
÷Gain(A) = - remainder(A)

2

12
H

1

2
,
1

2

æ

è
ç

ö

ø
÷+

2

12
H

1

2
,
1

2

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

2

12
H

0

2
,
2

2

æ

è
ç

ö

ø
÷+

4

12
H

4

4
,
0

4

æ

è
ç

ö

ø
÷+

6

12
H

2

6
,
4

6

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

= 0 bits

≈ 0.541 bits

39

H
2

12
,

4

12

æ

è
ç

ö

ø
÷-

2

12
H

0

2
,
2

2

æ

è
ç

ö

ø
÷+

4

12
H

2

4
,
2

4

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
úGain(quest) =

= 0.959 – [0 + (4/12)(1)]

≈ 0.626 bits

Pos: 1 3 4 6 8 12
Neg: 2 5 7 9 10 11

Team size

Pos: 4 12
Neg: 2 5 9 10

Many

On Quest

Pos: nil
Neg: 5 9

Pos: 4 12
Neg: 2 10

T
F

no yes

teamsize=many, onquest=F

teamsize=many, onquest=T

40

Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default

ELSE IF all examples have same classification THEN RETURN classification

ELSE IF attributes is empty RETURN majority-value(examples)

ELSE

best = choose(attributes, example)

tree = new decision tree with best as root

m = majority-value(examples)

FOREACH answer vi of best DO

examplesi = {elements of examples with best=vi}

subtreei = decision-tree-learning(examplesi, attributes-{best}, m)

add a branch to tree based on vi and subtreei

RETURN tree

Where gain happens

41

How many hypotheses?

• How many distinct trees?

– N attributes

= # of boolean functions

= # of distinct truth tables with 2n rows

= 2^2^n

– With 6 attributes: > 18 quintillion possible trees

• 18,446,744,073,709,551,616

42

How do we assess?

• How do we know hypothesis ≈ true decision function?
• A learning algorithm is good if it produces hypotheses that do a good job of

predicting decisions/classifications from unseen examples
1. Collect a large set of examples (with answers)
2. Divide into training set and test set
3. Use training set to produce hypothesis h
4. Apply h to test set (w/o answers)

– Measure % examples that are correctly classified

5. Repeat 2-4 for different sizes of training sets, randomly selecting examples for
training and test
– Vary size of training set m
– Vary which m examples are training

43

• Plot a learning curve
– % correct on test set, as a function of training set size

• As training set grows, prediction quality should increase
– Called a “happy graph”

– There is a pattern in the data AND the algorithm is picking it up!

44

Noise

• Suppose 2 or more examples with same description (Same
assignment of attributes) have different answers

• Examples: on two identical* situations, I do two different
things

• You can’t have a consistent hypothesis (it must contradict at
least one example)

• Report majority classification or report probability

45

Overfitting

• Learn a hypothesis that is consistent using irrelevant attributes
– Coincidental circumstances result in spurious distinctions among examples
– Why does this happen?

• You gave a bunch of attributes because you didn’t know what would be important
• If you knew which attributes were important, you might not have had to do learning in the

first place

• Example: Day, month, or color of die in predicting a die roll
– As long as no two examples are identical, we can find an exact hypothesis
– Should be random 1-6, but if I roll once every day and each day results in a

different number, the learning algorithm will conclude that day determines the
roll

• Applies to all learning algorithms

46

Black and White

47
http://www.ign.com/games/black-and-white

Black and White

• Creature must learn what to do
in different situations

• Player can reward or punish the
creature

– Tells the creature whether they
made the right choice of action or
not

• Creature learns to predict the
feedback it will receive from the
player

48

Continuous DTs must discretize the variables by
deciding where to split the continuous range.

No Free Lunch

• ID3
– Must discretize continuous attributes

– Offline only (online = adjust to new examples)

– Too inefficient with many examples

• Incremental methods (C4.5, See5, ITT, etc)
– Starts with a d-tree

– Each node holds examples that reach that node

– Any node can update self given new example

– Can be unstable (new trees every cycle; rare in practice)

49

But first…

• “What Makes Good AI – Game Maker’s Toolkit”

– https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s

– https://www.patreon.com/GameMakersToolkit

– React/adapt to the player – no learning required (authoring is)

– Communicate what you’re thinking

– Illusion of intelligence; more health & aggression can be a proxy for
smarts

– Predictability is (usually) a good thing

• Too much NPC stupidity can ruin an otherwise good game

50

https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s
https://www.patreon.com/GameMakersToolkit

Next Class

• More decision making!

– Behavior trees

– Production / Rule Based systems

– Fuzzy logic + probability

– Planning

51

BEHAVIOR TREES (M CH. 5.4)

52

Next Class

• More decision making!

– Behavior trees

– Production / Rule Based systems

– Fuzzy logic + probability

– Planning

53

