
Plans are worthless, but
planning is everything.

There is a very great distinction
because when you are planning
for an emergency you must
start with this one thing: the
very definition of "emergency"
is that it is unexpected,
therefore it is not going to
happen the way you are
planning.

Dwight D. Eisenhower
1

Disclaimer: I use these notes as a guide rather than a comprehensive coverage of the
topic. They are neither a substitute for attending the lectures nor for reading the
assigned material.

• https://www.gdcvault.com/play/1024912/Beyond-Killzone-
Creating-New-AI

2

https://www.gdcvault.com/play/1024912/Beyond-Killzone-Creating-New-AI

Announcements

• Exam topics

– World representation: Grid, Mesh, etc.

– Navigation: Local (Steering) & Global
(Search)

– Decision making: Dtree, FSM, Btree,
Rules, A* & HTN Planning

• Questions:

– Compare/contrast approaches; pros &
cons

– Understand when and why it is
appropriate to use different techniques

• Question: Which of the following
are true about X and Y? (Circle all
that apply)

– X executes faster than Y

– Y can do everything X can do

– X & Y both rely on Z

– There is nothing X does better than Y

• Question: How can the use of X
reduce computation time in Y?

3Can bring 2 normal sheets (8.5x11) of paper with info on both sides

N-1: Production/rule systems

• Based on the current game state,
activate a set of rules, pick from those
based on some heuristic (e.g. best
matches conditions)

• Pros:
– Don’t need to specify response to every

contingency
– Can respond to novel conditions

• Cons:
– Hard to author robust rule systems
– Emergence vs. over-engineering
– Hard to debug

• Use in Games Industry, e.g.
Environment-sensitive dialog
generation (dynamic dialog gen)
– Overwatch:

https://www.youtube.com/watch?v=yqIKRL_5f6o&t=
13s&spfreload=10

– 2Bots1Wrench (GDC2012):
https://www.youtube.com/watch?v=j4eIu6LxdZg

– L4D2: https://www.youtube.com/watch?v=T5-2EnX5-
K0

• See also:
– Inform 7 rbs for interactive fiction

• Eg rules chart:
https://emshort.files.wordpress.com/2009/01
/rules-chart4.pdf

– Online Colossal Cave Adventure:
https://www.amc.com/shows/halt-and-catch-
fire/exclusives/colossal-cave-adventure

9

https://www.youtube.com/watch?v=yqIKRL_5f6o&t=13s&spfreload=10
https://www.youtube.com/watch?v=j4eIu6LxdZg
https://www.youtube.com/watch?v=T5-2EnX5-K0
https://emshort.files.wordpress.com/2009/01/rules-chart4.pdf
https://www.amc.com/shows/halt-and-catch-fire/exclusives/colossal-cave-adventure

Turn the Environment into Facts

Turn the Environment into Facts

Agent Knowledge Base

Current Decision Making Problems

• Shallowness & Realism
– All of these techniques have the agent take next “best” move, but don’t look further

into the future than the next state. Agents ought to be motivated by goals

• Adaptability
– Each technique is more general/adaptive than the last (Rule Systems >Behavior Trees >

FSMs > Decision Tree). But can still struggle to perform well in unanticipated situations.

• Heavy Design Burden
– All three of these techniques require a heavy authoring burden on designers

(FSMs: states and transitions, B trees: nodes and structure, Rules: all conditions
and each individual rule)

Decision Making: Planning

2019-10-16

With extra thanks to Dana Nau, Hector Munoz-
Avila, and Mark Riedl

Decision Making

• Classic AI:

– making the optimal choice of action (given what is
known or is knowable at the time) that maximizes
the chance of achieving a goal or receiving a
reward (or minimizes penalty/cost)

• Game AI:

– choosing the right goal/behavior/animation to
support the experience

• Today: One of closest overlaps

15

What is Planning?

• Finding a sequence of actions to achieve a goal
–Problems requiring deliberate thought ahead of time and a

sequence of actions

• Basic planning comes down to search:
“behavior planning using A*”
–Given: state of the world, a goal, and models of actions

– Find: sequence of actions (a plan) that achieves the goal

• Need to find appropriate heuristic

16

Some Examples

• Route search: Find a route from GT to New Orleans
• Project management: Construct a project plan for

organizing an event (e.g., Music Midtown)
• Military operations: Develop an air campaign
• Information gathering: Find and reserve an airline

ticket to travel from Hartsfield to Miami
• Game playing: plan the behavior of a computer

controlled player
• Resource control: Plan the stops of several of

elevators in a skyscraper building

Which of the following problems can be modeled as AI planning
problems?

Answer: ALL!
17

Classes of General-Purpose Planners

General purpose planners can be classified according to the space
where the search is performed:

• SAT

• Hierarchical Tasks

• Disjunctive plans

• state

• plan We are going to discuss these forms

18

Action/Behavior
Planning with A*

ACTION/BEHAVIOR PLANNING WITH A*

“A planning system tells the A.I. what its goals and actions are, and lets the A.I. decide how to
sequence actions to satisfy goals. […] Planning is a formalized process of searching for sequence of
actions to satisfy a goal” – Orkin

19

Action/Behavior Planning vs. Path planning

• Same algorithm, different action
representation

– Pathplanning:
• Cells / Waypoints / Path nodes

• Node links

– Action/Behavior planning with A*:
• Goals

• Actions, with

– Action name

– Precondition

– Effect (add/remove)

• As with all things in AI, how we
represent the problem and the
attributes of the problem is going
to be key.

• In planning systems, agents have
goals and a set of actions. Agent
decides how to apply those
actions to achieve goals.

20

http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
21

This is one of the main takeaways of this paper: It’s not that any particular
behavior in F.E.A.R. could not be implemented with existing techniques.
Instead, it is the complexity of the combination and interaction of all of the
behaviors that becomes unmanageable.

General Purpose vs. Domain-Specific

General purpose: symbolic descriptions of the problems and
the domain. The plan generation algorithm the same

Domain Specific: The plan generation algorithm depends on
the particular domain

Advantage: - opportunity to have clear semantics
Disadvantage: - symbolic description requirement

Advantage: - can be very efficient
Disadvantage: - lack of clear semantics

- knowledge-engineering for plan generation

Planning: find a sequence of actions to achieve a goal

22

STRIPS (Fikes & Nilsson)

• States

– at(plane1, Atlanta)

• Goals

– A particular state, or part of a particular state

• Actions (“operators”)

– Action Schema

23

General-Purpose Planning: State & Goals

• Initial state: (on A Table) (on C A) (on B Table) (clear B)
(clear C)

• Goals: (on C Table) (on B C) (on A B) (clear A)

A

C

B C

B

AInitial state Goals

(Ke Xu) 24

General-Purpose Planning: Operators

?y

?x

No block on
top of ?x

transformation

?y

?x

…
…

No block on top
of ?y nor ?x

Operator: (Unstack ?x)
• Preconditions: (on ?x ?y) (clear ?x)
• Effects:

– Add: (on ?x table) (clear ?y)
– Delete: (on ?x ?y)

On table

25

Search Space (World States)

A

C

B
A B C

A C

B

C

B

A

B

A

C

B

A

C

B C

A

C

A

B

A

C

B

B

C

A

A B

C

A

B

C

A

B

C

(Michael Moll) 26

STRIPS actions

State: airport(LAX), airport(ATL), at(plane1, ATL),

at(plane2, LAX), path(ATL, LAX), ~at(plan1, LAX), …

Fly (?p, ?from, ?to)

Precondition: at(?p, ?from), plane(?p), airport(?from),

airport(?to), path(?from, ?to), ?from ≠ ?to

Effect: at(?p, ?to), ¬at(?p, ?from)

*Also a call to the game engine to play animation or run a function

(All other things that are true or non-true)

27

FSM vs A* Planning

P
la

n
n

in
g

O
p

e
ra

to
rs

•Patrol
Preconditions:

No Monster
Effects:

patrolled
•Fight

Preconditions:
Monster in sight

Effects:
No Monster

Patrol Fight

Monster In Sight

No Monster

FSM:

A resulting plan:

Patrol
patrolled

Fight

No MonsterMonster in sight

Neither is more
powerful than
the other 29

But Planning Gives More Flexibility
• “Separates implementation from data” --- Orkin

reasoning knowledge

P
la

n
n

in
g

O
p

e
ra

to
rs

•Patrol
Preconditions:

No Monster
Effects:

patrolled
•Fight

Preconditions:
Monster in sight

Effects:
No Monster

…

Many potential plans:

PatrolFight
PatrolFight
PatrolFight
PatrolFight

PatrolFight

…

If conditions in the state change making
the current plan unfeasible: replan!

30

FSMs vs. Planning

• FSMs tell agents how to behave in every situation

• In planning systems, agents have goals and a set of actions.
Agent decides how to apply those actions to goals.

• With planning, “easy” to add goals and actions

31

But… Does Classical Planning Work for Games?

F.E.A.R. not!

32

http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

Planning in F.E.A.R.

• Agents need to autonomously use environment to satisfy their
goals

• Agent will not do anything without a goal

• Agent types defined by what actions are available to them

33

Benefits of Planning in F.E.A.R.

• Decoupled goals and actions
– Each character has own Action Set
– Allows for late additions in character types
– Allows for shared information between goals

• Layered behaviors
– Agents should always try to stay covered.
– Agents should never leave cover unless threatened and other cover is available
– Agents should fire from cover as best they can

• Dynamic problem solving
– Replanning gives the AI the power to adjust to new scenarios
– AI records obstacles in memory and uses that knowledge later during replanning

34

Layered Behaviors

• Basic Goal: KillEnemy

– Satisfied by Attack action

• Additional Goal: Dodge

– Satisfied by DodgeShuffle or DodgeRoll

• Goals and actions for melee attacks, taking cover, etc.

• With planning, easy to add goals and actions

35

F.E.A.R. Differences from STRIPS

• Action costs

– Actions have non-uniform costs in FEAR; FEAR uses A* to navigate
the state-space.

• World state representation

– The world state representation only allows for the planner to
consider one enemy and one weapon at a time.

– Therefore, systems outside of the planner choose which weapon and
which enemy to deal with, and the planner only considers those.

36

Other Games with Planning

• Empire: Total War

• Fallout 3

• Killzone series

37

Initial state: gunForSale, ammoForSale, possumAlive, ~gunLoaded, ~hasFood, ~hasGun,
~criminal, ~hasAmmo, ~rich, smellsFunny

Goal state: rich, hasFood

Action: RobBank
PRE: ~rich, hasGun, gunLoaded
EFFECT: rich, criminal

Action: ShootPossum
PRE: ~hasFood, hasGun, gunLoaded, possumAlive
EFFECT: hasFood, ~gunLoaded, ~possumAlive

Action: LoadGun
PRE: hasGun, hasAmmo, ~gunLoaded
EFFECT: gunLoaded, ~has Ammo

Action: BuyGun
PRE: gunForSale, ~hasGun, ~criminal
EFFECT: ~gunForSale, hasGun

Action: BuyAmmo
PRE: ammoForSale, ~hasAmmo
EFFECT: ~ammoForSale, hasAmmo

Action: TakeBath
PRE: smellsFunny
EFFECT: ~smellsFunny

Action: PlayInMud
PRE: ~smellsFunny
EFFECT: smellsFunny

38

GFS ~HF

AFS ~HA

PA ~HG

~GL ~C

SF ~R

~GFS ~HF

AFS ~HA

PA HG

~GL ~C

SF ~R

GFS ~HF

~AFS HA

PA ~HG

~GL ~C

SF ~R

buyAmmo

GFS ~HF

AFS ~HA

PA ~HG

~GL ~C

~SF ~R

~GFS ~HF

~AFS HA

PA HG

~GL ~C

SF ~R

buyAmmo

buyGun

GFS ~HF

AFS ~HA

PA HG

GL ~C

SF ~R

Initial state:
gunForSale,
ammoForSale,
possumAlive,
~gunLoaded,
~hasFood,
~hasGun,
~criminal,
~hasAmmo,
~rich,
smellsFunny

Action: ShootPossum
PRE: ~HF, HG, GL, PA
EFFECT: HF, ~GL, ~PA

39

Forward Planning

• State-space search

• Start with initial state

• Applicable actions are those whose preconditions are satisfied
by current state.

• Goal test

• Optional action cost

• Any complete graph search algorithm (e.g. A*)

40

Backward Planning

• State-space search

• Benefit: only consider relevant actions

• Actions must be consistent

• Graph search algorithm

41

Good, Bad, and Ugly

• Forward chaining

42

Good, Bad, and Ugly

• Forward chaining

– Irrelevant actions cause high branching factor

43

Good, Bad, and Ugly

• Forward chaining

– Irrelevant actions cause high branching factor

• Backward chaining

44

Good, Bad, and Ugly

• Forward chaining

– Irrelevant actions cause high branching factor

• Backward chaining

– Practical branching factor can be much lower because it only
considers necessary actions

– Total ordering susceptible to long backtracks when effects negate
earlier decisions

• Start thinking: More informed? Total order?

45

Heuristics

• f() = g() + h()

• g() is sum of action costs, which can be arbitrary

• How do you estimate the distance to the goal?

46

Heuristics and AI

"Heuristic Search Hypothesis. The solutions to
problems are represented as symbol structures. A
physical symbol system exercises its intelligence in
problem solving by search-that is, by generating
and progressively modifying symbol structures
until it produces a solution structure.” – Alan
Newell

“A physical symbol system has the necessary and
sufficient means for general intelligent action."
— Allen Newell and Herbert A. Simon

47

https://amturing.acm.org/award_winner
s/newell_3167755.cfm

https://www.nobelprize.org/prizes/econ
omic-sciences/1978/simon/biographical/

https://amturing.acm.org/award_winners/newell_3167755.cfm
https://www.nobelprize.org/prizes/economic-sciences/1978/simon/biographical/

Heuristics

• Informs decision into which node (state) to expand
– A function that estimates how close a state is to a goal
– Encapsulates domain knowledge for a particular search problem

• Admissible heuristics allow for A*
– Relax the planning problem (no deletes) and use subgoal independence

assumption
– Inadmissible heuristics break optimality because good plans get left on the

frontier
– A* expands mainly toward the goal, but maintains alternatives in frontiers just in

case
– As heuristics get closer to the true cost, fewer nodes are expanded but usually

more work is done per node to compute the heuristic itself

48

• Heuristic cost should never overestimate the actual cost of a node.
This is an “admissible” heuristic
– i.e. it must be “optimistic” so that we never overlook a node that is

actually good
– A* is optimally efficient: given the information in h, no other optimal

search method can expand fewer nodes
– Memory is a problem for the A* algorithms. Consider IDA*, SMA*

• A problem with less restrictions on its operators is called a relaxed
problem
– The optimal solution of the original problem is also a solution to the

relaxed problem and must therefore be at least as expensive as the
optimal solution to the relaxed problem

49

On memory

• In spite of its optimality and completeness, A* still has problems:
– For most problems, the number of nodes on the frontier of the search space is still exponential in

the length of the solution.
– That is, the search tree can still grow to be as "bushy" as in Breadth-first Search. So there can be

problems with respect to the amount of memory needed to run A* search.

• General drawbacks of heuristic (informed) search include the following:
– need to keep everything on the frontier in memory
– need to be able to do cost comparisons quickly — if the heuristic function is extremely complex,

the search will not be fast.
– need to choose good heuristics — this is not easy for many problems!

• When at a loss for a good heuristic function, consider a relaxed version of the problem.
– An exact solution to a relaxed problem might be a good heuristic for the real problem.
– For example, consider a sliding tile puzzle. One relaxed version of the puzzle is one in which the

tiles can simply be picked up and put into place. Therefore, one possible heuristic is to count the
number of tiles out of position, since simply placing them would solve the relaxed problem.

50
http://www.cs.williams.edu/~andrea/cs108/Lectures/InfSearch/infSearch.html

http://www.cs.williams.edu/~andrea/cs108/Lectures/InfSearch/infSearch.html

Heuristic Search Planning

• Computes heuristic values for each precondition based on
graph analysis

– Benefit: Only do it once as pre-computation step

• Heuristic

1. Cost of action is maximum over costs of preconditions (admissible,
but not informed)

2. Cost of action is sum over costs of preconditions (informed, but not
admissible)

51

Benefits of A* Planning

• Decouple goals and actions

– Can create new character types

(mimes vs. mutants)

– State machines become

unmanageable by design team

• Dynamic problem solving

– Ability to re-plan when failure

occurs

• Potentially more realistic combat
behavior (goal oriented actions)

• Make it harder to learn how to
defeat enemy tactics

• Emergent solutions

• Unanticipated situations can be
realistically handled

• Less authoring

52

Potential Drawbacks of A* Planning

• Slower responses / longer computation

• Less reliable patterns of behavior

• Removal of authorial intent

• Less understandable/explainable than BTree

53

PARTIAL ORDER PLANNING

54

Partial-Order Planning

• Avoid total ordering (previous examples)

• Partial ordering treats every precondition as a sub-problem to
be solved independently

• Reconcile solutions to sub-problems when they interact with
each other

• Don’t commit to any ordering before strictly necessary

– Least-commitment planning

55

Why Plan-Space Planning?

• 1. Motivation: “Sussman Anomaly”

– Two subgoals to achieve:

(on A B) (on B C)

BA

C

C

B

A

56

Why Plan-Space Planning?

• Problem of state-space search:

– Try (on A B) first:

• put C on the Table, then put A on B

• Accidentally wind up with A on B when B is still on the Table

• We can not get B on C without taking A off B

• Try to solve the first subgoal first appears to be mistaken

A BC C B

A

C

B

A

57

Partial-Order Planning

• Plan-search rather than state-search

• Plans are made up of:

– Actions used

– Ordering constraints

– Causal links

– Open preconditions

58

Partial-Order Planning

• Conflict

– An action C conflicts with A -p--> B if C has ¬p as an effect AND C can
occur between A and B

• Consistent Plans

– No cycles in ordering constraints

– No conflicts with causal links

• Solution

– Consistent plan with no open preconditions

59

POP Algorithm

• Start with initial plan [Start, Finish] where Start<Finish.

• Arbitrarily pick one open precond p

• Generate successor plans for every possible consistent way of
selecting an action A that achieves p

• Add new causal link to plan, and resolve conflicts (if necessary)

60

POP Heuristics

• Less understanding of how to create accurate heuristics for
POP than total-order planning.

• Obvious heuristic: number of open preconditions

• Most-constrained-variable

61

agenda = { make_empty_plan(init, goal) }
current = pop(agenda)

WHILE agenda not empty and current has flaws DO:
flaw = pick_flaw(current)
IF flaw isa open condition flaw DO:

FOREACH op in library that has an effect that unifies with o.c. DO:
successors += make_new_plan_from_new(…)

FOREACH op in current that is before and has an effect that uifies with o.c.
DO:

successors += make_new_plan_reuse(…)
IF a condition in init unifies with o.c. DO:

successors += make_new_plan_from_init(…)
IF a condition is negative and CWA applies DO:

successors += make_new_plan_from_cwa(…)
ELSE IF flaw isa causal threat flaw DO:

successors += make_new_plan_promote(…)
successors += make_new_plan_demote(…)

agenda = agenda + successors
current = pop(agenda)

END WHILE

RETURN current or nil

Insert sort

77

HTN PLANNING

Must read: http://www.cs.umd.edu/~nau/papers/nau2013game.pdf

79

http://www.cs.umd.edu/~nau/papers/nau2013game.pdf

Hierarchical Task Network (HTN) Planning

• Sometimes you know how to do things

• Example: going on a trip
– Domain-independent planner: lots of combinations of vehicles and routes

– Experienced human: a few recipes
• Buy air plane ticket

• Go from home to airport

• Fly to other airport

• Go from airport to destination

• Describe recipes as tasks that can be decomposed to sub-tasks
(tasks == goals)

80

Hierarchical Task Network (HTN) Planning

• Hierarchical decomposition of plans

• Initial plan describes high-level actions

– E.g. “Build House”, “Find Player”, etc

• Refine plans using action decompositions

• Process continues until the agent reaches primitive actions

81

Pay Builder
Get Permit

Hire builder

House

Build

House
Buy Land

Get

Permit

Hire

Builder

Construction
Pay

Builder

Buy

House

Hire

Realtor

Make

Offer
Find

House

(Conditions) (Conditions)

(Conditions) (Conditions)(Conditions)

(Conditions)(Conditions)

Find
land

Make
offer

82

State of the world1

State of the world1

State of the world3

State of the world2

HTN Planning: Idea

• Each “task” segments the planning problem into smaller and
smaller problems

• Only plan out the high-level plan at first

– Replan if conditions break it

• Only plan out with primitive actions the current high-level task

• Note: can use heuristic A* planning algorithms discussed for
primitive action planning

83

HTN Planner

• Given a task…
• Pick method with conditions that match the current world state (or pick

randomly)
• Planning process

– When you get to primitive, update state, repeat
– Execute full plan (monitor world state)

• Can also create a partial plan
– But early decisions can affect later conditions

• Replanning
– If plan breaks, just pop up a level and re-decompose
– Keep popping up decomposition fails

• SHOP2

84

2 < Distance(x,y) < 10 Distance(x,y) > 100

IAD

Credit: Dana Nau & Hector Munoz-Avila
85

SHOP2

(:method
; head
(transport-person ?p ?c2)

; precondition
(and

(at ?p ?c1)
(aircraft ?a)
(at ?a ?c3)
(different ?c1 ?c3))

; subtasks
(:ordered

(move-aircraft ?a ?c1)
(board ?p ?a ?c1)
(move-aircraft ?a ?c2)
(debark ?p ?a ?c2)))

*primitive actions have
preconditions and effects

86

87
https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

88

h
tt

p
:/

/w
w

w
.c

s.
u

m
d

.e
d

u
/~

n
au

/p
ap

er
s/

n
au

2
0

1
3

ga
m

e.
p

d
f

http://www.cs.umd.edu/~nau/papers/nau2013game.pdf

89 h
tt

p
s:

//
w

w
w

.g
u

er
ri

lla
-g

am
e

s.
co

m
/r

ea
d

/k
ill

zo
n

e
-2

-m
u

lt
ip

la
ye

r-
b

o
ts

https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

90 h
tt

p
s:

//
w

w
w

.g
u

er
ri

lla
-g

am
e

s.
co

m
/r

ea
d

/k
ill

zo
n

e
-2

-m
u

lt
ip

la
ye

r-
b

o
ts

https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

91 h
tt

p
s:

//
w

w
w

.g
u

er
ri

lla
-g

am
e

s.
co

m
/r

ea
d

/k
ill

zo
n

e
-2

-m
u

lt
ip

la
ye

r-
b

o
ts

https://www.guerrilla-games.com/read/killzone-2-multiplayer-bots

92

93

Given state s, Tasks T, Domain D
Let P = empty plan
Let T0 = {t∈T | no task comes before t}
Loop

If T0 is empty, return P
Pick any t ∈ T0

If t is primitive
Modify s according to effects
Add t to P
Update T by removing t
T0 = {t∈T | no task comes before t}

Else
Let M = a method for t with true preconditions in state s
If M is empty return FAIL
Modify T: remove t, add subtasks of M (note order constraints)
If M has subtasks

T0 = {t∈subtasks | no task comes before t}
Else

T0 = {t∈T | no task comes before t}
Repeat

94

HTN vs. A* Planning

• What are the advantages or disadvantages of HTN planning?
A* planning? Partial-order planning?

– Search time?

– Authoring time?

– Optimality?

– Novelty/Predictability?

– Partial solutions?

95

• HTN: Takes advantage of knowledge of how things are done.
Often is much faster, but decomposition could slow it down
depending on your level of granularity. Less/no improvisation

• A*: Opportunistic discovery and creativity. Harder for player to
learn/anticipate.

• POP: Efficient handling of semi-decomposable problems

96

Planning Under Uncertainty

• What if actions can fail?

97

Planning Under Uncertainty

• What do you do if you end up in a state you do not desire?

98

Planning Under Uncertainty

• What do you do if you end up in a state you do not desire?

– Replan

– Create a policy

99

Planning and Games – Future

• Plan recognition

• Story generation

• Where else?

100

Reactive Planning

• Real-time decision making by performing one action every
instant

• Instead of focusing on state, focus on action

• Examples

– State-action table

– Universal plan

– Behavior trees

– Rule systems

101

Resources

• F.E.A.R AI: https://www.youtube.com/watch?v=rf2T_j-FlDE

• Dana Nau HTN and games presentation
– http://www.cs.umd.edu/~nau/papers/nau2013game.pdf

• Killzone 2 AI:
– https://www.youtube.com/watch?v=7oWKCLdsGTE

– http://www.ign.com/boards/threads/killzone-2-enemy-a-i-is-it-up-there-
with-fear-as-1.177634641/

• Killzone 3:
– http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter29_Hierarchi

cal_AI_for_Multiplayer_Bots_in_Killzone_3.pdf

102

https://www.youtube.com/watch?v=rf2T_j-FlDE
http://www.cs.umd.edu/~nau/papers/nau2013game.pdf
https://www.youtube.com/watch?v=7oWKCLdsGTE
http://www.ign.com/boards/threads/killzone-2-enemy-a-i-is-it-up-there-with-fear-as-1.177634641/
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter29_Hierarchical_AI_for_Multiplayer_Bots_in_Killzone_3.pdf

Resources

• Planning in modern games:
– http://aigamedev.com/open/review/planning-in-games/
– Nau HTN planning in Killzone: http://www.cs.umd.edu/~nau/papers/nau2013game.pdf
– G.O.A.P: http://web.media.mit.edu/~jorkin/goap.html
– Workshop at ICAPS 2013: http://icaps13.icaps-conference.org/technical-program/workshop-

program/planning-in-games/
– The AI of F.E.A.R.: http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

• SHOP, JSHOP, SHOP2, JSHOP2, Pyhop (HTN planners)
– http://www.cs.umd.edu/projects/shop/
– https://bitbucket.org/dananau/pyhop/src/default/

• Scala impl. of partial-order planning
– https://github.com/boyangli/Scalpo

• Other planners:
– http://www.cs.cmu.edu/~jcl/compileplan/compiling_planner.html

• Facing your F.E.A.R. lecture: https://www.youtube.com/watch?v=rf2T_j-FlDE

103

http://aigamedev.com/open/review/planning-in-games/
http://www.cs.umd.edu/~nau/papers/nau2013game.pdf
http://web.media.mit.edu/~jorkin/goap.html
http://icaps13.icaps-conference.org/technical-program/workshop-program/planning-in-games/
http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf
http://www.cs.umd.edu/projects/shop/
https://bitbucket.org/dananau/pyhop/src/default/
https://github.com/boyangli/Scalpo
http://www.cs.cmu.edu/~jcl/compileplan/compiling_planner.html
https://www.youtube.com/watch?v=rf2T_j-FlDE

