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Satisficing is a decision-making strategy or 

cognitive heuristic that entails searching through the 

available alternatives until an acceptability threshold 

is met.[1] The term satisficing, a combination 

of satisfy and suffice,[2] was introduced by Herbert A. 

Simon in 1956,[3] although the concept was first posited in 

his 1947 book Administrative Behavior.[4][5] Simon used 

satisficing to explain the behavior of decision makers 

under circumstances in which an optimal solution 

cannot be determined. He maintained that many natural 

problems are characterized by computational intractability 

or a lack of information, both of which preclude the use of 

mathematical optimization procedures. He observed in 

his Nobel Prize in Economics speech that "decision 

makers can satisfice either by finding optimum 

solutions for a simplified world, or by finding 

satisfactory solutions for a more realistic world. 

Neither approach, in general, dominates the other, and 

both have continued to co-exist in the world 

of management science".

https://en.wikipedia.org/wiki/Satisficing

https://en.wikipedia.org/wiki/Decision-making
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Satisficing#cite_note-1
https://en.wikipedia.org/wiki/Satisficing#cite_note-2
https://en.wikipedia.org/wiki/Herbert_A._Simon
https://en.wikipedia.org/wiki/Satisficing#cite_note-3
https://en.wikipedia.org/wiki/Administrative_Behavior
https://en.wikipedia.org/wiki/Satisficing#cite_note-Brown2004-4
https://en.wikipedia.org/wiki/Satisficing#cite_note-AB1947-5
https://en.wikipedia.org/wiki/Nobel_Memorial_Prize_in_Economic_Sciences
https://en.wikipedia.org/wiki/Management


N-1: PCG intro

1. PCG can be used to p____ or a____ game aspects
2. What are some reasons to use PCG?
3. What are some risks / concerns of PCG?
4. Design-time vs run-time PCG?
5. How does the use of a random seed in PCG effect 

development and gameplay?
6. What is flow theory? How does it relate to dynamic 

difficulty adjustment & drama management?
7. How do you know you are generating something 

interesting?

http://jenovachen.com/flowingames/designfig.htm2



Quick Review: PCG

• Three categories of content to be 
generated
– Game bits

– Game spaces

– Game scenarios 

• Three categories of methods
– Rule systems

– Generative grammars

– Search

– Constraint solving



Two Major Ways to use PCG

• Runtime PCG: customization, dynamic adjustment, replayability

– Generate content live in game (No Man’s Sky, Spelunky, Minecraft, Horizon 
Zero Dawn, etc)

• Offline/Design-time/Developer PCG:  Speed up design of static 
content

– generate, pick best, and save content 

– generate then edit 

– generate and incorporate (Speedtree)



Why use PCG?

• Reducing cost of creating content? 
– Yes, when clever (SpeedTree), but can add complications (Mass 

Effect Andromeda)
– Exponentially increasing costs (levels, maps, missions, etc.)

• CONTENT IS KING
– If its interesting/personal/exciting to the player (Borderlands 2 

guns), not if its bland oatmeal (No Man’s Sky)
– Computed content saves:

• development costs
• Storage and/or main memory

• Keep player playing/replaying
– Adapting to player (Left4Dead AI director), new every time 

(Spelunky), or subarea (Bloodborne Chalice Dungeons)C
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PCG Concerns

Efficiency and Reliability tend to be a core concern.

• Speed (real-time/design time)

• Reliability (catastrophic failures/crashes)

• Controllability (wrt constraints and goals)

• Diversity (variations on a theme)

• Creativity (looks “computer-generated”)

How do you know you are generating something interesting?



Run time PCG

• Players are different: Preferences for pace and playstyle
– Moderate challenge levels
– Help avoid getting stuck
– Adapt to player’s tastes
– Detecting player exploits

• When to use run-time PCG
– When decisions can only be made at run-time
– When you just can’t pre-compute due to storage/memory limits

• Optimization problem
– What is the set of content that delivers the optimal experience to the player 

given individual differences?
– Example: rubber banding
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Risks

• PCG can be NP-hard for anything non-trivial
– But you can’t always make players wait

• Thorough testing of run-time PCG is impossible
– Best you can do is statistical sampling

• Offensive material
• Bad content
• Algorithm crash
• Meaningless activities

– Easy to create quests, but if they don’t connect to the larger game, no one 
cares
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PCG high-level Methods

• Search

• Rule systems

• Generative Grammars

• Constraint Solving

9
https://course.ccs.neu.edu/cs5150f13/readings/togelius_sbpcg.pdf

https://course.ccs.neu.edu/cs5150f13/readings/togelius_sbpcg.pdf


SEARCH-BASED OPTIMIZATION

PCG as Parameter Search
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Search-based PCG

• What if we could just give the system a general idea of what we 
wanted and have it “find” us the answer?
– From some generated element we can get to “neighbors”, which allows us 

to define a space

– The quality of any element can be derived by a heuristic to get some value

• Search! But what is our heuristic?
– Hill Climbing

– Simulated Annealing

– Genetic Algorithms



Start Simple

• Magic numbers are everywhere
– Steering behavior parameters, tactical weights, decision making 

probabilities, …

• Search over the parameter/configuration space
– Find/calculate value of 1+ parameters
– Aim: find best values of parameter/configuration

• Graph: Parameters/Configuration vs Fitness/Quality
– “landscape”
– Energy vs fitness

• Assume f(params)  fitness
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Types of Maxima
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Global Maximum: A point better than all other points

Local Maxima: A point better than all its neighbors



PCG AS PARAMETER SEARCH:
HILL CLIMBING
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Hill Climbing

• Hill climbing attempts to maximize (or minimize) a target function 
f(x), where x is a vector of continuous and/or discrete values 
(parameters)
– Does not require target function to be differentiable 

– Assume fixed step size

• General approach:
– From random start point 

– Generate 1 or more neighbors/successors
• Simple (first) vs Steepest Ascent (best) vs Stochastic (random)

– Pick the best neighbor (equivalent to greedy/best-first search)
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Hill Climbing

• Amounts to guess, check, modify parameter value, check…

– Stop when improvement stops

– Achieves optimal solutions in convex problems

– Simple, fast, can give good results

• Problems?

– Locality: equivalent to greedy/best-first search

– In non-convex problems finds local maximum

– Plateaus and (non-axis-aligned) Ridges
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Extensions to Hill Climbing

• Local (sub)optimality, search gets “stuck”
– The more local maxima, more difficult to solve

– At worst, fitness is random/not correlated to nearby values

– Step back. Is goal to find “optimal”? “Satisficing”

• Fixes
– Momentum (record prev score improvements)

– Adaptive resolution (think granularity)

– Multiple trials (initial guesses)

– Annealing (add term to rep temperature)
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Simulated Annealing

• Find approximate to the global 
optimum

• Inspired by annealing in metallurgy

– slow cooling interpreted as slow 
decrease in probability of accepting 
worse solutions

– Exploration vs Exploitation

• Pick a neighbor based on the some 
probability T (based on how long 
the algorithm has been running) 
and the quality of that neighbor

18



Simulated Annealing

state= randomly choose a state

for k = 0 through maxTimeSteps:

T = calculateTemperature(1- k/maxTimeSteps)

newState = randomSelect(neighbors(state))

if P(E(state), E(newState), T)>=random(0,1):

state = newState

return state 

19

Acceptance Probability Function: probability of 
transitioning from state to newstate based on their 
energies and current temperature

* Also keep track of best sample seen so 
far in case final state is not as good



Simulated Annealing 

• Can give good results!

• Highly dependent on the temperature function, which is 
domain (and even problem) dependent 

• Restarts can be useful: sometimes better to move back rather 
than always moving from the current state

• At worst it is basically random search, with all those associated 
fallbacks 
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PCG AS PARAMETER SEARCH:
GENETIC & EVOLUTIONARY ALGORITHMS

21



Video Examples

• Evolving Virtual Creatures (Karl Sims)

• Evolving muscle-based bipedal locomotion

• Evolving Faces

• Evolving Artificial Creatures

• Killer Fish
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http://www.youtube.com/watch?v=F0OHycypSG8
https://www.youtube.com/watch?v=pgaEE27nsQw
http://www.youtube.com/watch?v=qS5HWBNvf9U
http://www.youtube.com/watch?v=d4BGLp0wcdE&NR=1
http://www.youtube.com/watch?v=Fp9kzoAxsA4


Genetic Algorithms

• Loosely inspired by Darwin’s Theory of Evolution

• Sometimes called “Evolutionary search”

• Consistently pretty popular (if only for the tagline “evolving 
artificial intelligence to solve…”)

23



GA Applications

• Applications anywhere with a large search domain
– Especially where traditional search or optimization would be slow

• Useful when:
– Domain knowledge is scarce
– Hard to encode expert knowledge
– No mathematical analysis available

• Best used offline
• See also list of applications: 

https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applicatio
ns

24

https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications


Genetic Algorithm Pseudocode (variants)

population = set of random points of size X

time = 0

while E(population)<threshold and time<max:

time ++

Mutate(population)

population = Crossover(population)

population = Reduce(population)

return bestE(population)

25



GA Pseudocode cont

• Mutate: Given some probability, randomly replace a member 
of the population with a neighbor 

– Make a random change

• Crossover/recombination: Take pairs of the initial population 
(chosen based on fitness), and combine their features 
randomly till population grows up to size Y (where X<Y)

• Reduce: Reduce the size of the population back down to X

26



Genetic Algorithms

• Mutate amounts to Exploration (global neighborhood)
– Only mutation will mean the program is randomly guessing and could run 

indefinitely

– Breadth-first

• Crossover amounts to Exploitation (local neighborhood)
– Only crossover will mean that the program is more likely to get stuck at a 

local optimum 

– Depth-first

• Source and example:  
https://www.youtube.com/watch?v=9bht7Vq0DqY



Genetic Algorithms

Pros

– Middling authorial burden (more than hill climbing, less than 
generative grammars/rule system)

– High likelihood of finding global optima-ish

Cons

– Takes skill to pick and balance mutation/crossover

– Over-reliance

28



Search-based PCG

Pros
– Allows for designers to specify high-level desires rather than low level 

content authoring

Cons
– Coming up with a good heuristic is hard

• Representation of state

• Evaluating fitness/quality

• Perturbing a member

• Tuning search parameters

– Many devs will prefer to just use generative grammars

29



DEEPER DIVE ON GENETIC ALGORITHMS

30



Biology Metaphor

“Variation is a feature of natural 

populations and every population produces 

more progeny than its environment can 

manage. The consequences of this 

overproduction is that those individuals 

with the best genetic fitness for the 

environment will produce offspring that 

can more successfully compete in that 

environment. Thus the subsequent 

generation will have a higher 

representation of these offspring and the 

population will have evolved.”

-Darwin

31



The GA Problem

• 1st Step: Encoding a solution to your problem (i.e. a 
chromosome)

– e.g. values for coefficients in a function, numeric preferences for 
selecting rules, type and number of tiles, or weights in your FSM or 
BT

• May or may not be human readable

– 101010100001010111010101011010

– S8G2P1M4

35



Steps

1. Create a random set of n chromosomes [“population”]

Each chromosome represents an individual or a state or a particular 
agent, and is a combination of genes

37



Steps

1. Create a random set of n chromosomes

2. Test each chromosome to see how good it is at solving the 
problem; Assign a fitness score to each tested chromosome
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Steps

1. Create a random set of n chromosomes

2. Test each chromosome to see how good it is at solving the 
problem; Assign a fitness score to each tested chromosome

3. Mutate: Randomly mutate
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Steps

1. Create a random set of n chromosomes

2. Test each chromosome to see how good it is at solving the 
problem; Assign a fitness score to each tested chromosome

3. Mutate: Randomly mutate

4. Cross-over: Cycle through selected pairs of chromosomes and 
cross-over

40



Steps

1. Create a random set of n chromosomes

2. Test each chromosome to see how good it is at solving the 
problem; Assign a fitness score to each tested chromosome

3. Mutate: Randomly mutate

4. Cross-over: Cycle through selected pairs of chromosomes and 
cross-over

5. Reduce: cull population using some strategy 

e.g. Remove the m% (m < 100) worst chromosomes

41



Steps

1. Create a random set of n chromosomes

2. Test each chromosome to see how good it is at solving the 
problem; Assign a fitness score to each tested chromosome

3. Mutate: Randomly mutate 

4. Cross-over: Cycle through selected pairs of chromosomes and 
cross-over

5. Reduce: cull some chromosomes

6. Repeat steps 2-5 until optimality is reached (local or global?)

42



REDUCE / SELECTION
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Population

• How many individuals (or chromosome representations) you 
have in the gene pool

• How many should you have? How many should you 
reproduce?

– Small pop.: Risk replacing individuals before reproduction; Less 
diversity

– Large pop.: More diversity; converge fast initially, but little progress 
later

44



Kiss: µ + λ

• Create a population of µ + λ individuals

• Each generation

– Evaluate all individuals in population

– Sort by fitness

– Remove the worst λ individuals

– Replace those removed with mutated copies of the μ best (no 
crossover)

45



Elitist Selection

• Select the n% best individuals from the population and 
advance them unchanged to the next generation

• Typically, 1 < n < 10; potentially n < 20

• Too much elitism ---> early convergence

Generally, you want some elitism regardless of your other 
selection techniques. 

46



Roulette Wheel Selection

10111

11010

11111

00001

01011

00101

47

This is a way of choosing members from the population of 
chromosomes in a way that is proportional to their fitness



Scaling

• Used in combination with Roulette Selection

• Helps prevent premature convergence

• Rank scaling
– Starting with raw fitness scores, convert to rank listing

– Use ranks for roulette proportions

e.g. [235, 123, 54, 45, 32] becomes [5,4,3,2,1]

– Especially in early generations, to help prevent premature convergence

– Good because fitness scores early on may be too widespread

48



Scaling

• Used in combination with Roulette Selection

• Helps prevent premature convergence

• Rank scaling

• Sigma scaling (σ is std dev of fitnesses)

NewFit[i] = (RawFit[i] – AvgFit) / 2σ

– Keeps selection pressure (diversity) constant over many generations. 

49



Scaling

• Used in combination with Roulette Selection
• Helps prevent premature convergence

• Rank scaling
• Sigma scaling
• Boltzmann scaling

NewFit[i] = (RawFit[i]/Temperature) / Avg(RawFit/Temperature)

Temperature is found through trial and error
e.g. T = 3*pop_size – 0.05*numGenerations

– Keeps selection pressure low at beginning and high at the end. 
– As alg converges, fitter individuals are given a preference 

(High selection pressure = low diversity)

50



Tournament Selection

• Select n% of the population (typically 2<n<10)

– As n decreases, diversity increases

• The most fit member of the group is used for crossover

– Alternately, crossover the 2 most fit members of the group

• Faster than roulette selection

51



CROSSOVER
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Crossover

Having a good crossover function that fits the structure of your 
problem representation is crucial. Crossover happens at the gene 
level

• Given crossover rate and format, swap bits of the parents

e.g. 100111 and 101001 would potentially yield:

53



Crossover

Having a good crossover function that fits the structure of your 
problem representation is crucial.

• Given crossover rate and format, swap bits of the parents

e.g. 100111 and 101001 would potentially yield:

100001 and 101111 (One-point crossover)
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Crossover

• Given crossover rate and format, swap bits of the parents

e.g. 100111 and 101001 would potentially yield:

100001 and 101111 (One-point crossover); or…

101011 and 100101 (Two-point crossover)

55



Crossover

• Given crossover rate and format, swap bits of the parents

e.g. 100111 and 101001 would potentially yield:

100001 and 101111 (One-point crossover); or…

101011 and 100101 (Two-point crossover); or…

100111 and 101001 (Random point selection)
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Crossover

• Given crossover rate and format, swap bits of the parents

e.g. 100111 and 101001 would potentially yield:

100001 and 101111 (One-point crossover); or…

101011 and 100101 (Two-point crossover); or…

100111 and 101001 (Random point selection)

• Multi-point crossover

– Select each gene from either parent, possibly ensuring that an equal 
number come from each parent

57



MUTATION & FITNESS
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Mutation Rate

• Why do we have crossover and mutation? 
– Crossover explores faster. Mutation exploits local region. 

– You ALWAYS need to have mutation

• What is the benefit of mutation? 
– Making random changes to our solutions helps get us out of local 

maxima

• Small chance of a bit being flipped

• 101111 becomes 101110
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Niching

• Method for retaining diversity

• Useful when environment might have multiple peaks

• Also good for protecting a new innovation within a population

• Explicit Fitness Sharing

NewFit[i] = OldFit[i] / NumNeighbors
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Niching

• Method for retaining diversity

• Useful when environment might have multiple peaks

• Explicit Fitness Sharing

• Speciation
– Requires crossover only occurs within “breeds”

– Species are killed when pop = 0 or fitness hasn’t increased over several 
generations

– Might want to try higher mutation rates
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Simple Example

Problem:

Given the digits 0 through 9 and the operators +, -, *, and /, find a 
sequence that will represent a given target number. The operators will 
be applied sequentially from left to right as you read and any 
extraneous information will be ignored.
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Encoding

0: 0000

1: 0001

2: 0010

3: 0011

4: 0100

5: 0101

6: 0110

7: 0111

8: 1000

9: 1001

+: 1010

-: 1011

*: 1100

/: 1101

64



Example Solution

23 = 6 + 5 * 4 /2 + 1

--->

0110 1010 0101 1100 0100 1101 0010 1010 0001

6      +        5       *       4       /        2       +       1
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Deciding on a Fitness Function

• Hardest part of the process

• e.g., “inverse proportional to the difference between the 
solution and the chromosome’s value”

• e.g., with a target of 42 and a value of 23

– Fitness: 1/(42-23) = 1/19

– 1/0 ---> success

66



Using Real Values

• In games, we may want our genomes to use real floating-point 
numbers instead of bit strings

• Allows us to exploit mathematical properties of a landscape
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Tuning Parameters

• Population size

• Number of generations

• Fitness function

• Representation

• Mutation rate

• Crossover operations

• Selection procedure

• Number of solutions to keep

Large pop takes too long. Small 
pop doesn’t search a large enough 
space, and converges to poor soln. 

Too much mutation leads to 
random search. Not enough, 
then we lose diversity and 
stagnate.
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Criticisms

• Repeated fitness evaluation may be expensive

• Unclear stop criterion

• Challenge to scale with complexity

• Prone to local, rather than global, maxima

76



GAs and Decision Making

• GAs can be used to tune parameters in rules and FSMs

if (enemy.distance <= 5)

ATTACK-WITH-KNIFE()

else if (enemy.distance > 5 AND enemy.distance <=30)

ATTACK-WITH-SUBMACHINE-GUN

else ATTACK-WITH-RIFLE
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GAs and Decision Making

• Counterstrike example

– Select parameters to tune

– Allow the GA to evolve the parameters

– Pit the evolved bots against hand-tuned bots

• Fitness function: $ earned

• GA bots performed as well as hand-tuned bots

79

Using a Genetic Algorithm to Tune First-Person Shooter Bots. Nicholas Cole, Sushil J. Louis, and Chris Miles. 
2004. https://pdfs.semanticscholar.org/24ec/f958b25b791b63271774b3e115ad38185015.pdf

https://pdfs.semanticscholar.org/24ec/f958b25b791b63271774b3e115ad38185015.pdf


GAs and RTS Games

• Tune AI strategy to target human player weaknesses

– Tune parameters that define AI personality (e.g. unit preference, 
scientific advance preference, offense vs. defense, etc.)

• Tune behavior of individuals or groups of units

80

Ponsen, Marc, and Pieter Spronck. Improving adaptive game AI with evolutionary learning. 

Diss. Masters Thesis, Delft University of Technology, 2004.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6055&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.6055&rep=rep1&type=pdf


GAs and Game AI

• GAs seek optimal solutions. Is that what we want from Game 
AI?
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GAs in Review

• Have problems with local maxima

– Niche penalty can avoid this sometimes

• GAs can rapidly find good solutions in general

• Problem domains

– Scheduling and timetabling

– Engineering // optimization problems
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PCG See also

• IGDA Webinar, 10 December 2014: PCG in games: perspectives 
from the ivory tower
– https://www.youtube.com/watch?v=UVRqCK6m7m4

• PCG Book http://pcgbook.com/
– Grammars: Chapter 5 http://pcgbook.com/wp-

content/uploads/chapter05.pdf

• 9.1: Genetic Algorithms and Evolutionary Computing - The 
Nature of Code
– https://www.youtube.com/watch?v=6l6b78Y4V7Y
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https://www.youtube.com/watch?v=UVRqCK6m7m4
https://www.youtube.com/watch?v=UVRqCK6m7m4
http://pcgbook.com/
http://pcgbook.com/wp-content/uploads/chapter05.pdf
https://www.youtube.com/watch?v=6l6b78Y4V7Y

