
Discovering Feature Weights for Feature-based
Indexing of Q-tables

Chad Hogg, Stephen Lee-Urban, Bryan Auslander, and Héctor Muñoz-Avila

Dept. of Computer Science & Engineering
Lehigh University

Bethlehem, PA, USA

Abstract. In this paper we propose an approach to address the old
problem of identifying the feature conditions under which a gaming strat-
egy can be effective. For doing this, we will build on previous work on
CBRetaliate, a system that combines case-based reasoning and reinforce-
ment learning to play team-based First Person Shooter Games. In CBRe-
taliate, cases are pairs (features, Q-table), where the Q-table associates
a utility with each state-action pair, which is used to select an appropri-
ate action in a given state. CBRetaliate learns cases as it plays against
opponents. We propose to cluster cases in the case-base using a novel
definition of similarity between their Q-tables; cases will be grouped in
the same cluster if they have similar Q-tables. We propose to use stan-
dard information gain formulas and use the clusters as the classification
to assign feature weights. We expect that this approach would lead to
identifying features that are crucial to select which Q-table to reuse in
a given situation. In addition, we propose to use the same notions of Q-
table similarity to find substrategies that are common to every or nearly
every case in the case base.

1 Introduction

Discovering associations between features and cases have been the subject of
extensive research in the case-based reasoning literature. The INRECA project,
for example, uses a variant of the ID3 algorithm [1] to build an index of the
case base that retrieves cases by checking the values of the features identified
to be good discriminators between the cases in a case base [2]. These kinds of
approaches are typically made for classification problems, where the solution
part of the case is the class under which the particular episode recorded in the
case falls into. But very little such work, finding association between features and
solutions of a case, has been done for synthesis problems, in which the solution
part of the case is a complex structure such as a plan (i.e., a sequence of actions
transforming states) or a policy (i.e., a function indicating for each possible state
in the world which action to choose). Moreover, we are not aware of any work
where such associations are done for Q-tables, which are functions that associate
for each state-action pair (s, a) the expected utility of selecting action a in state
s. Q-tables entail policies by selecting for each state the action with the highest

utility and are used by reinforcement learning algorithms, which iterate by trial
and error over the target domain in order to tune these Q-tables and, hence,
elicit policies that maximize some reward.

In previous work [3], we developed CBRetaliate, an online learning algorithm,
that uses standard reinforcement learning techniques to tune Q-tables while
playing a first-person shooter game. A crucial characteristic of CBRetaliate is
that it speeds-up this tuning process by reusing Q-tables stored in cases (defined
as pairs (features, Q-table)). CBRetaliate is constantly monitoring the current
situation (i.e., a vector of feature-value pairs) and mapping against its case
base. If CBRetaliate is performing poorly in the game and there is a case that is
similar to the current situation, then its Q-table is used to replace the current
Q-table. Conversely, if CBRetaliate is performing well in the game, the current
readings of feature-value pairs along with the current Q-table are stored in the
case base. CBRetaliate demonstrated performance improvements over standard
reinforcement learning [3].

We believe that there is an opportunity to exploit the knowledge learned in
the case base stored in CBRetaliate. Namely, there might be similar underlying
strategies for certain situations in the game and even sub-strategies that could
be effective across certain states in a game. In this paper we propose a novel
approach for discovering associations between features and Q-tables. We will
define a notion of two Q-tables being similar and use this definition to cluster
cases; each cluster will contain all cases that have similar Q-tables. We then
propose to use standard information gain formulas to discover the associations
between features and Q-tables and based on the results assign weights to the
features. We speculate that these weights can be used to improve the accuracy
of the retrieval process. Furthermore, we may be able to identify certain states
(Q-table rows) in which the learned strategies are very similar across the entire
case base. This could be used to improve gaming performance because we would
not need to explore the search space to find good strategies for those states.
Approaches such as this, where discriminants between the cases are found by
looking at the cases themselves have been tried before (e.g., [4]).

The paper continues as follows. The next section gives an overview of CBRe-
taliate. Then Section 3 presents the definition of when two Q-tables are consid-
ered to be similar. The next section describes how clusters are built based on
this similarity and how feature weights are extracted. Section 5 presents how we
discover invariants, those tactics that are the same across all cases. Finally, we
make some concluding remarks.

2 CBRetaliate

CBRetaliate [3] is a system that uses Case-Based Reasoning (CBR) techniques
to enhance the Retaliate agent described in [5]. Retaliate uses Reinforcement
Learning (RL) to play a team-based first-person shooter (TFPS) game. TFPS
is a popular game genre where teams of two or more players compete to achieve
some winning conditions, such as dominating special locations on a map. As

a testbed for these agents, we use a configuration of a TFPS game in which
individual computer-controlled players (bots) act independently but follow a
team-level strategy to achieve their objectives. For the purposes of this paper,
we will only summarize the essentials of those systems; please see the appropriate
reference for full details.

2.1 Retaliate and Q-tables

RL is a machine learning technique wherein an agent learns a ‘policy’ which, for
every state of the agent’s world, maps an estimate of the value of taking each
applicable action in that state; the goal of the agent is to maximize the sum
of the rewards it receives. Retaliate uses a Q-learning variant of RL in which a
policy is encoded as a ‘Q-table’ of expected rewards for each state-action pair.

A Q-table stores a value for each state-action pair (Q(s, a)→ value), where
the table in this case has game states as row labels, and abstract game action
names as column labels. Take for example a TFPS game where 2 teams consisting
of 3 players per team compete to control 3 strategically placed locations in the
game world. Because the goal of the game focuses on controlling a few map
locations, it is natural to abstract the game state into tuples indicating location
ownership. If ‘E’ is for enemy, ‘F’ for friendly, and ‘U’ for unowned, then the
tuple S = (E,F, U) represents the state where the enemy owns the first map
location, the friendly team owns the second location, and the third location
remains unowned. Similarly, because a team only gains points as a consequence of
its team-members occupying the special map locations, it is sensible to abstract
game actions into tuples indicating team-member destinations. So if l1 is for
‘map location 1’, and so on for l2 and l3, then the tuple A = (l1, l1, l3) represents
the action where players one and two are sent to map location 1, and the third
player is sent to location 3. Given this model of states and actions, a Q-table
in Retaliate has a total of 27 rows ranging from S = (U,U, U) ... S = (E,E,E),
and 27 columns ranging from A = (l1, l1, l1) ... A = (l3, l3, l3), for a total of 729
state-action pairs.

At each state update from the game server, occurring roughly every four
seconds, Retaliate perceives the new game state s′, and the associated reward R,
and uses this information to update the Q-table entry Q(s, a) for the previous
state s, and the action a taken in that state. The next action selected is either,
with 90 percent probability, the action of highest value in the Q-table row for
the associated state, or with 10 percent probability a random applicable action.
By including some chance in the action selection, the agent will continue to
explore new, or inaccurately valued actions. New actions are selected from the
new current state, and the process continues.

The Q-table entry update calculation is performed according to the following
formula, which is standard for computing Q-table entries in temporal difference
learning [6]: Q(s, a) ← Q(s, a) + α(R + γ ×maxa′Q(s′, a′) − Q(s, a)), which is
derived from the Bellman equation [7]. In this computation, the entry in the
Q-table for the action a that was just taken in state s,Q(s, a), is updated. The
function maxa′ returns the value from the Q-table of the best team action that

can be performed in the new state s′ which is simply the highest value associated
with s′ in the table for any a′. The value of γ, which is called the discount rate
parameter, adjusts the relative influences of current and future rewards in the
decision making process. Both Retaliate and CBRetaliate set γ to 1, and α to 0.2.

The reward for the new state s′ is computed as the difference between the
utilities of the new and previous states. Specifically, the utility of a state s is
defined by the function U(s) = F (s)−E(s), where F (s) is the number of friendly
domination locations and E(s) is the number that are controlled by the enemy.
This has the effect that, relative to team A, a state in which team A owns two
domination locations and team B owns one has a higher utility than a state in
which team A owns only one domination location and team B owns two. The
reward function is computed as R = U(s′)− U(s).

Retaliate demonstrated that it was capable of developing a winning policy
very quickly within the first game against an opponent that used a fixed strategy.
We also observed that it took Retaliate a number of iterations before it adapted
when the opponent changed its strategy. Thus, we began considering techniques
that would allow us to speed up the adaptation process in such situations where
the strategy employed by an opponent changes.

2.2 CBRetaliate as an Extension to Retaliate

When the situation changes so dramatically that the policy encoded by Retaliate
is no longer valid, such as by changing the opponent, the Q-learning algorithm
must slowly explore the policy space again, trying actions and updating the
rewards until it finds a new good policy. CBRetaliate was designed to solve this
problem by storing winning policies and retrieving them later based on other
types of features from the game state.

Unlike most previous work where RL is used to improve accuracy in the case
selection process, CBRetaliate uses CBR to jump quickly to previously stored
policies rather than slowly adapting to changing conditions. Cases in CBRetali-
ate contain features indicating sensory readings from the game world when the
case was created. They also store the complete Q-table that is maintained by
CBRetaliate when the case was created. CBRetaliate stores a case when it has
been accumulating points at a faster rate than its opponent during a time win-
dow. When it is accumulating points more slowly than its opponent, it attempts
to retrieve the most similar case. CBRetaliate uses an aggregated similarity met-
ric that combines local similarity metrics for each feature. Local similarities are
valued between zero and one, and are computed by matching sensory readings
from a time window within the current game world with those stored in the case.
The value of the aggregate is simply the sum of the local similarity for each fea-
ture, divided by the number of features. When a case is retrieved, its associated
Q-table is adapted by Retaliate by using standard RL punishment/reward action
selection.

Each case contains a Q-table along with a set of features that are summarized
in Table 1. The first two categories of features, Team Size and Team Score are

Category Description Local Sim. Function

Team Size The number of bots on a team. SimTSize

Team Score The score of each team SimTScore

Bot/Dom Dist. Distance of each bot to each dom. loc. SimDist

Dom Ownership Which team owns each of the dom. locs SimOwn

Table 1. Description of feature categories and their local similarity function name

notable because they do not involve the navigation task. Whereas our RL prob-
lem model is limited to domination location ownership in order to reduce the
state space, the CBR component does not share this restriction. Consequently,
the name of each team as well as the map name could have been used as fea-
tures, however, we wished to demonstrate the ability of CBRetaliate to recognize
strategies and situations based on behavior and observations.

The Team Size category is currently a single feature that records the number
of bots on a team. If x is the size of the team in the current game and y is
the team size from a case, SimTsize(x, y) is equal to one when x = y and zero
otherwise. The Team Score category consists of two features, namely the score of
each team. So, if x is the score of team A in the current game and y is the score
of team B from a case, then the similarity is computed by SimTScore(x, y) =
1 − (|x − y|/SCORE LIMIT). The constant SCORE LIMIT is the score to
which games are played. In our case-base, CBRetaliate is always team A.

The next category of features, Bot/Dom Dist., uses the Euclidian distance
of each bot to each domination location to compute similarity. That is, each
case contains, for each opponent bot b and for each domination location l, the
absolute value of the Euclidian distance from b to l. Specifically, if x is the
Euclidian distance of b to l in the current game and y the analogous distance
from the case, then SimDist(x, y) = 1 − (|x − y|/MAX DIST). The constant
MAX DIST is the maximum Euclidian distance any two points can be in a
game map. With an opposing teams of size 3 and a map with 3 domination
locations, this category has a total of 3 ∗ 3 = 9 features.

The final category of features, Dom Ownership, uses the fraction of time
each team t has owned each domination location l during the time window δ
to compute similarity. So, if x is the fraction of time t has controlled l in the
current game and y is the analogous fraction from the case, then SimOwn(x, y) =
1 − |x − y|. Intuitively, with 2 teams and 3 domination locations, this category
has a total of 6 features.

3 Similarity Between Q-tables

Determining the appropriate feature weights requires observing which features
correlate highly with the strategy selected, which requires a way to compare
strategies. In the case of CBRetaliate, a strategy is represented by a Q-table,

which is a matrix of expected values for each state-action pair. We suggest here
two possible approaches for computing the similarities between Q-tables.

For the purpose of illustrating the trade-offs between these two approaches
we present an example. Table 2 shows several small Q-tables that will be used
to demonstrate the efficacy of these different similarity metrics. The Q-tables
shown have 3 states and 5 actions, for a total of 15 cells. Values within the table
range from -50 to 50.

Action 0 Action 1 Action 2 Action 3 Action 4

Table A State 0 47 -10 -23 45 15
State 1 3 -7 15 10 -41
State 2 37 -26 8 13 -5

Table B State 0 20 5 15 -35 -10
State 1 12 -32 27 -14 5
State 2 21 30 -12 -42 17

Table C State 0 36 -14 -30 40 11
State 1 0 2 17 18 -20
State 2 23 -17 12 7 -8

Table 2. The first rows of several sample Q-tables

As described in Section 2, when an agent uses a Q-table it observes the
current state and by using an user-defined probability distribution either selects
the action with highest value for that state or selects an action randomly from
a uniform distribution, depending on whether it is emphasizing exploitation of
the existing strategy (i.e., user assigns higher probability to select the action
with the highest value) or exploration of alternatives (i.e., user assigns a higher
probability to select an action randomly). Thus, one approach to similarity is
to simply count the number of states for which the same action has the highest
value. In cases where no action has a greater value than all the others, the rows
could be counted as completely dissimilar (pessimistic), completely similar if the
highest valued-action from the one is in the set of highest-valued actions of the
other (optimistic), or as partially similar in the latter case. The idea behind
this similarity is the following: Q-tables yield a policy indicating for each state,
the action with the highest Q-value. This similarity is basically stating that two
Q-tables are similar if their yielded policies are similar. This similarity metric is
easy to compute and perfectly captures the policy or stationary strategy encoded
in a Q-table. In Table 2, Table A has a 66% similarity to Table B and a 33%
similarity to Table C, because tables A and B both have Action 0 rated highest
for State 0 and Action 2 for State 1, and tables A and C both have Action 0
rated highest for State 2.

However, a Q-table used in practice by an agent using the Q-learning algo-
rithm is not static. Rather, it continually changes as actions are rewarded or
punished based on whether they lead to a more or less favorable state. Because

this process may cause the highest-valued action to lose that status, the overall
distribution of values throughout each row of the table is also quite important.
In Table 2, Table C could be converted to something very close to Table A by
a few updates, while Table B could not. In State 0, for example, both tables A
and C favor actions 0 and 3 highly and consider actions 1 and 2 to be especially
bad. Note that this is true even though they do not encode the same stationary
strategy for this state.

The second similarity metric is designed to represent this observation. To
compute this similarity metric between two tables, we average the set of cell-wise
similarities between the tables. Cell-wise similarity is computed as the difference
between the maximum possible distance between cell values (100 in our exam-
ples) and the absolute value of the difference between the normalized values of
the two cells. The normalized value of a cell is the difference between its value
and the average value across its row. This formula is written formally in Equa-
tions 1 - 3, which give the definitions of the row-wise average value, normalized
cell value, and similarity metric for tables of n rows, m columns, and a maximal
possible distance D.

Āi =
1
m

m∑
j=0

Ai,j (1)

norm(Ai,j) = Ai,j − Āi (2)

QtableSimilarity(A,B) =
1

n ∗m

n∑
i=0

m∑
j=0

D − |norm(Ai,j)− norm(Bi,j)| (3)

Using this similarity metric, we find that Table A is 70.13% similar to Table
B, while Table A is 94.88% similar to Table C. For an application where the
Q-table is expected continue being updated, this captures our intuition about
what makes one table similar to another much better than the one presented
earlier.

We will adopt QtableSimilarity as the similarity metric between Q-tables and
define that two Q-tables A and B are similar if QtableSimilarity(A,B) ≥ m,
where m is an input parameter.

4 Computing Feature Weights

Using the notion of similar Q-tables explained in the previous section we will
cluster cases having similar Q-tables and use information gain formulas to extract
feature weights that will serve to discriminate between the case clusters. In this
section we expand on these points in detail.

Algorithm 1 shows the algorithm we present to find clusters, which is a variant
of Agglomerative Hierarchical Clustering [8]. It receives as input the case base
CB consisting of cases of the form (features, Q-table). It outputs a clustering

CL of the cases in CB based on their Q-table similarity. We first initialize the
set of clusters making each case in CB its own cluster (Lines 1-3). The main
loop will continue while no convergence point is found and CL consists of at
least two clusters (Line 5). At each iteration we check if there exists a pair of
distinct clusters {C,C ′} that are similar (Lines 7-8). We discuss the notion of
cluster similarity in the next paragraph. If such a pair exists, clusters C and C ′

are removed from the set CL and replaced with a single cluster consisting of
the union of the cases in both clusters (Line 9). We then break the for loop to
restart the search for a new pair of similar clusters with the updated collection
of clusters (Line 11). Once the process is finished CL is returned.

Algorithm 1 FindClusters(CB)
1: CL← ∅
2: for each case c in CB do
3: CL← CL ∪ {{c}}
4: convergencePoint ← false
5: while not convergencePoint and |CL| > 1 do
6: convergencePoint ← true
7: for each pair (C, C′) in CL× CL do
8: if C 6= C′ and similarCluster (C, C′) then
9: CL← (CL \ {C, C′}) ∪ {C ∪ C′}

10: convergencePoint ← false
11: break

There are several alternatives to define cluster similarity. First, we could
define two clusters to be similar if a pair of cases exists, one in each cluster,
such that their Q-tables are similar. Second, two clusters could be defined to be
similar if for every pair of cases, one in each cluster, their Q-tables are similar.
Of these two alternatives the first one may result in fewer clusters with large
number of cases because similarity relations are not transitive. A cluster may
thus contain two cases whose Q-tables are very different, though both similar to
a third. This will not happen with the second alternative, but it may result in
too many clusters, each having very few cases. For these reasons both of these
alternatives seem problematic.

Thus, we use the concept of a cluster centroid [8], which represents the entire
group of elements. To compute a centroid, we simply average the contents of each
cell in the normalized Q-tables of the elements in the cluster. (See Equation 2 for
the definition of a normalized Q-table.) Cluster similarity may thus be computed
using the Q-table similarity metric of Equation 3 on the centroids of the clusters.
Clusters are considered to be similar if the similarity of their centroids is above
some threshold k, and the value of k can be adjusted to control the number and
size of clusters generated.

Once cases are clustered, we turn our attention to how to define the feature
weights. For this purpose we will use each cluster as a unique class and calculate

the information gain [9] of the various features in discriminating between the
classes. Since the resulting information gains from all features add to one, we
use this information gain of each feature as its weight. It is well known that
the information gain is not incremental. As a significant number of new cases
are added, we will need to run the clustering process and the information gain
process to extract new feature weights.

Case retrieval will consider these weights in the usual manner. Namely, a case
will be retrieved if the weighted sum of the local similarities is greater than a
predefined threshold, as per the case similarity formula SIM in Equation 4. The
weight wi is directly the information gain for feature fi. Hence, the sum of all
weights is one. If the local similarities, SIMi(fi, f

′
i), have a value between 0 and

1 then the aggregated similarity SIM(X,X ′) will have a value between 0 and 1.
In our current implementation of CBRetaliate we assume that all weights have
the same value, namely 1/n, where n is the number of features.

SIM(X,X ′) =
n∑

i=0

wi ∗ SIMi(fi, f
′
i) (4)

5 Computing State-Action Pair Invariants

It is possible that in many games there are some actions that are either always
good or always bad in a certain state. These state-action pairs often reveal them-
selves to expert players, who then incorporate them into their play to optimize
their strategy. This is why there is a learning curve to many games as players
need to start recognizing situations and learn what actions to take. One simple
example of this, common to many TFPS games such as Unreal Tournament [10],
is players learning that they are a harder target to hit if they constantly jump
while moving. For a new player this is not an intuitive strategy, but as she plays
she learns that the more she jumps the less she dies. This of course could ap-
ply to much more general and specific strategies. In the context of CBRetaliate,
we believe that it is possible to find these global state-action pairs through the
information encoded in the Q-tables stored in the case base. Intuitively, the
granularity of the action and state definition used for the Q-tables restricts the
granularity of the inferred best strategy.

As summarized in Section 2, Q-tables in CBRetaliate consist of state-action
pairs where the set of states is defined as which team owns each of the domination
map locations, and the set of actions indicate to which domination location each
CBRetaliate team-member should go. Each row of the Q-table consists of the all
the actions applicable to a given state. An example state-action pair would be a
state S where all domination points are unowned, S = (U,U, U), and an action
A that sends each bot on the CBRetaliate team to a unique domination location,
A = (l1, l2, l3). If A were to be executed in state S and its outcome favorable
(unfavorable), then the value stored in table entry Q(S,A) would be increased
(decreased) so that A would be more (less) likely to be chosen in state S in the
future. To extend the example, one might imagine that in all cases in a case

base, the value for Q(S,A) is the highest entry for state S, and can therefore be
considered an invariant state-action pair. That is to say, relative to the example,
every case indicates that whenever all locations are unowned, the best action is
to send every bot to a unique location.

As in Section 3, we consider various alternatives to define the invariants.
One possibility is to consider state-action pairs between two cases similar when,
given a state (row label), the same action has the highest value in both cases.
In terms of CBRetaliate, this means that some configurations of domination lo-
cation ownership entail a single best assignment of team-members to locations.
However, this similarity metric has the same drawbacks discussed in Section 3.
Namely, that invariants would only cover fixed strategies: if in a state S, then
always go to location X. Instead, we would like to be able to capture more dy-
namic strategies such as: if in a state S, then going to either location X or Y will
yield approximately the same reward To accomplish this, we adopt a definition
for state-action pair invariants based on the Q-table similarities.

Given a case base CB and a state s, we say that an invariant exists for state
s in CB if for every pair of cases c and c′ in CB, the rows for state s in cases c
and c′ are similar. We define row similarity using the same definition as Q-table
similarity by viewing rows as one-dimensional Q-tables. As a result, Equation 3
is simplified to a single summation. In such a case, we define the invariant for
state s to be the average of the contents of each cell in the normalized rows of
the elements, just as we defined cluster centroids in Section 4.

Discovering these invariants would yield results that could be transferable to
other algorithms, such as the construction of decision trees, or the creation of
planner control rules in explanation-based learning as in [11]. Control rules indi-
cate, given a state, which actions should (positive rule) or should not (negative
rule) be considered. One can imagine that positive rules can be constructed from
those state-action pairs of highest occurrence, and negative rules from pairs of
lowest occurrence.

In the case of CBRetaliate we expect to find that, through comparing similar
rows in the Q-tables, we will be able to find consistently positive and negative
state-action pairs. For instance, if the enemy currently owns domination points
one and two, it is not a good plan to keep all bots at domination point three since
it does not improve the state, regardless of the opponent’s strategy. A positive
example could be if all the states are currently not owned (situation at the start
of every game) it is best to send a bot to every domination point. Many other
expected state-action pairs are possible, along with the potential for new and
insightful strategies to emerge.

The usefulness of calculating state-action invariants is easily motivated. If
enough pairs are found, a decision tree could be generated for every game sit-
uation, resulting in almost no processor power being needed for the AI. This
situation is unlikely, as it would mean there is only one dominant strategy to
win the entire game. Its more likely use will be in optimizing current AI algo-
rithms. In the case of reinforcement learning, for example, the state-action pairs
that are always bad can be removed from the Q-table, which would result in

no waste of processing power from exploring unnecessary state-action pairs. The
same is true for “bootstrapping” the exploration of good strategies; these could
start off with a higher weight in the beginning end consequently ensure they are
more likely to be explored first.

State-action invariants could also be used for case base maintenance. In the
case of CBRetaliate, a new feature can be added that gives cases that contain
Q-tables closely related to the invariants a higher weight, or remove those cases
that don’t contain Q-tables similar to the invariants. Application of invariants
in this fashion could make it possible to further automate CBRetaliate strategy
creation and storage, which could lead to even more challenging opponents.

By finding state-action pairs (un)common among all or most Q-tables it
may be possible to find actions that are usually or always useful (useless). This
information can then be used to create better AI in new experiments, or be used
to optimize AI resources.

6 Final Remarks

Feature weighting has been the subject of extensive research in CBR (for an
overview see [12]). Although most of the work have been done in the context of
classification tasks, it has also been done in synthesis tasks, particularly plan-
ning [13]. In these works, the case’s features are updated after the case is retrieved
and reused. Depending on the outcome of reusing the case (i.e., if it yields a so-
lution or not), feature weights are adjusted with the expectation that after a
number of times that the case is reused, the case’s feature weights will converge
to best values in which the similarity of a new situation and the case is high if
the case can be reused and low if the case cannot be reused for the situation.
This tuning of case’s feature weights independently of the weights of the same
features in other cases is frequently referred to in the literature as local weighting.
The approach we are proposing in this paper is complementary; initial feature
weights could be obtained using the procedure presented in this paper and these
local weighting techniques can be used subsequently to tune the weights. We
speculate that initializing the weights in the way we presented in this paper will
increase the speed of convergence to best weights.

Acknowledgments

This research was in part supported by the National Science Foundation (NSF
0642882) and the Army Research Lab.

References

1. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1) (1986) 81–106
2. Althof, K.D., Auriol, E., Traphöner, R., Wess, S.: INRECA - a seamlessly inte-

grated system based on inductive inference and case-based reasoning. In: Proceed-
ings of the First International Conference on Case-Based Reasoning Research and
Development (ICCBR-1995). (1995) 371–380

3. Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila, H.: Recognizing the enemy:
Combining reinforcement learning with strategy selection using case-based reason-
ing. In: Proceedings of the 9th European Conference on Advances in Case-Based
Reasoning (ECCBR-08), Springer (2008)

4. Weber, R., Proctor, J.M., Waldstein, I., Kriete, A.: Cbr for modeling complex
systems. In: Proceedings of the Sixth International Conference on Case-Based
Reasoning (ICCBR-2005), Springer (2005) 625–639

5. Smith, M., Lee-Urban, S., Muñoz-Avila, H.: RETALIATE: Learning winning poli-
cies in first-person shooter games. In: Proceedings of the Seventeenth Innovative
Applications of Artificial Intelligence Conference (IAAI-07), AAAI Press (2007)

6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA (1998)

7. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ
(1957)

8. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3) (1999) 264–323

9. Russell, S., Norvig, P.: Chapter 18: Learning From Observations. In: Artificial
Intelligence: A Modern Approach. Prentice Hall (1995) 525–562

10. Epic Games, Digital Extremes: Unreal tournament. Computer Software (1999)
11. Minton, S., Carbonell, J.G.: Strategies for learning search control rules: An

explanation-based approach. In: IJCAI. (1987)
12. Aha, D.W.: Feature weighting for lazy learning algorithms. In: Feature Extraction,

Construction and Selection: A Data Mining Perspective, Kluwer, Norwell, MA
(1998) 13–32

13. Muñoz-Avila, H., Hüllen, J.: Feature weighting by explaining case-based planning
episodes. In: Proceedings of the Third European Workshop on Advances in Case-
Based Reasoning (EWCBR-1996), Springer (1996) 280–294

