Disclaimer: | use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

ENGINEERING FLOWCHART
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FSM Pros & Cons

Pro

Ubiquitous (not only in digital games)
Quick and simple to code

(can be) Easy* to debug

Very fast: Small computational overhead
Intuitive

Flexible

Easy for designers without coding
knowledge

Non-deterministic FSM can make behavior
unpredictable

Con

When it fails, fails hard:

— A transition from one state to another
requires forethought (get stuck in a state or
can’t do the “correct” next action)

Number of states can grow fast

— Exponentially with number of events in world
(multiple ways to react to same event given
other variables): s=2¢

Number of transitions/arcs can grow even
faster: a=s?

Doesn’t work with sequences of
actions/memory



More problems with FSM

Maintainability:

— Addition/removal of state requires change of conditions of all other states
that have transition to the new or old one. Susceptible to errors

Scalability:
— FSMs with many states lose readability, becoming rats nest.
Reusability:

— Coupling between states is strong; often impossible to use the same
behavior in multiple projects

Parallelism:
— With a FSM, how do you run two different states at once?



Decision Making: (Decision & Behavior)
Trees
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Decision Trees

|s enemy visible?

No

Yes
Is enemy audible? Is enemy <10 m away?
Yes NO \I'FES
Is enemy
on flank?
Creep Attack
No Yes
Attack Move

M&F 5.3



Decision Trees

Fast, simple, easily implemented, easy to grok (simple ones)
Modular & easy to create
Simplest decision making technique

Used extensively to control
— Characters
— In-game decision making (eg animation); complex strategic and tactical Al

Can be learned (rare in games)
— Learned tree still easy to grok: rules have straightforward interpretation

— Can be robust in the presence of errors, missing data, and large numbers of
attributes

— Do not require long training times
w/out learning, it’s essentially a GUI (or fancy structure) for conditionals



D-Tree Structure

Dtree made of connected

decision pOintS ls enemy visible?
— root == starting decision No Yes
— leaves == actions Is enemy audible? Is enemy <10 m away?
. . No Yi

For each decision, one of 2+ Yes =

. . Is enemy
options is selected on flank?

Creep Attack
No Yes

Typically use global game state

Attack Move




Decisions

e Can be of multiple types
— Boolean
— Enumeration
— Numeric range
— etc.

* No explicit AND or OR, but representable

— Tree structure represents combinations



AND / OR in D-Tree

Can these be translated into rules? If so, how?



D-Tree Decisions

* No explicit AND or OR, but
representable
— A AND B: serial TRUE decisions:
e A?->TRUE->B?->TRUE
— A OR B: TRUE if either of:
e A TRUE (and B TRUE or FALSE)
« A ?PFALSE->B? TRUE
— Tree structure represents combinations

— Lack of compound Boolean sentences
is more a convention, as granularity of
decisions has benefits for automated
restructuring tree later

Is enemy audible?

Yes

Creep

No

Is enemy
on flank?

No

Attack

Enemy Visible OR Audible?
..Or...

Enemy NOT Visible AND Audible?

Is enemy visible?

Yes
Is enemy <10 m away?
No Yes
Attack
Yes
Move




Decision Complexity and Efficiency

e Tree structure affords shared
condition evaluation 9

— Number of decisions in tree usually 9.
much smaller than number of
decisions in tree

— E.g. 15 different decisions w/ 16 X
actions, but only 4 considered
* This insight exploited by RETE
(later)

 Must tree be binary?

SRR AR RGN,

<0

M&F 5.6



Branching

N-ary trees
— Usually ends up as if/then statements
— Can be faster if using enums w/ array access

— Speedup often marginal & not worth the
effort

Binary trees

— Easier to optimize

— ML techniques typically require binary trees
— Can be a graph, so long as it’s a DAG

Is black?

Is red?

Is yellow?

Mo
Yes

Black action

N
\PEE

Green action

No /\_ No
d

Yies

Hed action

Which alert
state?

Black

Yellow action

Black action

Red action

Yellow action

Green action

M&F Figs 5.7, 5.8



Knowledge Representation

» Typically work directly w/ primitive types

* Requires no translation of knowledge
— Access game state directly

— Since whole tree isn’t evaluated, expensive to query knowledge can be
lazy/on-demand for performance improvement (consider in comparison to
rule based system)

— Can cause HARD-TO-FIND bugs
* Rare decisions = when do pop up, weird effects
 Structure of game-state changes = breaks things

— Cons avoidable w/ careful world interface
* See Millington CH 10



Tree Balancing

* More balanced = faster (theory)

Unbalanced tree

N A\
— Balance ~¥= same number of leaves on each T
branch !

— O(N) vs O(Log2 N)
* Short path to likely action = faster
(practice)
— 0(1)
— Defer time consuming decisions ‘til last
* Performance tuning
— Dark art — since fast anyway, rarely important

— Balance, but keep common paths short &
bury long decisions

M&F Fig 5.9



See M Ch 5.2

class DecisionTreeNode: class Decision(DecisionTreeNode):

def makeDecision() #recursively walk tree trueNode

falseNode

class Action: testValue

def makeDecision(): def getBranch()

return this def makeDecision() :
branch = getBranch() #runs test

class FloatDecision(Decision): return branch.makeDecision() #recursive walk

minValue

maxValue

def getBranch():

if max >= test >= min:
return trueNode
else:
return falseNode



Randomness

Predictable == bad

Can add a random decision node

—random behavior choice adds
unpredictability, interest, and variation

Keep track of decision from last cycle

— Random choice made at every frame can
make unstable behavior

— Add timeout so behavior can change
See M 5.2.10 for implementation deets

Defend

Patrol

Stand still

M&F 5.12




D-Trees VS FSMs?

* Decision tree: same set of decisions is always used. Any action
can be reached through the tree.

— Root to leaf every time
 FSM: only transitions from the current state are considered.
Not every action can be reached.

— FSM update function called (each frame, or based on transition
condition)

— If transition “triggered”, schedule for “fire” the associated actions
(onExit, transition action, onEnter



Learning Decision Trees

* Real power of D-trees comes from learning

* Problem: Construct a decision tree from examples of inputs
and actions
e Sol’'n: Quinlan’s “Induction of Decision Trees”
— ID3, C4.5, See5
e http://en.wikipedia.org/wiki/ID3 algorithm

— J48 (GPL java implementation)
* http://www.opentox.org/dev/documentation/components/j48

* See Weka (GNU GPL)



http://en.wikipedia.org/wiki/ID3_algorithm
http://www.opentox.org/dev/documentation/components/j48

Andrew Ng — The State of Al (December 15, 2017)
e “99% of the economic value nput  |Output

created by Al today is through Picture Is it you? (0/1)
one type of Al: which is |earning Loan application Will the applicant repay
. A 9 B . tt the loan? (0/1)
a Mapping ” , OF INPUL 1O Online: (Ad, User) Will you click? (0/1)
OUtpUt Maps . :
. Voice input Text transcript
— Falls under category of supervised English French
Iearmng Car: image, radar/lidar Positions of other cars

e Other types (ordered falloff)
— Transfer learning
— Unsupervised learning
— Reinforcement learning

https://www.youtube.com/watch?v=NKpuX yzdYs



https://www.youtube.com/watch?v=NKpuX_yzdYs

Learning Decision Trees

A simple technique whereby the computer learns to predict human
decision-making

Can also be used to learn to classify
— A decision can be thought of as a classification problem

An object or situation is described as a set of attributes
— Attributes can have discrete or continuous values
Predict an outcome (decision or classification)

— Can be discrete (classification) or continuous (regression)
— We assume positive (true) or negative (false)



Learned D-tree: how well do they work?

* Many case studies have shown that decision trees are at least
as accurate as human experts.
— study for diagnosing breast cancer had humans correctly classifying

the examples 65% of the time; the decision tree classified 72%
correct

— British Petroleum designed a decision tree for gas-oil separation for
offshore oil platforms that replaced an earlier rule-based expert
system

— Cessna designed an airplane flight controller using 90,000 examples
and 20 attributes per example

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture?.pdf



https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

Basic Concept

Given the current set of decisions, what attribute can best split
them?

Choose the “best one” and create a new decision node
— Best == most information gained == smallest entropy
— Keeps tree small

Good attributes make homogeneous sets
Recursively go down each edge



Example

Ta rget
w----------

Some SSS French 0-10

“ T F F T FMl ¢ F F Thai 3060 —
BES - © F F some S F F  Burger 0-10
B - f 1t ra s F F Tha 1030 RN
BEA - r 7 f fut sss F T French >0 [N
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T 1 1 7 ful $ F F Buger 1060 [N



Choosing an Attribute

* |dea: A good attribute splits the examples into subsets that are
(ideally) “all positive” or “all negative”

000000 000000
200000 200000
Fatrons? Type?
Nomull ancﬂmﬂaer
0000 00 o e 00 00
o0 0000 @ ® 00 o0

e Patrons? is a better choice



Attack?

e Attributes:
— Bypass? Can be bypassed
— Loot? Has valuable items/treasure
— Achievement? Will unlock an achievement if you win
— On Quest? You are on a quest
— Experience. How much experience points you get
— Environment. How favorable is the terrain?
— Mini-boss? Is this a mini-boss, preventing further progress?
— Element. The elemental properties (earth, air, fire, water)
— Estimated Time. How long will this combat take (quick, short, long, very long)?
— Team size. How many monsters in the team (none, small, large)?



Team size Atta C k?

Est. Time

On quest?
F T F T
Mini-boss? Achievement? Bypass?
F T F T F T

Loot? Environment

T F T
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Bypass? | Loot? Team Atta
size T|me

1 T water  quick Y
2 T F F T many Little Bad F air long N
3 F T F F few Little Bad F earth  quick Y
4 T F T T many Little Bad F air med Y
5 T F T F many Lot Bad T water v.long N
6 F T F T few Med Good T fire quick Y
7 F T F F single Little Good F earth  quick N
8 F F F T few Med Good T air quick Y
9 F T T F many Little Good F earth v.long N
10 T T T T many Lot Bad T fire med N
11 F F F F single Little  Bad F air quick N
12 T T T T many Little  Bad F earth long Y
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Pos: 1
Neg: 5

Pos: 13468 12
Neg:25791011

Element

Pos: 6
Neg: 10

Pos:4 8
Neg:2 11

Bypass? | Loot? Team Est. | Atta
size Time | ck?

O 00 N O U A W N B

(SRS Y
N P O

—4 m 4 m m m m 4 4 m -4 -

=4 m 4 4 m 4 4 m m 4
—4 m 4 4 m m m H4 -4 m M

-4 1 4 m 4 m 4 7 4 7 o

many
few
many
many
few
single
few
many
many
single

many

Bad
Little  Bad
Little  Bad
Little  Bad
Lot Bad
Med Good
Little Good
Med Good
Little Good
Lot Bad
Little  Bad
Little  Bad

m m 4 m 4 m <4 4 m m M

water
air
earth

air

water v.long

fire
earth

air

earth v.long

fire
air

earth

quick
long
quick

med

quick
quick
quick

med

quick

< 2 2 2 < 2 < 2 < < 2

long

Pos: 312
Neg: 7 8
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Bypass? | Loot? Team Est. | Atta
size Time | ck?

O 00 N O U A W N B

(SRS Y
N P O

—4 m 4 m m m m 4 4 m -4 -

Pos: nil

Neg: 7 11

=4 m 4 4 m 4 4 m m 4
—4 m 4 4 m m m H4 -4 m M

-4 1 4 m 4 m 4 7 4 7 o

single

many
few
many
many
few
single
few
many
many
single

many

Little
Little
Little
Lot
Med
Little
Med
Little
Lot
Little
Little

Pos: 13468 12

Neg:2 5791011

Team size
P

few

Pos: 1368
Neg: nil

YES

Bad water quick
Bad F air long
Bad F earth  quick
Bad F air med
Bad T water v.long
Good T fire quick
Good F earth  quick
Good T air quick
Good F earth v.long
Bad T fire med
Bad F air quick
Bad F earth  long

< 2 2 2 < 2 < 2 < < 2

many

Pos: 412

Neg:2 5910

On q/L\uest?

F T

Pos: nil Pos: 4 12

Neg:59 Neg: 2 10
NO
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Learned from the 12 examples
Why doesn’t it look

like the previous tree?

— Not enough examples

— No reason to use
environment or mini-boss

— Hasn’t seen all cases

Learning is only as good
as your training data

Supervised learning
— Training set

— Test set

Team size

Many

On quest?

Element

Achievement?

32



Which attribute to choose?

* The one that gives you the most information (aka the most
diagnostic)

* |Information theory

— Answers the question: how much information does something contain?
— Ask a question

— Answer is information

— Amount of information depends on how much you already knew
(information gain)

* Example: flipping a coin



Entropy

 Measure of information in set of examples
— That is, amount of agreement between examples
— All examples are the same, E=0
— Even distributed and different, E=1

* If there are n possible answers, v,...v, and

v, has probability P(v) of being the right answer, then the
amount of information is:

H(P(v),... P(v,)) = —éP(vi) log, P(v,)

i=1



* For a training set:
p = # of positive examples
n = # of negative examples

ptp om0 _ »p

Probability of Probability of
a positive example  a negative example

 For our attack behavior Pos: 13468 12
Neg:25791011
—p=n= 6
—H()=1

— Would not be 1 if training set weren’t 50/50 yes/no,
but the point is to arrange attributes to increase gain
(decrease entropy)



Measuring attributes

 Remainer(A) is amount of entropy remaining after
applying an attribute

— If | use attribute A next, how much less entropy will | have?
— Use this to compare attributes

Instances of Positive examples Negative examples
the attribute for this answer ty for this answer to A

L oa

pl z a pz ni O
i=1 p+n P"'” P,'"”ﬂ

-/ 7N

Total answers Examples classified by A

Remalnder(A)

Different answers



Pos: 13468 12
Neg:25791011

Element

Pos: 1 Pos: 6
Neg: 5 Neg: 10

2 691 10 2 391 10
Remainder(element) = 8_ —= 8_ it
12 €2 2!3 12 62 2!5

t t

water fire

Pos: 4 8 Pos: 312
Neg: 2 11 Neg:7 8
&2 20 wz 20
—y T —,—+ =1 bit
12 84 45 12 84 47
t )
air earth
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single

Pos: nil
Neg: 7 11

Remainder(teamsize) =

Pos: 13468 12
Neg:25791011

Team size

few

Pos: 1368
Neg: nil

2 3&0 20 %4 00

t /

single few

many

Pos: 412
Neg: 25910

~ = 400, 68240 asobi
1255557 12844@ 256 TP

1

many
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Not done yet
Need to measure information gained by an attribute

. p n O
Gain(A) = =-remainder(A)
8p+n ptng

Pick the biggest

Example:
$110 2 $110 4 %220 4 %2200

— H 1 1 — I W It L e N s &e0
Gain(element) = H(’2,%) 812 e 22 2 a2 12 S0 4

= 0 bits

— Gain(teamsize) = H(%,%) —e.2 20 29, 4 ;&4 00, 6 ;82 400
812 s a2 12756 6o

= 0.541 bits



Pos:

13468 12
Neg:2 5791011

teamsize=many, onquest=T

Many
teamsize=many, onquest=F
: \ Pos: 412
Gain(quest) = [—[a 2 4 0 2 [—[&9 29 i[_]ag ggu Neg: 25910
§12'120 €12 €2'20 12 &4 4a
/ / On Quest
no yes

=0.959 - [ 0+ (4/12)(1)]

= 0.626 bits

Team size

N

Pos: nil
Neg: 59

Pos: 412
Neg: 2 10
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Decision-tree-learning (examples, attributes, default)

IF examples is empty THEN RETURN default

ELSE IF all examples have same classification THEN RETURN classification
ELSE IF attributes is empty RETURN majority-value(examples)

ELSE

best = choose(attributes, example) < Where gain happens

tree = new decision tree with best as root

m = majority-value(examples)

FOREACH answer v, of best DO
examples, = {elements of examples with best=v}
subtree, = decision-tree-learning(examples, attributes-{best}, m)
add a branch to tree based on v, and subtree,

RETURN tree



How many hypotheses?

* How many distinct trees?
— N attributes

= # of boolean functions
= # of distinct truth tables with 2" rows
=2727n
— With 6 attributes: > 18 quintillion possible trees
» 18,446,744,073,709,551,616



How do we assess?

* How do we know hypothesis = true decision function?

 Alearning algorithm is good if it produces hypotheses that do a good job of
predicting decisions/classifications from unseen examples

1. Collect a large set of examples (with answers)
2. Divide into training set and test set

3. Use training set to produce hypothesis h

4

Apply h to test set (w/o answers)
— Measure % examples that are correctly classified
5. Repeat 2-4 for different sizes of training sets, randomly selecting examples for
training and test
— Vary size of training set m
— Vary which m examples are training



* Plot alearning curve
— % correct on test set, as a function of training set size
1 .
3 0.9 1
%)
2 0.8 ;
c
S0.7 |
Q
206 ;
3
> 0.5 |

o~
0.4

0 10 20 30 40 50 60 70 80 90100
Training set size

* Astraining set grows, prediction quality should increase

— Called a “happy graph”
— There is a pattern in the data AND the algorithm is picking it up!



Noise

Suppose 2 or more examples with same description (Same
assignment of attributes) have different answers

Examples: on two identical* situations, | do two different
things

You can’t have a consistent hypothesis (it must contradict at
least one example)

Report majority classification or report probability



Overfitting

e Learn a hypothesis that is consistent using irrelevant attributes
— Coincidental circumstances result in spurious distinctions among examples
— Why does this happen?

* You gave a bunch of attributes because you didn’t know what would be important

* If you knew which attributes were important, you might not have had to do learning in the
first place

 Example: Day, month, or color of die in predicting a die roll

— As long as no two examples are identical, we can find an exact hypothesis

— Should be random 1-6, but if | roll once every day and each day results in a
different number, the learning algorithm will conclude that day determines the
roll

* Applies to all learning algorithms



Black and White

Y VY

http:ww.ign.om/games/black-and-hite

47



Black and White

e Creature must learn what to do
in different situations

* Player can reward or punish the
creature

— Tells the creature whether they
made the right choice of action or
not

* Creature learns to predict the
feedback it will receive from the
player

Example Attributes Target
Allegiance Defense Tribe Feedback

D1 Friendly Weak Celtic -1.0
D2 Enemy Weak Celtic 0.4

D3 Friendly Strong Norse -1.0
D4 Enemy Strong Norse -0.2
D5 Friendly Weak Greek -1.0
D6 Enemy Medium Greek 0.2

D7 Enemy Strong Greek -0.4
D8 Enemy Medium Aztec 0.0

D9 Friendly Weak Aztec -1.0

Continuous DTs must discretize the variables by
deciding where to split the continuous range.

48



No Free Lunch

* ID3

— Must discretize continuous attributes
— Offline only (online = adjust to new examples)
— Too inefficient with many examples

* Incremental methods (C4.5, See5, ITT, etc)
— Starts with a d-tree
— Each node holds examples that reach that node
— Any node can update self given new example
— Can be unstable (new trees every cycle; rare in practice)



But first...

* “What Makes Good Al — Game Maker’s Toolkit”
— https://www.youtube.com/watch?v=9bbhJiONBkk&t=0s
— https://www.patreon.com/GameMakersToolkit

— React/adapt to the player — no learning required (authoring is)
— Communicate what you’re thinking

— Illusion of intelligence; more health & aggression can be a proxy for
smarts

— Predictability is (usually) a good thing
* Too much NPC stupidity can ruin an otherwise good game


https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s
https://www.patreon.com/GameMakersToolkit

Next Class

* More decision making!
— Behavior trees
— Production / Rule Based systems
— Fuzzy logic + probability
— Planning



BEHAVIOR TREES (M CH. 5.4)



Next Class

* More decision making!
— Behavior trees
— Production / Rule Based systems
— Fuzzy logic + probability
— Planning



