
Grok: The word "grok", coined in the 
novel, made its way into the English 
language. In Heinlein's invented Martian 
language, "grok" literally means "to drink" 
and figuratively means "to comprehend", 
"to love", and "to be one with". This word 
rapidly became common parlance among 
science fiction fans, hippies, and later 
computer programmers[16] and 
hackers[17], and has since entered the 
Oxford English Dictionary.[18]

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the 
topic. They are neither a substitute for attending the lectures nor for reading the 
assigned material.

1

https://en.wikipedia.org/wiki/Stranger_in_a_Strange_Land

https://en.wikipedia.org/wiki/Stranger_in_a_Strange_Land


N-2&3: Decision Making, FSMs

1. How can we describe decision making?
2. What makes FSMs so attractive? What is difficult to do with them?
3. Two drawbacks of FSMs and how to fix?
4. What are the performance dimensions we tend to assess?
5. What are two methods we discussed to learn about changes in the world 

state?
6. FSMs/Btrees: R___ :: Planning : D____
7. When is the R__ good? When is D__?
8. H______ have helped in most approaches.
9. What are two methods we discussed to learn about changes in the world 

state?



N-1: Decision Making, D-trees

1. How many outcomes does a D-tree produce?

2. What are advantages of D-Trees?

3. Discuss the effects of tree balance.

4. Must D-trees be a tree?

5. Can D-trees translate into rules? If so how?

6. How can we use d-trees for prediction?

7. What is the notion of overfitting?

Decision trees can represent any Boolean function of the input 
attributes

More on learning Dtrees: 
https://courses.cs.washington.edu/courses/cse573/12sp/lectures/19-dtree.pdf
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

https://courses.cs.washington.edu/courses/cse573/12sp/lectures/19-dtree.pdf
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf


Learned D-tree: how well do they work?

• Many case studies have shown that decision trees are at least 
as accurate as human experts. 
– study for diagnosing breast cancer had humans correctly classifying 

the examples 65% of the time; the decision tree classified 72% 
correct

– British Petroleum designed a decision tree for gas-oil separation for 
offshore oil platforms that replaced an earlier rule-based expert 
system 

– Cessna designed an airplane flight controller using 90,000 examples 
and 20 attributes per example

4
https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf

https://www.cc.gatech.edu/~bboots3/CS4641-Fall2016/Lectures/Lecture2.pdf


Reminder

• “What Makes Good AI – Game Maker’s Toolkit”

– https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s

– https://www.patreon.com/GameMakersToolkit

– React/adapt to the player – no learning required (authoring is)

– Communicate what you’re thinking

– Illusion of intelligence; more health & aggression can be a proxy for 
smarts

– Predictability is (usually) a good thing

• Too much NPC stupidity can ruin an otherwise good game

5

https://www.youtube.com/watch?v=9bbhJi0NBkk&t=0s
https://www.patreon.com/GameMakersToolkit


BEHAVIOR TREES (M CH. 5.4)

6



What if…

• We could fail gracefully?

– If “confused” enter more and more general states

• Encode sequences of states?

– Without having to bog each state down tracking more 
variables/conditions



Behavior Trees (B trees)

• Popular in subsections of 
industry since 2004; have reach 
ubiquity 

– Halo 2

– Bioshock

– Spore

• Easy to design

• Easy to alter

• Fail gracefully



Behavior Trees

• Simple reactive planning that is 
synthesis of: HFSM, Scheduling, 
Planning, Action Execution
– Mathematical Model of Plan Execution 

– describe switching between a finite 
set of tasks in a modular fashion

– (Manually provided) tree of behaviors 
specifies what an agent should do 
under all circumstances 

– Path from root to leaf represents one 
course of action. All paths, all COAs

– Search proceeds left-to-right (ie DFS)

• Decomposition allows flexibility & 
easy GUI integration
– Easy to understand

– Easy for non-programmers to create

• Aren’t good in all instances… (stay 
tuned)

• Instead of state, employ tasks

• Composable, self contained, 
encourages reuse
– Delegation of concerns – don’t need to 

know how each sub-task implemented

9



Behavior Trees

• All nodes (tasks/behaviors) return success, failure, none/running, or error
– Behavior tree made of hierarchically connected tasks (not states!)

• Types of nodes:
– Actions/Execution (leaf node): do something in the world
– Conditions (leaf node): make a decision based on world condition
– Composites/Control flow (one parent, one+ children): combine multiple tasks

• Prioritized list: success if any child succeeds in order
• Sequence: failure if any child fails in order
• Sequential-looping: keep doing sequence until a failure
• Probabilistic: choose probabilistically from set
• One-off (random or prioritized): pick a single child randomly or with some priority

– Decorators (one parent, one child): modify child task behavior 
• e.g UntilFail, RunLimit, Semaphore

10



https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html

11https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/index.html
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html


Behavior Tree Structure

12

M&F 5.22: Selector

M&F 5.23: Sequence w/ condition

M&F 5.25



One action per tick

• Execution of a BT starts from the root 
– Root sends ticks with a certain frequency to its child 

• Tick is an enabling signal that allows the execution of a child

– Each node keeps track of current child to execute
– When execution of a node is allowed, it returns execution status to the parent 

• running if execution not yet finished, 
• success if it has achieved its goal, 
• failure if it didn’t,
• error if an exception occurs (failure of code, not failure of attempted behavior)

• At start of ‘tick’, walk the tree to find our current node
– If in it last frame continue, otherwise reset it
– Alternative: keep track of executing node(s)

• Store any currently processing nodes so they can be ticked directly within the behavior tree engine 
rather than per tick traversal of the entire tree



Node Types

• Leaves

– Conditions

– Actions

• Non-leaves

– Composites

– Decorators

15



Leaves

• Game logic

– Library

– custom

• Returns Success, Fail, Processing, or Error

• Init() – called first visit

• Run() –called until complete

• Parameters



Node Types

• Conditions

– Test for some game property (e.g. proximity of player to NPC)

– Each implemented as a task

• Actions

• Composites

• Decorators

17



Class BTCondition extends Node

{

void run () 

{

if (condition met) {

return True

}

return False

}

}

18



Node Types

• Conditions

• Actions

– Alter game state 

• (e.g. play animation, change character internal state, run AI code, play audio 
sample, etc.)

– Each is a task

• Composites

• Decorators

19



Class BTAction extends Node

{

void run () 

{

if (execution conditions not met) {

return False

}

// Do whatever you need to do

return True or False

}

}

20



Node Types

• Conditions

• Actions

• Composites

– Differentiates BTs from decision trees

– Allows for the combination of tasks without concern for what else is 
in the tree

• Decorators

21



Composite

• Composite Node:

– One or more children

– Sequence (AND), Selector (OR), or Random

– Short circuiting of Boolean logic

– Returns success or fail (based on children returns typically)



Composite Nodes: Selector

• Selector

– Run child tasks until one of them succeeds

– Return failure if all tasks fails

23



Composite Nodes: Sequence

• Selector

• Sequence

– Series of tasks that all must succeed

24



Class BTPriorityList extends Node
{

children = []

void run () 
{

if (execution conditions not met) do {
return False

}
for child in children do {

if child.run() == True do {
return True

}
}
return False

}
}

25



Class BTSequence extends Node
{

children = []

void run () 
{

if (execution conditions not met) do {
return False

}
for child in children do {

if child.run() == False do {
return False

}
}
return True

}
}

26



Example

• Enter room where player is standing. Player may close the 
door.

27



Example

What if the door is locked?
28

M Fig 5.25



Example

29M Fig 5.27



Non-deterministic Composites

• Strict order == predictable

• We saw partial-orders help this

• Fake partial-order with random shuffle

• 2 new (sub)types of composites

– ND Selector

– ND Sequence

– The original selector/sequence are deterministic (that is, totally 
ordered)

30



Node summary (so far)

• Conditions
• Action: leaf, alter state of game, move, play animation, etc.
• Composites:

– Prioritized list: choose subtask, with priority given to certain “questions”
– Sequence: do all subtasks in order
– Sequential-looping: sequence, start over when done
– Probabilistic: randomly choose a subtask
– One-off: pick one subtask (prioritized or random), but never repeat the 

choice

• Decorators

31



4th node type: Decorators

• “Wraps” other nodes

• Has a single child task and modifies it in some way
– Inverter (ie NOT)

– Filters (allows child to run (or not))

– Run Until Fail

– Repeater

– Succeeder (always true, runs child but doesn’t care about 
success/failure)

– Guard Resource (semaphores)

32



Example

33M 5.29



Semaphores

• Check for restricted resources

– Keeps a tally of available resources and number of users

– e.g. animation engine, pathfinding pool, etc.

• Typically provided in a language library

34



Guarding Resources

35

M 5.30



Advanced hacks

• Interrupt daemons: jump from a node to an entirely different 
section of the tree based on external conditions changing

• Shortcuts: jump from within one child node to another directly



More Complex Approaches

• Concurrency (tasks run on threads or via multitasking & 
scheduling algorithms)

– Essential to make BTs useful (* UE4 disagrees)

– Most common practical implementation

– Millington codebase has example w/ cooperative multitasking

• Blackboard communication for sharing data

37



UE4 & Concurrent Behaviors

• “Standard” behavior trees often use a Parallel composite node to handle 
concurrent behaviors. 
– The Parallel node begins execution on all of its children simultaneously. 
– Special rules determine how to act if one or more of those child trees finish

• Why not use Parallel nodes? Clarity, Debugging & Optimizations
– Parallel nodes can be very confusing, even for relatively simple behaviors.
– Effectively Parallel nodes are simultaneously running a bunch of separate sub-trees, but 

any or all of those sub-trees may need to abort if one of them fails, or they may succeed 
when the others finish (whether successful or failing). 

– Parallel behaviors can be confusing even in simple cases, and with the number of 
options potentially available, it can become highly confusing.

– Parallel nodes make it harder to optimize performance, especially in terms of making 
event-driven trees.

38Source: https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html

https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html


Blackboard Agents

39M 5.36



BTs in Halo 2

Root

Self-preservation

Engage

Search

Charge

Fight

Guard

Grenade

Cover

Presearch

Uncover

Guard

Grenade

Vehicle

Investigate

Suppressing fire

Grenade

Postcombat

Shoot corpse

Check corpse

Idle Guard

Retreat Flee

40

https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php

https://www.gamasutra.com/view/feature/130663/gdc_2005_proceeding_handling_.php


BTs in Halo 2

• Determining which behaviors are relevant can be costly (in terms of 
time)
– Why? We’re constantly checking relevancy of behaviors that are not 

actually running

• How can we overcome that?
– Behavior tagging – Move commonly used checks to decision-time

– This process effectively locks or unlocks portions of the behavior tree, 
which you could view as changing the structure of the tree. 

– Example: a vehicle passenger cannot access subtrees devoted to fleeing, 
searching, or self-preservation 

41



BT Pros and Cons

• Cons
– Clunky for state-based behavior

• That is, changing behavior based on external changes

– Isn’t really thinking ahead about unique situations
– Only as good as the designer makes it (just follows 

the recipes)

• Pros
– Better when pass/fail of tasks is central

• Sound familiar? (harder to think about state…)

– Appearance of goal-driven behavior 
– Multi-step behavior
– Fast (generally slower than FSMs)
– Recover from errors

• Hybrid system may be answer
– Adds authorial + toolchain burden

• On Maintainability: 
– Transitions in BT are defined by the structure, not 

by conditions inside the states. 
– Because of this, nodes can be designed 

independent from each other
– When adding or removing new nodes/subtrees, it 

is not necessary to change other parts of the 
model

• On Scalability: 
– A BT with many nodes can be decomposed into 

smaller sub-BTrees
– Saves the readability of the graphical model

• On Reusability: 
– Thanks to independence of nodes in BT, subtrees 

are also independent. 
– This allows the reuse of nodes or subtrees among 

other trees or projects.

42



Strengths as compared to…?

• FSMs vs Behavior Trees:

– This is the strength of the behavior 
tree: It separates the states from 
the decision logic. 

• Decision Trees vs Behavior Trees

– Single common interface for all 
tasks/nodes means arbitrary 
conditions, actions, and groups can 
be combined together without any 
of them needing to know what else 
is in the behavior tree

43



IMPORTANT NOTE

• Any desired set of behaviors that can be represented in a 
Behavior Tree can be represented in an FSM and vice versa.

• Differences:

– Sequences of Actions: FSMs require extra variable tracking to handle 
sequences of states

– Error Recovery: FSMs require many more linkages to do what Btrees
do naturally



Btree, Dtree, FSMs: Caveat Emptor

• In principle/theory… they’re equivalent
– There is nothing a behavior tree can do that a FSM cannot do
– There is nothing a FSM can do that a decision tree cannot do

• While FSMs CAN represent sequences, it’s awkward. Authoring/Design differences
– BTrees make it easier to design plan-like sequences of actions
– BTree hierarchical decomposition makes it easier to design behavior modularly

• Hybrid techniques possible: eg Dtree to evaluate FSM transitions
• Dtrees, Btrees and FSMs (and rules): reactive decision making

– rely on the ability of the designer to create a good structure
– can NOT respond to novel situations (designer must anticipate all)
– have about same computation time (quick responses)
– create enemies with reliable patterns of behavior (less true for rules)

45



However, in practice

• Complexity generally follows: Dtree < FSM < Btree
• Decision trees are evaluated from root to leaf, every time. 

– For a decision tree to work properly, the child nodes of each parent must 
represent all possible decisions for that node.

• Behavior trees handle false conditions slightly differently
– If all of a child node's conditions are met, its behavior is started. 
– When a node starts a behavior, that node is set to 'running', and it returns 

the behavior. 
– A 'running' node knows to pick up where it left off
– If any running node fails, the traversal returns to the parent. The parent 

selector then moves on to the next priority child

46



47https://gamedev.stackexchange.com/questions/51693/decision-tree-vs-behavior-tree

https://gamedev.stackexchange.com/questions/51693/decision-tree-vs-behavior-tree


Syntactic Sugar

What is referred to by the term “Syntactic 
Sugar”?
• Syntactic Sugar is used in many 

programming languages 
• Syntactic Sugar is a simplified & compact 

syntax structure. It is intuitive, expressive, 
very easy to understand

Wikipedia: 
• A construct in a language is called "syntactic 

sugar" if it can be removed from the 
language without any effect on what the 
language can do: functionality and 
expressive power will remain the same.

48

Source: http://backtobazics.com/concept/what-do-you-mean-by-term-syntactic-sugar/

Image:
https://nailcube.wordpress.com/2011/07/26/interview-with-the-creators-of-dig-n-rig/

http://backtobazics.com/concept/what-do-you-mean-by-term-syntactic-sugar/


REACTIVE DECISION MAKING ALTERNATIVES

51



Reactive Decision Making

• Real-time decision making by performing one action every 
instant

• Examples

– State-action table

– Universal plan

– Behavior trees

– Rule systems

52



Reactive Planning

• Behavior trees implement a simple form of reactive planning

– Real-time decision making by performing one action every instant

53



Reactive Planning

• Where a state-action table gives us:

s1 --> a1

s2 --> a2

…

we get this from reactive plans:

s1 --> a11 a12 a13…

s2 --> a21 a22…

…

54



Reactive Planning

• Advantages

– Try things, fail, and fall back

– Appearance of goal-driven behavior without a formal definition of 
goals

– Fast

55



Reactive Planning

• Advantages

– Try things, fail, and fall back

– Appearance of goal-driven behavior without a formal definition of 
goals

– Fast

• Disadvantages 

– Can’t really think ahead

– Only as forward-thinking as the designer makes it

56



Next Class

• More decision making!

– Production / Rule Based systems

– Fuzzy logic + probability

– Planning

57


