
Procedural Content
Generation, continued

2019-11-06

N-3: PCG intro

1. PCG can be used to p____ or a____ game aspects
2. What are some reasons to use PCG?
3. What are some risks / concerns of PCG?
4. Design-time vs run-time PCG?
5. How does the use of a random seed in PCG effect

development and gameplay?
6. What is flow theory? How does it relate to dynamic

difficulty adjustment & drama management?
7. How do you know you are generating something

interesting?

http://jenovachen.com/flowingames/designfig.htm2

N-2: PCG as Search

1. What “search” is happening? Do we seek a path to goal?
2. What is the state space? How many states do we save?
3. How memory efficient is this search?
4. Hill climbing: (PCG as parameter search part 1)

1. L____ search
2. What is the “landscape”?
3. Need a function that maps p____ to f_____

5. GAs: (PCG as parameter search part 2)
1. Good in ______ domains, where _D.K.__ is scarce or hard to encode
2. Can also be used for ____ search
3. Also needs a f_____ function (maps c____ to f_____)

6. Other local search techniques
1. Gradient Descent, Simulated annealing, Local beam, Tabu, Ant Colony Optimization, …

N-1: Player modeling

1. What is a player model? What does it allow?

2. What are two high-level categories of modeling?

3. What are a couple major types within the first category?

4. What are some ways to get a player model?

5. What are some differences between Elo and Trueskill?

Model-based versus Model free

We can separate player modeling approaches into two more
general groups:

– Model-based: Roughly corresponds to player modeling within games.
It presupposes we have a set of categories or value range to assign
to some part of a player’s experience

– Model free: Roughly corresponds to player modeling outside of
games. Looks for patterns of behavior without pre-existing
hypothesis, drawing on statistical/machine learning techniques

5

Model-based: 4 Major Models

• Note: This is not to say that there exists only four models, but
that vast majority can be understood as derivatives of these
four

1. Csikszentmihalyi's Flow (Position in space)

2. Bartle’s player types (Categories of play style)

3. Elo’s performance rating (Continuous value)

4. Drama Management (Difference between target value and .)

6

Game Bits

Borderlands series
No Man’s Sky

SpeedTree

Game Space

Bloodborne, Chalice Dungeons

Minecraft

Rogue (1980)

Spelunky

Game Scenarios

Skyrim, radiant quests

Diablo 2, randomizing situations

Dwarf Fortress

PCG in General

Indie/AAA games folks use as touchstones

• Rogue (1980)

• Dwarf Fortress (2006)

• Minecraft (2009)

• Spelunky (2012)

• No Man’s Sky (2016)

• Horizon Zero Dawn (2017)
– Japp van Muijden: GPU-based run-time procedural placement

– https://www.youtube.com/watch?v=_ooDLiU-o6c

https://www.youtube.com/watch?v=_ooDLiU-o6c
https://www.youtube.com/watch?v=_ooDLiU-o6c

Making Things Up: The Power and Peril of PCG

• https://www.youtube.com/watch?v=B11RlHZsmGE

11

https://www.youtube.com/watch?v=B11RlHZsmGE

PROCEDURAL CONTENT GENERATION

Content is king!

• Stolen terms (bits, space, scenarios): Procedural Content Generation for Games: A Survey
• https://course.ccs.neu.edu/cs5150f13/readings/hendrikx_pcgg.pdf

• Search-Based Procedural Content Generation: A Taxonomy and Survey
• https://course.ccs.neu.edu/cs5150f13/readings/togelius_sbpcg.pdf

• PCG in Games: A textbook and an overview of current research (2016)
• http://pcgbook.com

• http://pcg.wikidot.com/

12

https://course.ccs.neu.edu/cs5150f13/readings/hendrikx_pcgg.pdf
https://course.ccs.neu.edu/cs5150f13/readings/togelius_sbpcg.pdf
http://pcgbook.com/
http://pcg.wikidot.com/

PLAYER MODELING: ANALYTICS (MODEL FREE
APPROACHES)

Credit: Matthew Guzdial

13

Model free Approaches

• Start with some data about a playerbase and game world

• Categorize learn what types exist

• Regression analysis how does x relate to y?

– X: Input about the playerbase/game world

– Y: Something we want to predict/understand

• Classify which y is x a member of?

14

Quick Example

https://youtu.be/HJS-SxgXAI4?t=6

15

https://youtu.be/HJS-SxgXAI4?t=6

Clustering

• Uses:

– Automatically discover categories

– Group similar entities

– Reduce complexity/variance

• E.g. easier to say this player is of 4 types than 1 of 1000

• Common Approaches

– K means/medoids

– Hierarchical clustering

• Further info: http://scikit-learn.org/stable/modules/clustering.html

16

http://scikit-learn.org/stable/modules/clustering.html

K means

initialize centroids randomly

oldcentroids = []

while not centroids==oldcentroids:

oldcentroids = centroids

calculateClusters();//cluster each element to closest centroid

centroids = average of each cluster

return centroids

17

Restrictions and solutions

• Means can give
unintuitive clusters

– K Medoids

• Have to give K

– Elbow method

19

Other clustering techniques?

• There are a lot!

• But this isn’t a machine learning course

• Plus…

20

Open Questions

• How do we pick what variables to cluster on?

– To normalize, or not to normalize?

• How do we pick a distance function?

• How do we use the clusters once we have them?

21

Question(s) 1

Think of a game and a particular element of that game (player
strategy/player deaths) you’d apply clustering to.

What variables would you cluster on? Why?

What distance function would you use? Why?

How could these clusters benefit the game devs?

22

Clustering

• Pros:

– Can learn “big picture” information

– Can cut down on complexity

– Can still give good answer with errors in training data

• Cons:

– Individuals can get lost in the noise of groups

– Those decisions to the open questions can hugely impact results

23

Quick Tangent: Churn

• Churn rate: The rate at which customers cut ties with a
company

• In games this is how quickly a game loses players. After how
long do they stop playing?

• Churn is one of the most common problems player analytics
teams are tasked with

24

Regression

• If we can map variables onto likelihood of churn (how long the
players will play) we can figure out what the designers need to
fix!

• Two approaches

– Linear regression

– Decision trees

25

Only two regression techniques?

• No of course not.

• But similar story as with K means…

26

Linear Regression

Given input X and
expected output Y,
find m and b such
that:

Y = m*X +b

It is, of course, often
impossible to find
exact values 27

Linear Regression Algorithm

Find the best fit values for m (slope) and b (y-intercept)

Lots of algorithms to do this

• Minimizing the sum of squared residuals

We won’t worry about how we get the values here

28

Logistic Regression

30

Linear Regression

• Pros:
– Fast to build

– Fast to use

– Simple but powerful

• Cons:
– Too simple for complex mappings

– Overly dependent on training data
• Can’t work with partial information

• Errors can massively harm its performance

31

Decision Trees

• Can be used for
regression or
classification tasks

• Learn a tree to map
input to output from
training data

32

Decision Tee Algorithm

set currentNode to head
add all training data to head

openNodes = []
while currentNode.entropy*>threshold:

currentNode = openNodes.pop()
children = calculate best split point(s)
for child in children:

if child.entropy<=threshold:
make leaf node

else:
openNodes.push(child)

return head

*entropy is the measure of how much in agreement the data “in” this node is 33

Decision Trees are suited to problems where…

• Data is in the form X,Y pairs

• Y has discrete values it can be (yes/no or in a category)

• X->Y is not a simple linear function

• Training data may contain errors/noise

• Training data may contain some X values without all attributes

35

Decision Trees

• Pros:

– Fast to use

– Robust to errors

• Cons:

– Slow to build

– Depending on threshold for entropy, can overfit to training data

36

Overfitting

• In which a training method gets too good at predicting training
data at the risk of making mistakes during testing.

• Child sees three dogs, all of different breeds, and is told that
they are each a different breed but all dogs

• Child sees a cat and asks what breed of dog it is

37

Random Forest

• A random forest makes use of a designer-specified number of
decision trees, each trained on a random subset of the training
data

• During testing, each tree of the random forest votes, with the
majority (or average or median) answer taken.

38

Question(s) 2

Besides churn, pick some event in general or for a particular
game designers might want to be able to predict.

Which technique would you use? Why?

How could the designers use the learned model to improve the
game?

39

PCG high-level Model-based Methods

• Search

• Rule systems

• Generative Grammars

• Constraint Solving

40

JUMPED IN TO SEARCH ALREADY…

http://pcgbook.com/wp-content/uploads/chapter02.pdf

41

GA Pseudocode cont

• Mutate: Given some probability, randomly replace a member
of the population with a neighbor

– Make a random change

• Crossover: Take pairs of the initial population (chosen based
on fitness), and combine their features randomly till
population grows up to size Y (where X<Y)

• Reduce: Reduce the size of the population back down to X

42

Genetic Algorithms

Pros

– Middling authorial burden (more than hill climbing, less than
generative grammars/rule system)

– High likelihood of finding global optima-ish

Cons

– Takes skill to pick and balance mutation/crossover

43

PCG: RULE SYSTEMS

44

Rule Systems

• Similar to the rule systems discussed before
– If (world has certain conditions)
– Then (make change to world)

• Now focused on building game bits/spaces, with each rule focusing
on one feature
– Example: if y<groundheight then set voxel to ground
– This is how Minecraft world generation works

45

Rule Systems Methods

Cellular Automaton
1. Take noise/random values
2. segment bits/space into grids
3. Each grid updates until stable/time limit

Agent-based simulation
1. Take noise/random values
2. Iterate each agent over the world
3. Continue until stable/time limit

Where are the rules? In each grid cell (cellular
automaton) or in an agent (agent-based
simulation)?

46

Quick note: Noise > Random

Pure “random” Perlin noise

Sin wave

47

Cellular Automaton

Stanislaw Ulam and John von Neumann (1940)

Conway’s Game of Life made famous (1970s)

Rules:
1. Any live cell with fewer than two live

neighbors dies, as if caused by
underpopulation.

2. Any live cell with two or three live
neighbors lives on to the next generation.

3. Any live cell with more than three live
neighbors dies, as if by overpopulation.

4. Any dead cell with exactly three live
neighbors becomes a live cell, as if by
reproduction.

48

Cellular Automaton Example

https://www.youtube.com/watch?v=OumDj9PN
WjE

49

https://www.youtube.com/watch?v=OumDj9PNWjE

Cellular Automaton

Pros
– Easy to implement
– Complex behavior from small

set of rules
– Intuitive mapping to game

space generation
– Local coherence

Cons
– Reliant on guess and check for

modifying
– Hard to spot edge cases
– No way to forbid undesired

output
– Upper bound is slow
– Global incoherence

50

Question

Cellular Automata are good at local coherence and bad at global
coherence, which limits its usage cases (caves, mazes, etc).

What could we add or change to this approach to allow for a
designer to ensure global coherence?

51

What if…

• What if we had another set of rules, not for a single grid cell,
but for the whole grid?

• Well, in that case we don’t have to use a grid at all. All the rules
could be on this layer

• And we could even have rules that contradict one another, so
we’d get…

52

Agents

• Instead of individual grid rules, have multiple agents that
iteratively update a map.

– Example:

• Mountain agent: make high points higher

• Valley agent: flatten out sections

• River agent: make low points lower and add water

• Manager: make parts of the map non-editable when they reach thresholds

53

Comparisons: CA vs Agents

• Similarities (rule system commonalities):

– Rely on “emergent” output of simple rules

– Hard to make strong designer restrictions

– Requires a lot of guess and check

– Can take a long time to converge

• Differences

– Agents allows for some global assurances

– CA more emergent in its output

54

Major Drawback of Rule Systems

• What cellular automaton could you construct to build a house?
A sword? An NPC?

– Local rules don’t adapt well to generating bits that require strong
global coherence

– Said another way, no one wants an NPC that only looks locally like a
human

55

PCG: GENERATIVE GRAMMARS

http://pcgbook.com/wp-content/uploads/chapter05.pdf

56

PCG high-level Methods

• Search

• Rule systems

• Generative Grammars

• Constraint Solving

57

Solution: Generative Grammars

• Noam Chomsky’s study of languages in the 1950s and 60s

– Rich taxonomy of grammars

– Widespread application

• Key questions: determinism & order of expansion

• Components with (grammar/production) rules about how they are
allowed to be put together

– Words that can be placed together in a sentence according to grammar
rules

– Limbs that can be combined to form creatures according to designer rules

http://pcgbook.com/wp-content/uploads/chapter05.pdf 58

http://pcgbook.com/wp-content/uploads/chapter05.pdf

Formal Grammars

• Grammar: set of production rules for rewriting strings

– Rule: <symbols>  <other symbols>

• E.g. (left hand side vs right hand side; terminal vs nonterminal)

– A  AB

– B  b

– Given ‘A’: [1] AB [2] ABb [3] ABbb

• Applying: for each sequence of LHS symbols in string, replace
with RHS of rule

59

Determinism & Order

• Determinism

– Deterministic grammar: one rule that applies to each symbol or
sequence

– Nondeterministic grammar: several rules may apply

• Random

• Probabilities & Priors

• Rewriting order

– Sequential: left to right, rewrite string while reading it

– Parallel: all rewriting done at same time

60

L-systems

• Aristid Lindenmayer, 1968: model growth of organic systems
• Class of grammars w/ parallel rewriting

– No preference on left/right expansion
– Grammar rules lead to self-similarity / fractal-like forms

• EG (Given A): A  AB B  A
– A
– AB
– ABA
– ABAAB
– ABAABABA
– ABAABABAABAAB

61
https://en.wikipedia.org/wiki/L-system

https://en.wikipedia.org/wiki/L-system

Application and Interpretation

• One approach: interpret strings as drawing instructions

– F: move forward 10 pixels

– L: turn left 90

– R: turn right 90

– EG: F  F L F R F R F L F

62

h
tt

p
:/

/p
cg

b
o

o
k.

co
m

/w
p

-c
o

n
te

n
t/

u
p

lo
ad

s/
ch

ap
te

r0
5

.p
d

f

Bracketed L-systems

• How do we “lift the pen”?

– Plants are branching, and branches end

• Introduce two extra symbols: ‘[‘ and ‘]’. A FILO stack

– [push current position and orientation

–] pop & use last saved position

• EG: F  F[RF]F[LF][F]

63

h
tt

p
:/

/p
cg

b
o

o
k.

co
m

/w
p

-c
o

n
te

n
t/

u
p

lo
ad

s/
ch

ap
te

r0
5

.p
d

f

Barnsley fern

Barnsley's 1988 book Fractals
Everywhere is based on the course
which he taught for undergraduate
and graduate students in the School of
Mathematics, Georgia Institute of
Technology, called Fractal Geometry.

constants : + − []
start : X
Production rules :

X → F+[[X]-X]-F[-FX]+X,
F → FF

64

https://en.wikipedia.org/wiki/Barnsley_fern

https://en.wikipedia.org/wiki/Barnsley_fern

Beyond strings

• Generative grammars are not restricted to
representation as strings
– Graphs, tile maps, 2D/3D shapes, etc.

• Graph grammar:
– Find subgraph in target that matches LHS; mark

subgraph w/ IDs
– Remove all edges between marked nodes
– Transform marked nodes into corresponding

RHS
• Add a node for each node on RHS not present in

target
• Remove any nodes that have no corresponding

node on RHS

– Copy edges as specified by RHS
– Remove all marks

http://pcgbook.com/wp-content/uploads/chapter05.pdf

Example: Spelunky Levels

• Each Spelunky level starts life as a
grid.

• Each grid can be filled in with
potential templates designed by
Derek Yu (designer)

• Templates are filled in one by one

• Later templates chosen according
to rules about how templates can
neighbor

Game Maker’s Toolkit: https://www.youtube.com/watch?v=Uqk5Zf0tw3o 66

https://www.youtube.com/watch?v=Uqk5Zf0tw3o

Generative Grammars

• Generative grammars are well-suited to
both game bits and game spaces

– Borderlands’ guns

– Bloodborne’s chalice dungeons

• …but they are only as good as the
components and rules the designer
creates

– No man’s sky’s ship and creature generation

67

Generative Grammars

Pros:

– General usage

– High-quality, “feels designed” quality

– Accessible

– Fast

Cons:

– Large burden on design

– Hard to “debug”

• How do you know if a fix actually fixed anything unless you generate infinite output?

68

Comparing the Approaches

• Rule Systems allow for emergent output from simple rules. But
hard to control output.

• Generative grammars can create high-quality output, but depend
upon expert authoring of components and production rules

• Search cuts back on authoring burden to just a heuristic and
searchable representation, but these are unintuitive for many
designers

