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SUMMARY

This dissertation presents segmental discriminative analysis techniques for American

Sign Language (ASL) recognition and verification. ASL recognition is a sequence classifi-

cation problem. One of the most successful techniques for recognizing ASL is the hidden

Markov model (HMM) and its variants. This dissertation addresses two problems in sign

recognition by HMMs. The first is discriminative feature selection for temporally-correlated

data. Temporal correlation in sequences often causes difficulties in feature selection. To

mitigate this problem, this dissertation proposes segmentally-boosted HMMs (SBHMMs),

which construct the state-optimized features in a segmental and discriminative manner. The

second problem is the decomposition of ASL signs for efficient and accurate recognition. For

this problem, this dissertation proposes discriminative state-space clustering (DISC), a data-

driven method of automatically extracting sub-sign units by state-tying from the results of

feature selection. DISC and SBHMMs can jointly search for discriminative feature sets and

representation units of ASL recognition.

ASL verification, which determines whether an input signing sequence matches a pre-

defined phrase, shares similarities with ASL recognition, but it has more prior knowledge

and a higher expectation of accuracy. Therefore, ASL verification requires additional dis-

criminative analysis not only in utilizing prior knowledge but also in actively selecting a set

of phrases that have a high expectation of verification accuracy in the service of improving

the experience of users. This dissertation describes ASL verification using CopyCat, an ASL

game that helps deaf children acquire language abilities at an early age. It then presents

the “probe” technique which automatically searches for an optimal threshold for verifica-

tion using prior knowledge and BIG, a bi-gram error-ranking predictor which efficiently

selects/creates phrases that, based on the previous performance of existing verification sys-

tems, should have high verification accuracy.

xii



This work demonstrates the utility of the described technologies in a series of experi-

ments. SBHMMs are validated in ASL phrase recognition as well as various other appli-

cations such as lip reading and speech recognition. DISC-SBHMMs consistently produce

fewer errors than traditional HMMs and SBHMMs in recognizing ASL phrases using an in-

strumented glove. Probe achieves verification efficacy comparable to the optimum obtained

from manually exhaustive search. Finally, when verifying phrases in CopyCat, BIG predicts

which CopyCat phrases, even unseen in training, will have the best verification accuracy

with results comparable to much more computationally intensive methods.
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CHAPTER I

INTRODUCTION

1.1 Thesis Statement

This dissertation presents data-driven segmental discriminative analysis techniques for Amer-

ican Sign Language recognition/verification and other sequence classification tasks. These

techniques, segmentally-boosted hidden Markov models (SBHMMs), discriminative state-

space clustering (DISC), and bi-gram error-ranking (BIG) prediction can perform the fol-

lowing tasks:

• extract discriminative features to improve recognition accuracy,

• extract and share common “sub-sequence units” to reduce recognition complexity,

• generate the “most distinguishable” phrases for verification tasks.

The meaning, the novelty, the importance and the evaluation of these capabilities are

explained in the remainder of this chapter.

1.2 American Sign Language Recognition

The natural language for most deaf signers in the United States is American Sign Language

(ASL). ASL sentences are composed of signs, such as UNCLE, EAT, and SAD, with a

quite different grammar than English. In machine perception, American Sign Language

recognition (ASLR) algorithms infer sign words from sensor readings such as a video stream

of the signer’s hand movements. Ong and Ranganath [73] provide a detailed review of the

technologies used in ASLR. Most recent studies on ASLR have moved from isolated word-

level ASLR to continuous sentence-level ASLR, which is more practical. Continuous ASLR

contains (at least) two levels of recognition. While sentence-level recognition demands a

sequential recognition of each individual sign, word-level recognition in continuous ASLR

identifies a single sign label from a sub-sequence just like isolated ASLR, but with unknown

1



boundaries in a continuous stream of signs. This dissertation focuses on improving the

accuracy of word-level recognition in continuous ASLR. As defined by Dietterich [20]: a

sequential classification problem predicts a series of labels from a series of observations,

while a sequence classification problem predicts a single label from an entire observation

sequence. Therefore, the purpose of this dissertation is to analyze how the accuracy of

sequence classification can be improved.

Since Stokoe demonstrated that ASL, like spoken languages, is compositional with an

internal structure [94], various signal processing and machine learning techniques successful

at speech recognition have been applied to ASLR for higher accuracy and efficiency. Despite

the strong similarities between spoken and sign languages, several ASL-specific issues must

be addressed.

1.3 Discriminative Feature Selection

The first ASL-specific issue pertains to the input features1 used in ASLR. Linguists use

articulatory (linguistic) features to form bundles called phonemes and study the models

of how these phonemes compose words and signs. Proposed by Liddell and Johnson [56],

the movement-hold model describes ASL by two types of sequentially-ordered segments:

movement segments (M) and hold segments (H). In the movement-hold model, linguistic

features, such as handshape, are organized in sequential segments. The movement-hold

model justifies the application of hidden Markov models (HMM) [80], commonly used in

speech recognition, to American Sign Language recognition (ASLR). In fact, most research

groups are using HMMs for sign language recognition.

While the movement-hold model provides a powerful linguistic tool with which humans

can analyze ASL, the “conceptual” descriptors such as hand posture used by the movement-

hold model may not be available to machines. For automatic ASLR by machines, the inputs

are usually pixel values in vision-based systems or sensor readings in glove-based systems.

One may suggest a two-step approach that first recognizes all conceptual descriptors and

1That is, the sensor reading and/or other sources of input that compose the input vector for recognition
should not be confused with the linguistic term “feature” listed in Appendix A. To avoid such confusion,
this dissertation uses the term “feature” to refer to the input for machine perception and the term “linguistic
feature” to refer to the linguistic descriptor.

2



then applies the phonological rules. However, the variance of signing, disfluencies [84],

inaccurate recognition results, and many other factors cause inferior performance in practice.

Alternatively, ASLR research has proven that low-level features can fit the phonemic models

of ASL such as the movement-hold model directly [98].

Informative features improve recognition efficiency and generalization, just as the intro-

duction of the Mel-frequency cepstral coefficients (MFCCs) [80] contributed to the success of

speech recognition. Although some linguistic studies suggested several (linguistic) “distinc-

tive features” [50, 83, 25] for human perception, computer scientists do not yet have a set of

“good” features for machine perception. The manually-designed features for ASL, usually

the readings of some trackers or sensors selected based on human knowledge, may not be the

most useful for machine recognition. However, automatic feature selection algorithms, which

usually assume that the data are independent and identically distributed, cannot directly

be applied to ASL sequences, which have a strong temporal correlation and variation. This

dissertation proposes a segmental feature extraction algorithm, segmentally-boosted hid-

den Markov models (SBHMMs), that accounts for temporal dependency and automatically

constructs a discriminative feature space in which hidden Markov models with Gaussian

observations achieve higher recognition accuracy.

1.4 Basic Unit of Modeling

The second ASL-specific issue pertains to the appropriate building blocks for ASL. In lin-

guistics studies, the building blocks used are phonemes, morphemes, syllables, and so on

(see Appendix A for details). These building blocks are necessary for scalability in large

vocabulary ASLR as they are in speech recognition. Following the conventions of phonology

in spoken languages, the sub-sign building blocks in ASL linguistics are called “phonemes”

(or “cheremes” by Stokoe [94]). Phonemes, the smallest contrastive units of a language, can

be illustrated in minimal pairs. Minimal pairs in sign languages are two different signs that

are identical except for one of the three major formational categories (hand shape, location

and movement). Depending on the types of contrasts exhibited, sign language phonolo-

gists have proposed different phonemic models, such as the Stokoe system [94] and the

3



movement-hold model [55]. Previous research on ASLR has “not yet exploited the results

of determining the appropriate basic units” [35]. This dissertation, instead of investigating

an appropriate set of “ASL phonemes,” will focus on extracting data-driven sub-sign units

to improve recognition accuracy by machines.

In addition to the scalability issue mentioned before, extraction of the correct basic units

affects the granularity of feature selection, which accounts for the success of recognition.

Supervised feature selection produces features that are “optimal” for only specified classifi-

cation tasks such as phonemes or signs, and the selected features determine the performance

of recognition. Therefore, this research proposes a data-driven sub-sign unit extraction al-

gorithm, called discriminative state-space clustering (DISC), in conjunction with the seg-

mental feature selection algorithm described above. The intuition is that the inseparable

clusters found by discriminative feature selection are likely to be a basic “building block”

shared by sequences (signs).

1.5 ASL Verification

Early exposure to language is important to children’s development of language ability and

short-term memory. However, 95% of deaf children are born to hearing parents [65]. Because

most of these parents are unable to sign fluently, the first exposure of fluent sign language

to their children is often delayed until the deaf children are school age. Therefore, the

majority of deaf children of hearing parents, who remain significantly delayed in language

development throughout their lives when compared with hearing children and deaf children

of deaf parents [40, 91, 92], can be considered semilingual [31, 44] as they are fluent in

neither English nor ASL. For these deaf individuals, semilingualism is sometimes a life-long

struggle [5].

In order to assist young deaf children with early language acquisition, interactive sign

language games, such as CopyCat [54] shown in Figure 3 in Chapter 5, have been developed.

CopyCat allows deaf children, who wear colored gloves and wrist-mounted accelerometers,

to communicate with an animated hero, Iris the Cat, in a computer game using ASL. In

CopyCat, the children interact with the hero via sign language in a talking scene to inform

4



the hero where a “bad” animal guard is hiding. If the signing is verified by the ASLR

system as correct, the hero will “poof” the guard and retrieve a desired item; otherwise,

the hero will look confused and encourage the user to sign again.

The goal of the game is not to teach the complete vocabulary of ASL but to initialize

deaf children’s language ability and build their short-term memory. To achieve this goal,

the game emphasizes user experience because children are less patient with “flawful inter-

action” than adults. Thus, two factors that improve user experience should be taken into

account: (1) given a game design, how can modification of the ASLR algorithm reduce error

(addressed in the data-driven segmental discriminative analysis in Chapters 3 and 4) and

(2) given an imperfect ASLR algorithm, how can modification of the game reduce error

(addressed in Chapter 5).

For the second issue, this dissertation introduces a new concept for ASL verification2.

Compared with traditional ASL recognition, ASL verification has two additional challenges.

First, ASL recognition classifies a valid signing sequence into one of the known sign labels,

and this process can be evaluated by a single metric of recognition accuracy. ASL verification

in this dissertation, by contrast, determines whether a given sample of signing and a label

match. Such a task requires five metrics: the true positive rate, the false positive rate,

the true negative rate, the false negative rate, and accuracy; however, these metrics are

not independent, as shown in Table 11 in Chapter 5. In ASL verification, while additional

information (that is, the label) is available as prior knowledge, a näıve algorithm based on

similarity can easily produce trivial results, as described in Chapter 5. Therefore, the first

challenge is to find an optimal threshold for the similarity measurement of match versus

no-match.

The second challenge is related to the choice of the verification content: the analysis of

results for the re-design of the game. The verification process, including both the design

2This is slightly different than the definition by Yang, et al. [106]. Their verification is to decide whether
to accept a spotted sign using additional appearance information. In this dissertation, the “groundtruth”
script of signing is already known to the verification system. An input that deviates from this script, such
as a combination of correct signings and out-of-vocabulary movements, will be rejected in our educational
application; that is, we are literally “verifying” a script. More discussion comparing the two types of
verification is available in Chapter 2.
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of the verification phrases and the recognizer, is optimized for high recognition accuracy

for a pre-defined script of phrases. This pre-selection of highly distinct phrases is different

than the regular recognition process, which is optimized for overall recognition accuracy for

a much less constrained utterance. In this sense (the “groundtruth phrases” are known),

ASL verification is similar to speech verification [52], where the content of an utterance is

verified by a speech recognizer as a proof of identity. Speech systems provide several exam-

ples of vocabulary chosen for its distinctiveness. The NATO phonetic alphabet [1], which

uses ‘Alpha” to replace “A,” “Bravo” to replace “B,” etc. , selects vocabulary to reduce

confusion in verification; another example is in military communications, where “roger”

and “affirmative” are used instead of the words “OK” or “yes” to confirm orders. Similarly,

an objective for studying sign verification in CopyCat is to design ASL phrases that are

easy to verify so that children will not get frustrated by verification errors made by the

computer. A straightforward strategy for designing such phrases is to train a standard

HMM-based ASLR system, compute the confusion matrix of the ASL signs, and output

a ranked list of the least confusing combination of ASL phrases. However, enumerating

all possible combinations of phrases that can be used in the game is computationally in-

tractable. This dissertation proposes building a “quality” predictor, called the bi-gram

error-ranking (BIG) predictor, for signing phrases based on partial, segmental information

of other phrases. Such a predictor will be able to determine in polynomial time whether an

unseen phrase should be included in the new game design to improve verification accuracy.

We believe that the success of a phrase quality prediction algorithm for sign verification

could be extended to other domains, such as speech verification, voice prompting, and so

on.

1.6 Organization

The next chapter reviews the challenges and related studies of feature selection for se-

quence classification, sequential pattern discovery, and verification. Chapter 3 proposes

segmentally-boosted hidden Markov models (SBHMMs), a discriminative feature selection
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algorithm for ASLR using a rough approximation in the state space. Chapter 4 proposes dis-

criminative state-space clustering (DISC), a data-driven sub-sign unit extraction algorithm

that works jointly with SBHMMs for ASL. Chapter 5 describes a discriminative analysis

of sign verification and phrase selection in the application of the Georgia Tech CopyCat

project. Chapter 6 describes the evaluation methodology for DISC-SBHMMs and BIG and

the experimental results. Chapter 7 discusses the results from the experimental studies

and suggests future work, Chapter 8 concludes with a summary of the contributions of the

research.
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CHAPTER II

RELATED WORK

The first part of this chapter reviews related work in sequence classification, specifically

sign language1 recognition, followed by feature selection and pattern discovery techniques

used for sequence classification. The second part of this chapter reviews works related to

sign verification.

2.1 Sequence Classification and Sign Language Recognition

Research on sign language recognition started with isolated signs in the 1990s [48, 99].

Nowadays, research groups have turned their attention to a more difficult, practical recog-

nition task, continuous ASLR [93, 28, 98]. Vocabulary sizes range from five [12] to 5,113 [15]

different signs. Loeding et al. [57] provide a detailed review of the recent advances in sign

language recognition.

Sign language recognition, as well as speech recognition, gesture recognition, DNA anal-

ysis, and so on, is a sequence classification task. One major difference between sequence

classification and “static” classification tasks (e.g. face recognition) is that the input signal

of the former has a variable length. In order to compare such sequences, we must observe

some form of temporal (length) invariance. One way to achieve temporal invariance is spec-

trum analysis (e.g. Fourier analysis), which converts a signal from the time domain to the

frequency domain. The other way to achieve invariance is temporal alignment. An example

of a non-parametric temporal alignment technique is dynamic time warping (DTW) [80],

and examples of parametric temporal alignment techniques include switching linear dy-

namic systems (SLDS) [75], hidden Markov models (HMMs) [80], and conditional random

fields (CRFs) [49]. Both DTW and SLDS have a continuous-time space, while both HMMs

and CRFs have a discrete-time space. Because ASL has sub-sign building blocks [94], this

1Not just ASL.
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dissertation limits the discussion to discrete-time space models.

The HMM and its variants, such as parallel-HMMs [98], which assume that the input

signal is generated by a latent discrete-time Markov process, are arguably the most suc-

cessful models for sign language and speech recognition. A detailed review of HMMs can

be found in Rabiner and Juang [80]. One questionable assumption made by HMMs is that

all observations are conditionally independent. Semi-Markov models, such as hidden semi-

Markov models (HSMM) [69] and semi-Markov conditional random fields (semi-CRF) [85],

assume a Markovian property only between temporal segments and allow non-Markovian

behavior inside those segments. Therefore, features at the segment level such as the length

(duration) of a segment can be used in semi-Markov models. Semi-Markov models, while

more expressive, significantly increase computational and numerical complexity [81]. This

dissertation further limits the discussion to the processes that can be modeled by HMMs

and explicitly re-uses the conditional independence assumption for discriminative feature

selection.

An HMM is normally estimated by maximum likelihood estimation (MLE). This genera-

tive method requires model correctness and infinite training data to be optimal. In practice,

however, MLE is not as effective for classification as discriminative methods, which sim-

ply learn a decision boundary. Previous attempts to introduce discriminative methods to

HMMs can be classified into two categories: discriminative training of model parameters

and discriminative feature selection. Discriminative variants of HMM parameter training,

e.g., minimum classification error (MCE) [41], maximum mutual information (MMI) [80]

and conditional maximum likelihood (CML) [104] criteria directly adjust model parameters

for classification. A detailed review and comparison of such techniques can be found in

Sha and Saul [88]. In addition to these discriminatively trained models, previous stud-

ies [34, 62, 19] indicate that discriminative features facilitate more accurate and efficient

recognition by emphasizing informative features and filtering out irrelevant ones. Therefore,

selecting/extracting discriminative features for HMMs, a focus of attention [18, 77, 110, 58],

represents the category to which our segmentally-boosted HMM (SBHMM) technique be-

longs. We focus on extracting discriminative features for classification with an explicit
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consideration of temporal correlation. We review feature selection algorithms next.

2.2 Feature Selection for Sequence Classification

In machine learning, automatic feature selection is usually cast as the optimization of a

supervised classification problem. If x is evidence, and y is a label, the pair (x, y) defines

a classification problem y = f(x), and the discriminative features are computed in order to

minimize classification loss. However, the application of such feature selection methods for

time sequences results in two major difficulties.

One is that sequential data do not obey the basic assumption of supervised learning, i.e.,

that the samples are independent and identically distributed (i.i.d.). Time sequences contain

a significant amount of temporal correlations (not independent sampling); some sequences

may also contain several phases/states, in which the discriminative features for one phase

may be quite uninformative for another (not identically distributed). For instance, the sign

FISH in ASL is expressed by moving the two hands asynchronously.

If the state of a sequence can be clearly identified, for example, in part-of-speech tag-

ging [49] and video layer segmentation [109], conditional models such as CRFs [49, 106] and

large margin HMMs [89] can be applied to perform sequential classification [20] (to predict

a sequence of labels for a sequence of observations). However, the meaning and the labeling

of the states are mostly unavailable in sequence classification [20] (to predict a single label

for an entire sequence). For example, to recognize the sign BROTHER, how can a human

labeler precisely supervise the training for the first state when he/she does not even know

(1) the meaning of this state or (2) how many states compose the sign? In such situations,

SBHMMs provide a solution to obtain similar discriminative classifiers in an unsupervised

manner. As we mention later, SBHMMs can be modified to refine iteratively the selected

features jointly with the Baum-Welch re-estimation.

In order to account for the unknown temporal structure while maintaining the dis-

criminative ability, hidden conditional random fields (HCRF) [78] introduce hidden state

variables to CRF. In HCRF, hidden states and observation sequences form a CRF, ex-

cept that the exact state assignments are unknown. The states are further modulated by
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one sequence label which is observable. On the one hand, HCRF generalizes HMMs, be-

cause it can simulate an HMM by setting the feature functions appropriately; on the other

hand, it generalizes CRFs because a CRF is one HCRF whose state assignments are known

and fixed. HCRFs have been successfully applied to phone classification (speech) [30] and

gesture recognition [78]. HCRFs can only model segmented sequences, which requires a

pre-processing step for continuous input. In order to model both intrinsic structure and

inter-label interaction, LDCRFs [66] introduce both a hidden layer and a continuous stream

of labels for an input sequence. In order to stay computationally tractable, LDCRFs require

that different classes having a disjoint set of the hidden states. LDCRFs have been validated

in binary sequential classification problems such as head motion and eye gaze datasets with

manual labeling. The difference between CRFs (including CRF/HCRF/LDCRF) and the

proposed SBHMMs, in CRF terminology, is that CRFs discriminatively compute the weight

for a set of manually-defined feature functions while SBHMMs automatically select from

a family of feature functions and discriminatively compute their weights. However, while

SBHMMs achieve flexibility in feature selection at the cost of breaking feature selection

and temporal recognition into two steps, CRFs can optimize the entire recognition process

in a unified framework by L-BFGS [87] or stochastic gradient descent (SGD). Thus, CRFs

are effective in tuning feature weights for applications in which a set of good features is

already known; and SBHMMs are effective for applications in which feature selection is

necessary. In addition, embedding training [80, 103] of SBHMMs/HMMs allows labeled,

but unsegmented, input sequences for training.

Another problem with the application of the feature selection method is that sequences

are variable in length even though the learning functions f(·) usually expect inputs x of

fixed dimensionality. In order to handle this dilemma, the Fisher kernel [36] and its variants

use a generative model to preprocess the sequences and construct a discriminative kernel

according to the Fisher score (local gradient) of that generative model. The kernel contains

“feature weighting” according to their discriminative ability. The Fisher kernel methods

have been successfully applied to domains such as bioinformatics. However, its reliance

on a potentially imperfect generative model can cause problems in the initialization of the
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discriminative learning.

The variable length problem can also be solved by temporal alignment. Lv et al. [58]

constructed multi-HMM classifiers for activity recognition data. Each of the HMMs contains

a set of observation features that correspond to the motion of a body part, and boosting

assigned weights to those HMMs according to their discriminative ability. This idea is

similar to the “boosting multi-HMMs” approach in speech recognition [63]. The design of

the multi-HMMs requires prior knowledge about the grouping of the features. Furthermore,

that boosting assigns weights to the entire HMMs precludes the possibility of capturing

segmental features that are discriminative only in part of the sequences. Other segmental

models, such as semi-CRF [85] and segmental SLDS [72], either are very expensive to

compute or assume a continuous time space.

Recently, feature-space minimum phone error (fMPE) [77] and stereo-based piecewise

linear compensation for environments (SPLICE) [18] have produced significant improve-

ments in large vocabulary recognition accuracy, for they adjust input features with posterior-

based “correction vectors” [19]. However, they are relatively expensive to compute in prac-

tice.

2.3 Temporal Pattern Discovery

ASL signs can be decomposed to sub-sign parts [94], and sign language experts have designed

annotations for ASL phonemes [97]. A belief held in this dissertation is that statistical pat-

tern discovery (discriminative state-tying) may yield a set of data-driven units for ASLR

for better recognition. If these units are directly optimized for completeness and compact-

ness in representation, we expect a recognition model with reduced complexity while still

maintaining comparable, if not higher, accuracy to systems without such abstraction. This

section reviews the literature on data-driven pattern discovery.

In “static” pattern discovery, the most straightforward method is unsupervised clus-

tering, such as k-means, iterative conditional modes (ICM), and expectation maximization

(EM) algorithms [9]. Cluster assignments are then used as a codebook for computing

shared parameters [80] or extracting features for further processing [108]. Such techniques
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are widely used in speech recognition [79, 59], music analysis [17, 38], computer vision [43],

and so on.

In temporal pattern discovery, the speech community has long been using vector quan-

tization (VQ) [59] to build codebooks for more efficient representation and processing.

Keogh et al. [46] proved that simply applying static clustering methods to sub-sequences

can easily lead to trivial results. In Chiu et al. [16], probabilistic motif extraction was

proposed to ensure the quality of temporal pattern discovery. Recently, Minnen et al. [64]

have developed a sub-dimensional multivariate pattern discovery strategy. Hamid et al.

[32] applied a suffix tree to activity analysis and anomaly detection. These motif discovery

techniques focus on representation and detection problems in symbolic sequences, while our

approach is to reduce classification error in a data stream of sensor readings.

To achieve scalability in sign language recognition, phonemic models in linguistics have

been applied to model temporal patterns in signing. For example, Vogler and Metaxas [98]

used parallel-HMMs with the Bakis topology [80] to simulate an extended movement-hold

model for about 40 ASL phonemes. Wang et al. [100] learned about 2,400 HMMs for

phonemes of Chinese Sign Language. In both studies, the linguistic phonemes are also

manually transcribed and designed specifically for HMMs for scalability in recognition.

However, such a transcription process is manually intensive for a large vocabulary size. To

acquire statistically meaningful temporal units automatically, researchers in speech recog-

nition proposed the concept of “fenones” [6] (or acoustic segment units, ASU, in Rabiner

and Juang [80]), in contrast to “phonemes.” While phonemes are manually defined for

linguistic purposes, the fenones are completely data-driven and optimized for recognition

using k-means clustering. In ASLR research, Bauer and Kraiss [7] applied a similar idea

to extracting ASL fenones. Han et al. [33] used motion speed discontinuity and motion

trajectory discontinuity to cluster segments of signs and extract visually meaningful sub-

sign units. However, such sub-sign clustering methods reduce only the encoding complexity

without explicit optimization for discriminative features, as opposed to the DISC-SBHMMs

proposed in this dissertation. Nayak et al. [70, 71] used DTW to extract signemes in multi-

ple sentences, and computed the start and end frame of the signemes by iterative conditional
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modes (ICM) [8]. Signemes, invariant to co-articulation, serve as the “core parts” of sign-

ings, and they can be used for spotting. This technique assumes that a signeme to be

extracted is the only common sub-sequence in a collection of training sentences. Signeme

extraction may be extended to sub-sign unit extraction (1) if such units are known and (2)

a signeme is the only common component of a set of training sentences. In contrast, our

DISC technique is designed to discover unknown sub-sign units shared in some signs by

discriminative analysis with the purpose of maintaining accuracy in a reduced-complexity

model.

2.4 Speech and Sign Verification

Sign verification has been used in validating sign spotting [3, 106], that is, pruning the results

of the initial spotting algorithm. In this dissertation, we focus on comparing groundtruth

with inputs. The two types of verification differ in the following ways. First, Alon and

Yang [3, 106] verify a prediction, while this dissertation verifies a known groundtruth script.

Second, Alon and Yang [3, 106] identify signs from a vocabulary in an input stream that

contains garbage classes, while this dissertation rejects an input stream with disfluencies

since the application is for educational purposes.

The closest work to the sign verification defined in this dissertation is speech verification,

specifically, as used for computer-aided language learning (CALL) [24]. Early studies such

as project Fluency [27] directly use speech recognition for tutoring the pronunciation of

foreign language learners. However, “if a tutor explicitly announces whether a student

read a word correctly, or colors each word red that it thinks the student misread, then

ASR errors place its credibility at risk” [67]. In project “Literacy Innovation that Speech

Technology ENables” (LISTEN) at CMU, which displays a story on the screen and “uses

speech recognition to listen to children read aloud” [68], Mostow described a motivational

cost as the penalty for false negatives and a cognitive cost as the penalty for false positives

and proposed “implicit judgments about individual words.” He also discussed metrics to

access the recognition accuracy for the speech verification task.

In sign language tutoring, DeSIGN [105] adapts the student model used in Project
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LISTEN with the goal of “reinforcing the meaning and use of vocabulary” of ASL for deaf

children. In contrast, the primary goal of CopyCat is the development of language ability,

not vocabulary.

Brashear [13] proposes to investigate and characterize disfluent signing such as scratch-

ing, fidgeting, false starts, hesitations, and pauses to aid in the pattern recognition task.

Researchers have devoted extensive efforts to detecting disfluent reading/signings for veri-

fication [114, 67, 10, 13], because (1) disfluency detection improves accuracy [67], and (2)

disfluency, which at least correlates to the perceptual quality of speech, provides an addi-

tional means for assessment [10]. However, to the best of our knowledge, this dissertation

is the first to suggest computationally the content of the verification task to improve user

experience.
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CHAPTER III

SEGMENTALLY BOOSTED HIDDEN MARKOV MODELS

This dissertation proposes SBHMMs [111], which leverage both the dynamic nature of

sequential data and the static nature of large-margin feature selection methods by assuming

the data are piecewise independent, identically distributed (piecewise i.i.d.). Note that this

assumption does not introduce additional approximations because it is already assumed

by HMMs. Our experiments show that SBHMMs reduce the sequence recognition error of

HMMs by 17% to 70% in American Sign Language recognition, human gait identification,

lip reading, and speech recognition (see Table 1, with details in Chapter 6). SBHMMs

construct new features by comparing the feature value with a set of discriminatively chosen

thresholds, which can be efficiently computed. The key steps to our SBHMM technique are

illustrated below.

Algorithm 1 The Segmentally-Boosted Hidden Markov Models (SBHMMs) Algorithm
1: Train HMMs by Expectation Maximization (EM) using the time sequence training data.
2: Find the optimal state transition path by the Viterbi decoding algorithm.
3: Label every sample with its most likely hidden state.
4: Train AdaBoost ensembles for this labeling.
5: Project the data to a new feature space using the ensembles.
6: Train HMMs by EM in the new feature space.
7: In testing, project the test data to the same new feature space and predict their label

using the HMMs computed in Step 6.

3.1 Segmental Boosting

In the 1990s, Juang and Rabiner [42] introduced the idea of segmental training, which

computes a better initial estimation for the observation models using the data segments

obtained from the Viterbi algorithm [79]. The assumption is that the initial state assignment

by the Viterbi algorithm roughly represents the characteristics of the data. In this work,

we extend the concept of segmental training in order to perform discriminative feature

selection. We derive this strategy in the context of the first-order HMM, which has been
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very successful in interpreting temporal data.

Table 1: The reduction in error by the SBHMM compared to the HMM baseline in the
five experiments conducted in Chapter 6.

ASLR ASLR Gait Lip Speech
(vision) (accelerometer) Recognition Reading Recognition
36.4%+ 17.1%+ 70.1% 32.2% 39.2%

An HMM builds a causal model for an observation sequence O = (o1o2 · · · oT ) by in-

troducing corresponding “hidden states” q = (q1q2 · · · qT ). Let P (q1) = P (q1|q0). The

transition model is P (qt|qt−1), and the observation model is P (ot|qt). Assuming the pres-

ence of C types of sequences, recognition selects the one with the highest likelihood

c∗ = arg max
1≤c≤C

P (O|λc), (1)

and Λ = {λ1, λ2, · · · , λC} are the parameters of the HMMs.

For a type c sequence Oc with length Tc, we define the model distance (dissimilarity) [80]

as

D(λc,Λ) =
1
Tc

[logP (Oc|λc)−
1

C − 1

∑
v 6=c

logP (Oc|λv)]. (2)

We intend to choose a subset of features that maximize D(λc,Λ). Assuming an unin-

formative prior, it is equivalent to maximizing the “sequence margin”

M(λc,Λ) =
1
Tc

[logP (λc|Oc)− 1
C − 1

∑
v 6=c

logP (λv|Oc)]. (3)

Discriminative classifiers with logistic output, such as boosting H(x) =
∑

j αjhj(x) =

logP (y = y∗|x) − logP (y 6= y∗|x) are capable of maximizing such a margin in Equation 3

for the classification problems (x, y).

The three natural choices for (x, y) represent different granularities: (x = O, y = c),

(x = ot, y = c), and (x = ot, y = qt). The first is intractable since the length of observation

O varies. The second corresponds to the sliding window methods [20] with fixed [110] or

empirically determined [90] size. Although improved results are reported, the oversimplified

assumption limits its application to more complicated tasks in which “the static features
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tend to cluster...without dynamic information” [58]. Therefore, we should not neglect the

sequential (temporal) dependency between the sliding windows, which conveys important

information for recognition.

We argue that the temporal dependency can be decoupled from the discriminative fea-

ture selection process instead of being discarded. In order to stay tractable, we assume

that the sequence data are piecewise (state-wise) i.i.d. and introduce a set of supervised

learning problems (x = ot, y = qt) to select features. This labeling preserves the temporal

relationship between the learning problems while assuming the samples for each problem

are least correlated. The assumption of piecewise i.i.d. follows the HMM assumption about

the Markov property and conditional independence:

P (O|λc) =
∑

q
P (O|q, λc)P (q|λc)

=
∑

q

T∏
t=1

P (ot|qt)P (qt|qt−1).

Thus, M(λc,Λ) can be increased with some discriminative P (ot|qt). Intuitively, HMMs

decompose the evolving temporal trajectory into two types of behavior: (1) a loop within

the same state or (2) a transition from one state to another. Thus, we can perform feature

selection only in the segments of the same state, and “static” segments are connected by the

temporal transition P (qt|qt−1). Note that the concept of “hidden state” is still necessary to

smooth the results of the observation model.

Therefore, we first train a set of HMMs with the original features and label every obser-

vation ot by its maximum a posteriori (MAP) state st computed by the Viterbi algorithm.

Then we train a set of AdaBoost [29] ensembles {H(s)}, that consists of decision stumps

(thresholding functions), for such labeling. We ignore superscript s when we discuss these

ensembles in general.

3.2 Construction of New Features

We use boosting classifiers to compute a new feature space that is discriminative for sequence

classification. In this dissertation, new features are constructed in a similar manner as in the

tandem model [34]. However, the tandem model is usually for labeled phonemes in speech
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recognition while our segmental method does not have access to such labeling. In addition,

the construction of our discriminative feature space is based on the margin properties of

the AdaBoost algorithm, described as follows.

3.2.1 Data Aggregation by AdaBoost

AdaBoost linearly combines weak learners hj(xi) ∈ [−1, 1] to obtain a strong classifier (en-

semble) H(x) =
∑

j αjhj(x) for each class s (state). Weak learners h used in SBHMMs are

the decision stumps, such as “Is the value of feature No. 5 greater than 0.45?” The binary

answers are then weighted according to their empirical discriminative power in separating

class s from the other classes.

The margin of the ensemble with l weak learners at xi is defined as ml(xi) = yiHl(xi)
wl

,

while wl =
∑l

j=1 αj is the sum of the learner weight, serving as a normalization factor.

During AdaBoost training, the minimum margin mini {ml(xi)} tends to increase [86], which

leads to good generalization ability.

We show that the average margin tends to decrease as the training proceeds. The average

margin of AdaBoost at round l and that at round l + 1 are compared:

ml =

n∑
i=1

yiHl(xi)

n·wl
=

n∑
i=1

yi

[
l∑

j=1
αjhj(xi)

]

n·
l∑

j=1
αj

=

l∑
j=1

n∑
i=1

αjhj(xi)yi

l∑
j=1

n∑
i=1

αjy2i

ml+1 =

n∑
i=1

yiHl+1(xi)

n·wl+1
=

n∑
i=1

yi

[
l+1∑
j=1

αjhj(xi)

]

n·
l+1∑
j=1

αj

=

l+1∑
j=1

n∑
i=1

αjhj(xi)yi

l+1∑
j=1

n∑
i=1

αjy2i

=

l∑
j=1

n∑
i=1

αjhj(xi)yi+
n∑

i=1
αl+1hl+1(xi)yi

l∑
j=1

n∑
i=1

αjy2i +
n∑

i=1
αl+1y

2
i

.

Denote

A =
l∑

j=1

n∑
i=1

αjhj(xi)yi, B =
l∑

j=1

n∑
i=1

αjy
2
i ,

C =
n∑
i=1

αl+1hl+1(xi)yi, D =
n∑
i=1

αl+1y
2
i .

We have

ml =
A

B
, ml+1 =

A+ C

B +D
,

in which
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ml+1 T ml ⇔
A+ C

B +D
T
A

B
⇔ C

D
T
A

B
.

In practice, “<” happens much more frequently than the other two cases, because (1)

A/B is the classification error of the ensemble composed by l weak learners while C/D is

the error of one weak learner at l+ 1; and (2) AdaBoost optimization gradually focuses on

the “harder” examples [86]. Therefore, ml will decrease as training proceeds. This effect

can be observed from the margin distribution graph in Figure 1 from Schapire et al. [86].1

The “5,” “100,” and “1000” are the number of rounds. From round 100 to round 1000, the

minimum margin (marked by the blue crosses) increases while the average margin decreases

(the shaded red region).

(a) (b) (c)

Figure 1: (a) The margin distribution graph in Schapire et al. [86]; (b) a zoom-in view
of the increase in the minimum margin from round 100 to round 1,000, marked by blue
crosses; and (c) a zoom-in view of the decrease in the average margin from round 100 to
round 1,000, shaded by red.

3.2.2 Extension to Multiple Classes

Extension from the binary class case to the multiclass case is straightforward. One mul-

ticlass boosting algorithm is AdaBoost M2 [29], which constructs a set of ensembles, each

representing one class, and the training maximizes the multiclass margin M = H(yi) −

max
{
H(y 6=yi)

}
[2], where yi is the correct class label. The minimum margin of AdaBoost

M2 increases while the average margin decreases in the training, similar to the margins of

binary class AdaBoost in training.

1Permission to reprint figure granted by the Institute of Mathematical Statistics.
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3.2.3 The Discriminative New Feature Space

SBHMMs construct a new feature space V using the ensembles of boosting. We define V

as the output space spanned by the S ensembles V = (H(1), · · · , H(S)), in which S is the

total number of the classes (states). For example, boosting constructs three ensembles,

H(1), H(2), and H(3), corresponding to a three-class problem. Assuming that the outputs

of the ensembles are H(1)(x) = 0.2, H(2)(x) = 0.9, and H(3)(x) = 0.7, we will project x to

the coordinate (0.2, 0.9, 0.7) in V. Note that (1) this projection is nonlinear because the

ensemble is a combination of the nonlinear thresholding functions on the feature values and

(2) the standard dimensionality reduction methods such as PCA can be applied to V to

further improve efficiency.2

The intuition of using V as the new feature space is twofold: (1) The weights in the

ensembles measure the importance of the (feature, decision stump) pairs, not just the

features. This information is encoded in V; in contrast, ignoring the stumps and simply

constructing a space by features with heavy weights is only a rough approximation of the

feature selection results. (2) If assuming a Gaussian observation model, we explain that

the margin properties refine the data distribution in V to fit the HMMs as follows. The

increase in the minimum margin and the decrease in the average margin indicate a natural

clustering of data according to their labels in the output space of boosting [108]. We

describe the intuition in a binary classification case. The output of the ensemble for binary

classification can be mapped onto a one-dimensional axis. When this ensemble contains

only one weak learner, the “+”s and “-”s are likely to be distributed everywhere from −1

to +1. As more and more weak learners are added, most of the “+” move to the positive

side while most of the “-” move to the negative side of the axis. That is, the samples are

aggregated in V according to their labels.

Table 2 provides a simple example: When the conditional distribution of the feature

value p(feature|class) is far from the Gaussian distribution, boosting can make the condi-

tional distribution of the classification confidence p(output|class) more “Gaussian” in the

2In this dissertation, the results reported are without PCA.
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output space of the ensembles. Note this change in the data distribution is desirable when

we employ the Gaussian observation model, which is the most common choice in HMMs

for recognition. We measure the skewness, the (unbiased) kurtosis, the z-test, and the

Kolmogorov-Smirnov test to compare the Gaussianness of the data in the input space and

the output space of boosting. For all four tests, a true Gaussian distribution should have

a score of 0; and the lower the score, the closer the distribution to a true Gaussian. These

four types of measurement are defined in Appendix B for reader’s convenience.

Further validations using the Georgia Tech Speech Reading (GTSR) data (details in

Section 6.4) show that the original data are hyper-leptokurtic (high kurtosis), as those are

in Table 2, so they may require a dense mixture of Gaussians. After the nonlinear projection

by SBHMMs, the hyper-leptokurtic distribution also becomes more Gaussian in the new

feature space, and the data kurtosis is reduced by 70% in our validation test (the details

of which are presented in Section 6.4) due to the aggregation effect. The training of the

(mixture of) Gaussian observation models is in turn improved.
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Table 2: A simple example where AdaBoost can make linearly inseparable samples cluster
according to their label in the output space while reducing the skewness, kurtosis and z-test
values at the same time

Sample# Feature Class Ensemble output (new feature)
1 1.0 + +0.4551
2 2.0 + +0.4551
3 3.0 + +0.4551
4 4.0 + +0.4551
5 5.0 + +0.4551
6 6.0 - -0.2625
7 7.0 - -0.2625
8 8.0 - -0.2625
9 9.0 - -0.2625
10 10.0 + +0.0547
11 15.0 - -0.1454
12 20.0 - -0.1454
13 30.0 + +0.0823
14 40.0 - -0.4551

Class + -
Feature Original Output Space Original Output Space
Skewness 1.87 -0.95 0.97 -0.82
Kurtosis 1.75 -1.08 -0.38 -0.15
Z-test 0.71 -0.36 0.37 -0.31
KS-test 0.84 0.52 1.00 0.56
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CHAPTER IV

DISCRIMINATIVE STATE-SPACE CLUSTERING

In the linguistic study of spoken languages, the words are decomposed to sub-word units

such as syllables and phonemes. Such decompositions are essential to achieve scalability

and accuracy in large vocabulary speech recognition [80]. Similarly, the search for linguistic

sub-sign units for ASL has introduced the concept of ASL phonemes. We discuss ASL

phonemes in Section 4.1. However, this chapter does not further investigate ASL linguistics

nor the exact set of ASL phonemes. Instead, we focus on a data-driven decomposition of

signs to improve feature selection and recognition accuracy in the rest of the chapter.

First, we briefly review the assumption made by the feature selection procedure proposed

in the last chapter. The feature selection algorithm assumes that the basic learning units in

sequence classification can be approximated by the states of the HMMs. The experimental

validation in Chapter 6 indicates that this granularity is fine enough to represent the contrast

of minimal pairs. This rough approximation is revisited in this chapter, and a data-driven

sub-sign unit extraction algorithm, discriminative state-space clustering (DISC), is proposed

to work jointly with SBHMMs in order to provide a more parsimonious representation.

DISC automatically detects possible sharing of the learning units (states in SBHMMs)

among different signs, and such units are then merged as basic building blocks (sub-sign

units) for ASL signs to improve efficiency in recognition. Furthermore, the detection of the

common building blocks avoids SBHMMs searching for the decision boundaries that are

unlikely to exist, and thus reduces the risk of overfitting in discriminative feature selection

(see Table 26).

4.1 ASL Phonemes

One major difference between ASL and English is that ASL has both sequential contrast

and simultaneous contrast, while English only has sequential contrast [97]. The “cheremes”

(phonemes) [94] proposed by Stokoe include handshape, location, and movement. The
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Table 3: An example of a sequential contrast.
GOOD

first part middle part last part
movement hold move out hold
location chin transitional out from chin
orientation palm to chin transitional palm to chin
hand configuration B transitional B

BAD
first part middle part last part

movement hold move out hold
location chin transitional out from chin
orientation palm to chin transitional palm to floor
hand configuration B transitional B

Stokoe system primarily focuses on simultaneous contrast. An example is that the sign FA-

THER and MOTHER contrast in the chereme of location: the dominant hand (preferred

hand) [97] touches the forehead and the chin in FATHER and MOTHER respectively, while

the handshape and movement are the same for the two signs. However, the Stokoe system is

ineffective at expressing the sequential details [56]. Its inadequacy for a sequential contrast,

such as the difference between the minimal pairs GOOD and BAD in Table 3, was addressed

by the movement-hold model [56], in which “handshape, rather than being a phoneme, is

regarded as a set of (linguistic) features that partially define a segment (phoneme)” [55].

Those linguistic features for ASL are analogous to the linguistic features [51] in spoken lan-

guages. In speech, the concept of a linguistic feature is defined at the level of a simultaneous

segmental contrast such as the comparison of /b/ and /p/ in Table 4; and the concept of a

phoneme is defined at the level of a sequential contrast, such as /b/ and /p/ in BAT and

PAT.1. In such a definition, the location of contact (the forehead or the chin) is a simul-

taneous linguistic feature that separates the beginning of the compound signs BROTHER

and SISTER. The latter part of the two signs, SAME, can be reused in modeling ASL.

This dissertation proposes to extract “machine-friendly” sub-sign units using the weakly-

labeled (i.e., no sub-sign labels available) training data based on the movement-hold model.

This data-driven approach automatically constructs intermediate categories (sub-sign units)

1See Appendix A for details.
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Table 4: Articulatory linguistic features
/p/ /b/

Point of articulation bilabial bilabial
Manner of articulation stop stop
Voiced or voiceless voiceless voiced

in order to directly reduce machine recognition errors, as opposed to extracting Signemes [70],

the “core” part of signs for sign spotting. Using ASL decomposition to improve machine

recognition has been proposed by Vogler and Metaxas [98]. The difference between their

work and ours is that they define the entire set of phonemes manually according to the

movement-hold model; in this work, we adopt a structure similar to that of the movement-

hold model but construct the building blocks automatically in a data-driven manner to

improve discrimination [112]. Traditional automatic fenone extraction for ASL [7, 33] re-

duces the encoding complexity without explicit optimization for discriminative features, as

opposed to the DISC-SBHMMs proposed in this dissertation.

4.2 Inseparable States as the Sub-sign Units

We review the intuition for the design of SBHMMs:

• The signs are sequentially composed by states.

• An individual set of features for each state is learned via feature selection.

• Discriminative learning ensures that the features are selected to maximize the sepa-

rability of the states.

• The discrimination of the signs can be improved by the discrimination of the states

that compose them.

In the previous chapter, we assume that different states of HMMs are building blocks of

ASL. Therefore, the boosting algorithm searches for the features that separate every state of

an HMM from all the other states of the same HMM and all the states of the other HMMs.

In practice, this assumption may be violated in many cases. For example, the signs SON

and DAUGHTER are composed of MALE-BABY and FEMALE-BABY respectively. The
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(a) (b)

Figure 2: (a) an HMM composed of three states; (b) the same HMM after splitting now
has 23 possible state transition paths.

two states that correspond to the later part of the sequences (BABY) of the two HMMs

are likely to be similar and inseparable. Forcing boosting to select features that “separate”

these two states will only lead to overfitting. Therefore, these states should be considered

as one instead of two distinct building blocks of ASL. This dissertation uses the confusion

matrix of the state classification to merge similar states for sub-sign unit extraction.

4.3 The State-Tying Paradigm

The traditional state-tying technique [80], which is successful at improving the efficiency and

scalability of speech recognition, can be applied to this task. State tying has been typically

applied to context-dependent states, but a recent study [22] in speech processing show that

global tying across all states further improves accuracy. The state-tying procedure can be

executed in two ways: top-down and bottom-up. The top-down approach, such as decision-

tree state-tying, starts with a rough-scale representation and splits the states whose data

distribution is not coherent. The samples whose likelihood falls below a specified threshold

(in the “tail” of the distribution) are split from the state and used to estimate a new state.

Such steps split certain states into two or more states. Then, the entire state space is

retrained. This procedure is repeated until none of the leaf nodes can split or a predefined

maximum number of states have been reached. Obviously, one major problem of the top-

down approach is how to revise the state transition matrix to include the new states. As

shown in Figure 2, a splitting of n states results in an exponential increase of 2n possible

state transition paths.

The second way for state-tying is the bottom-up approach. It starts with a fine-scale
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representation and sequentially merges the states that are similar. The merging criterion

is to minimize the reduction of data likelihood with a new, more compact model. Such

merging is executed until the reduction of data likelihood reaches a predefined threshold

or the number of states reaches a limit. The bottom-up state-tying has been widely used

in practical speech recognition systems due to its simplicity [80]. We adopt the bottom-up

approach in this dissertation.

4.4 The Iterative Clustering Algorithm

The discriminative state-space clustering (DISC) is executed as follows:

Algorithm 2 The DISC Algorithm
1: Randomly initialize the HMMs
2: Run SBHMMs to select state-dependent discriminative features.
3: while NOT (a pre-set lower bound P of the sub-sign units are extracted OR no state

pair exceeds θ OR a pre-set number of rounds I are reached ) do
4: Extract the confusion matrix in separating the states.
5: Use the Houtgast algorithm [4] to compute the similarity of each state pairs from the

confusion matrix.
6: Merge the top m most similar state pairs, or the state pairs whose similarity is above

a threshold θ.
7: Run SBHMMs to select state-dependent discriminative features in the new state

space.
8: end while
9: Train and test in the new feature space computed by SBHMMs.

The experimental results in Chapter 6 suggest that DISC may decompose ASL into

semantically meaningful pieces reducing the complexity of the model complexity without

sacrificing its accuracy. Meanwhile, the DISC algorithm is subject to several limitations:

• The iterative optimization contains SBHMMs in the loop, which is costly in training.

• The horizon problem of greedy merging leads to a sub-optimal solution. The initial-

ization point affects the final results (as all other EM algorithms do).

• The transitional movements (epenthesis [98]) may cause inaccurate clustering.

• If many new sign words are added to the training data, re-clustering is necessary.
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• This optimization strategy cannot merge common state sequences.2

One alternative to the DISC algorithm is to follow the standard iterative state-tying

algorithm in speech recognition for sub-sign unit extraction [80]. The standard benefit of

using state-tying in speech recognition is to better employ limited training data for creating

a complicated model. Here, state-tying also helps to select discriminative features more

accurately in DISC. The major difference between the two is that DISC has a discriminative

feature selection algorithm embedded in the training. We believe that this step is essential

to the success of the tasks such as ASLR, in which a “good” set of features is not apparent

to the user. For example, in our pilot study an unsupervised clustering of the speech reading

data described in Chapter 6 showed meaningless clusters from the data cloud.

2The optimization strategy cannot recover from certain temporal over-segmentation. For example, DISC
is capable of discovering that one state is necessary to model sequence AAAA, but it is unable to discover
that, for two sequences ABCD and ABCE, three states A, B, and C can be (arguably) treated as one state.
However, such over-segmentation should not cause serious problems in recognition.
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CHAPTER V

DISCRIMINATIVE ANALYSIS FOR SIGN VERIFICATION

This chapter addresses the two challenges in a sign verification game called CopyCat. The

first challenge is that sign verification must be optimized for both true positive and false

positive rates, unlike traditional sign recognition, which is measured only by accuracy.

The second challenge is that the sign verification game requires an efficient error analysis

algorithm that facilitates the re-design of the game.

(a) (b) (c)

Figure 3: The CopyCat game. (a) When the “help” button is clicked, a tutor (top left)
will show the user what to sign. (b) If the user signed correctly, the hero “poofs” the guard
animal. (c) If the user signed incorrectly, the hero looks confused and encourages the player
to sign again.

5.1 The CopyCat Project

5.1.1 CopyCat, the Game

The CopyCat project [54] at the Georgia Institute of Technology facilitates language skill

acquisition for young deaf children through an interactive ASL-based game. During play,

the children use sign language to interact with the hero in a “talking” scene in which

they tell the hero where a “bad” animal guard is hiding. The guard animals are snakes,

alligators, spiders, and “bad” cats. The guards are always hiding in, on, under, or behind

various colored objects with a desired item close by. If the children know what to tell
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Table 5: The vocabulary currently used in CopyCat
Category Signs Total
Subjects ALLIGATOR, CAT, SNAKE, and SPIDER 4
Objects BED, BOX, CHAIR, FLOWERS, WAGON, and WALL 6
Adjectives BLACK, BLUE, GREEN, ORANGE, and WHITE 5
Prepositions BEHIND, IN, ON, and UNDER 4

the hero regarding the location of the guards, such as “(a) BLUE ALLIGATOR ON (the)

GREEN WALL” or “(a) BLACK SPIDER IN (the) WHITE FLOWERS,” they can push

a “talk” button to turn the hero towards them so that they can sign to the hero. When

they have finished signing, they push the “talk” button again to provide timing cues for

the sign language recognition data being collected via video camera. If the children are

uncertain of what to sign, they can click a “help” button to see a tutor (in the top left

corner of the screen) telling them what to say, as shown in Figure 3. The child may view

the tutor repeatedly if he/she so chooses. After the children sign, the automatic verifier,

a specialized ASL recognizer, compares the input against the groundtruth phrase. If the

signing is correct, the hero will “poof” the guard animal and retrieve the hidden item;

otherwise, the player will be prompted to sign again. The signs and phrases currently used

in CopyCat are summarized in Tables 5, 6, 7, and 8. The vocabulary size and the number

of phrases are very small for a ASL learning task; however, note that (1) the purpose of

CopyCat is to help children develop short-term memory and obtain some basic language

skills and (2) methods discussed in this chapter are scalable to more complicated games.

5.1.2 Data Collection

This section explains the data collection details used for sign verification and phrase selection

for the CopyCat game. We collect the signing of the game player by one video camera

and a pair of colored-gloves with accelerometers attached. In order to achieve a relatively

stable video input for recognition, we fixed the position of the camera and the chair of the

game player on the floor, as shown in Figure 4.1 A game player controls the data capture

by clicking the “talk” button before and after his/her signing. The signing is verified as

1Figures 4, 5, 6, and 7 are courtesy of Zahoor et al. [113].
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Table 6: The three-sign phrases currently used in CopyCat
Index Phrase
1 ALLIGATOR BEHIND WALL
2 SNAKE BEHIND WALL
3 SPIDER ON WALL
4 CAT ON WALL
5 SNAKE UNDER CHAIR
6 SPIDER ON CHAIR
7 ALLIGATOR BEHIND CHAIR
8 CAT UNDER CHAIR
9 ALLIGATOR IN BOX
10 SPIDER IN BOX
11 CAT BEHIND BOX
12 SNAKE ON BOX
13 CAT BEHIND BED
14 ALLIGATOR ON BED
15 SNAKE UNDER BED
16 SPIDER UNDER BED
17 ALLIGATOR IN WAGON
18 SPIDER UNDER WAGON
19 CAT BEHIND FLOWERS
20 SNAKE IN FLOWERS

Table 7: The four-sign phrases currently used in CopyCat
Index Phrase
21 ALLIGATOR ON BLUE WALL
22 SPIDER IN GREEN BOX
23 SPIDER IN ORANGE FLOWERS
24 SNAKE UNDER BLUE CHAIR
25 ALLIGATOR BEHIND BLUE WAGON
26 SNAKE UNDER BLACK CHAIR
27 CAT ON BLUE BED
28 CAT ON GREEN WALL
29 ALLIGATOR UNDER GREEN BED
30 SPIDER ON WHITE WALL
31 SPIDER UNDER BLUE CHAIR
32 ALLIGATOR IN ORANGE FLOWERS
33 CAT BEHIND ORANGE BED
34 ALLIGATOR BEHIND BLACK WALL
35 SNAKE UNDER BLUE FLOWERS
36 CAT UNDER ORANGE CHAIR
37 SNAKE IN GREEN WAGON
38 SPIDER IN BLUE BOX
39 ALLIGATOR BEHIND ORANGE WAGON
40 CAT UNDER BLUE BED
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Table 8: The five-sign phrases currently used in CopyCat.
Index Phrase
41 BLUE ALLIGATOR ON GREEN WALL
42 ORANGE SPIDER IN GREEN BOX
43 BLACK SNAKE UNDER BLUE CHAIR
44 BLACK ALLIGATOR BEHIND ORANGE WAGON
45 GREEN SNAKE UNDER BLUE CHAIR
46 BLACK SPIDER IN WHITE FLOWERS
47 BLACK CAT ON GREEN BED
48 WHITE CAT ON ORANGE WALL
49 GREEN ALLIGATOR UNDER BLUE FLOWERS
50 BLUE SPIDER ON GREEN BOX
51 ORANGE ALLIGATOR IN GREEN FLOWERS
52 BLACK CAT BEHIND GREEN BED
53 WHITE ALLIGATOR ON BLUE WALL
54 ORANGE SNAKE UNDER BLUE FLOWERS
55 GREEN SPIDER UNDER ORANGE CHAIR
56 BLACK CAT IN BLUE WAGON
57 WHITE CAT IN GREEN BOX
58 WHITE SNAKE IN BLUE FLOWERS
59 ORANGE SPIDER UNDER GREEN FLOWERS

“good” (match) or “bad” (no-match) by a verifier (manually by human or automatically by

computer). In order to collect training and testing data for our algorithm, we invited an ASL

linguist as a human wizard to provide this label in a “wizard of Oz” setting [54]. He labeled

1,467 phrases in the CopyCat dataset as “good.” However, a human wizard may make

mistakes. We then manually inspect the results of this “human verifier.” The consensus of

the two steps finally determined that 1,077 phrases “match” the groundtruth script with

good quality for training and testing, and the rest, either of in agreement on “bad” or in

disagreement in the two aforementioned steps, as “no-match” for testing (because we do

not need “no-match” for training). Table 9 lists the metric (performance) achieved by the

human verifier.

The game begins with a level of three-sign phrases. Once the player signs four correct

phrases in succession, the game increases difficulty from three- to four-sign phrases or from

four- to five-sign phrases. The game ends when the player has finished a total of 20 correct

phrases. This setting ensures that we have a sufficient amount of good data for training

and testing.
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Table 9: Accuracy metric achieved by the human verifier in CopyCat (courtesy of Zahoor
Zafrulla and Harley Hamilton)

Human Verifier %
True Positive 98.57
True Negative 68.67
False Positive 31.33
False Negative 1.43
Overall Accuracy 90.43

Figure 4: Left: Game kiosk setup. Note that the camera and the chair of the player are
fixed on the floor. Right: a sample video frame captured by the camera.

5.1.3 Features

Figure 5 shows the colored data glove with accelerometers attached. We compute 28 visual

features from the 720x480 video frame at 20 Hz and six acceleration features from two three-

axis accelerometers. We first convert the video frame to HSV space and then track the hands

using hue (H) information. The ten visual features for each hand are: the ∆x,∆y of the

centroid, the size of the blob, the length of the major and minor axes, the eccentricity, the

orientation of the major axis, and the change in the orientation of the major axis [11]. We

use a cascade of boosting classifiers to track the head and compute the features with regard

to the relative positions of the head and the hands, shown in Figure 6, as α1, α2, α3, l1, l2, l3,

θl, and θr. For the sake of simplicity, we did not include facial expression. We also recorded

six accelerometer features, that is, two accelerometer readings (one on each glove), from -2g

to +2g, of the 3D acceleration. Preliminary experiments suggest that accelerometer features

do not yield a significant boost in the accuracy of recognition/verification accuracy [113].

In the experimental results described below, we use only the 28 visual features.
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Figure 5: Left: a pair of colored data gloves. Right: each glove has one 3D accelerometer.

Figure 6: Visual features for CopyCat

5.1.4 The CopyCat Dataset

We collected signing data from 18 children. The data collection is separated into three parts.

The first part contained the signing of five children (child#1 to child#5), collected in the

fall of 2008 and denoted as Fall08; the second part contained the signing of seven children

(child#6 to child#12), collected in the early spring of 2009 and denoted as Spring09I; the

third part contained the signing of 16 children (child#3 to child#18), collected in late

spring of 2009 and denoted as Spring09II. The children who participated in these studies

exhibited three kinds of hand dominance: left-hand dominance, right-hand dominance, and

mixed dominance. Of the aforementioned “good” phrases, 698 are right-hand dominant,

151 are left-hand dominant, and 228 are mixed. The children also made several variations

of every sign, listed in Table 10. Some variations of the signing are shown in Figure 7.

The variations, difficult to model by a single HMM per sign, are constructed as separate

sign tokens in recognition. Thus, the CopyCat dataset contains 45 tokens. To include

all signing variations (tokens) in training, we decided to use Spring09II plus nine phrases

from Spring09I, denoted as Spring09II+ for training, Fall08 for parameter tuning, and

Spring09I minus the nine phrases from training, denoted as Spring09I-, for testing. This
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Figure 7: Some signing variations. Left: BED RIGHT and BED LEFT. Right:
CAT TWO HANDED and CAT RIGHT.

training/testing split is fixed for all the related experiments presented in this dissertation.

While the training and testing data are independent, some children participate in both.

Some children are unique to the testing set.

5.1.5 The CopyCat-Adult Dataset

Due to the high signing variance in the CopyCat dataset, we recorded the signing of eight

adult Georgia Tech participants who were non-native signers. The signing variance was

significantly lower in this dataset than in CopyCat dataset, so we keep only one common

signing pattern (token) per sign and discard the recordings with rare variations. Therefore,

CopyCat-Adult contains 492 phrases and only 19 tokens. For the CopyCat-Adult dataset,

we randomly picked 80% of the data for training and 20% of the data for testing. The

training/testing split is fixed for all the related experiments presented in this dissertation.

5.2 Sign Verification

Automatic sign verification is integral to the CopyCat game. Speech/utterance verification

is a process of verifying “the claimed content of a spoken utterance” [52]. Similarly, this

dissertation defines “sign verification”2 as a process of verifying the claimed content of the

signs. Let us define an ideal verifier (V stands for verifier)

Videal(P, FQ) =

 1⇐⇒ P = Q

0⇐⇒ P 6= Q,
(4)

2Sign verification in this dissertation compares input with a groundtruth script, which is different than
the verification step to prune spotting results [3, 106]. Sign verification should also be distinguished from
signer verification, which is analogous to speaker verification to verify identity.
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Table 10: Variations of the signs in the CopyCat dataset
Token index Sign Variation

1 ALLIGATOR TWO HANDED
ALLIGATOR2 ALLIGATOR LEFT

3 ALLIGATOR RIGHT
4 CAT TWO HANDED

CAT5 CAT LEFT
6 CAT RIGHT
7 SNAKE LEFT

SNAKE
8 SNAKE RIGHT
9 SPIDER LEFT

SPIDER
10 SPIDER RIGHT
11 BED LEFT

BED
12 BED RIGHT
13 BOX

BOX
14 BOX CLEAR
15 CHAIR LEFT

CHAIR
16 CHAIR RIGHT
17 FLOWER LEFT LEFT

FLOWER
18 FLOWER LEFT RIGHT
19 FLOWER RIGHT LEFT
20 FLOWER RIGHT RIGHT
21 WAGON RIGHT UP

WAGON
22 WAGON RIGHT DOWN
23 WAGON LEFT UP
24 WAGON LEFT DOWN
25 WAGON RIGHT TWO
26 WALL BACK

WALL
27 WALL FRONT
28 BEHIND LEFT

BEHIND
29 BEHIND RIGHT
30 IN LEFT

IN
31 IN RIGHT
32 ON LEFT

ON
33 ON RIGHT
34 UNDER LEFT

UNDER
35 UNDER RIGHT
36 BLACK LEFT

BLACK
37 BLACK RIGHT
38 BLUE LEFT

BLUE
39 BLUE RIGHT
40 GREEN LEFT

GREEN
41 GREEN RIGHT
42 ORANGE LEFT

ORANGE
43 ORANGE RIGHT
44 WHITE LEFT

WHITE
45 WHITE RIGHT
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Table 11: True positive, false positive, true negative, false negative, and accuracy rates
are not independent for ASL verification.

Groundtruth Positive Groundtruth Negative
Predicted Positive True Positives False Positives
Predicted Negative False Negatives True Negatives

True Positive Rate number of True Positives
number of groundtruth positive instances

False Positive Rate number of False Positives
number of groundtruth negative instances

True Negative Rate number of True Negatives
number of groundtruth negative instances = 1− False Positive Rate

False Negative Rate number of False Negatives
number of groundtruth positive instances = 1− True Positive Rate

Accuracy number of True Positives+number of True Negatives
number of instances

in which P is an input groundtruth phrase (claimed content), such as ALLIGATOR ON

WALL, and FQ is a signing sequence F =< f1, f2, . . . , fT−1, fT > corresponding to phraseQ,

which can have the same or a different number of signs than P , or could even be some random

gestures (noise). We implement V(P, FQ) using the likelihood of L(P, FQ) = Prob(FQ|P ):

Videal(P, FQ) =

 1⇐⇒ L(P, FQ) ≥ θ

0⇐⇒ L(P, FQ) < θ,
(5)

in which theta is a similarity threshold usually set empirically by additional parameter

validation.

Compared with traditional ASL recognition, R(FQ) (R stands for recognizer) is defined

as

R(FQ) = P ∗ = arg max
P∈{Pi}

{L(P, FQ)} (6)

ASL verification V(P, FQ) takes not only the input of the signing FQ but also the

“groundtruth phrases” P . ASL recognition classifies a valid signing sequence into one of

the known sign labels Pi, and this process can be evaluated by a single metric of recognition

accuracy. ASL verification in this dissertation, on the other hand, determines whether an

(maybe invalid) input signing FQ and an input phrase label P match. Such a task can be

evaluated by five metrics: a true positive rate, a false positive rate, a true negative rate, a

false negative rate, and accuracy, but they are not independent, as shown in Table 11.

One straightforward algorithm is to use recognition for verification: that is, first compute

38



ASLR P ∗ = R(FQ) for the input signing sequences FQ, and then compare the recognition re-

sults P ∗ with the groundtruth labeling P . However, this algorithm neglects the groundtruth

labeling P as an important source of prior knowledge. When the game scene shows P =

BLUE ALLIGATOR ON GREEN WALL, a child may make a mistake on one sign or two,

but the signing is very unlikely to be, for example, ORANGE SPIDER UNDER WHITE

BOX if we assume that the child plays the game responsibly. In ASL verification, while

additional information P is available, we can measure the similarity between the current

input FQ and other empirical signing data corresponding to P . However, a näıve algorithm

that computes only similarity will become a “forced alignment” [80] and produce trivial

results since even random noise can be aligned with any phrase script. Therefore, the first

challenge is to find an optimal threshold θ in Equation 5 for the similarity measurement

of match versus no-match. Such a threshold θ can be determined empirically by a brute

force search on a separate validation set. This dissertation, on the other hand, proposes

automatically computing one threshold for each sign.

The idea to automatically “select” thresholds comes from the literature of feature se-

lection. In automatic feature selection, randomly-generated features that are irrelevant to

the class label of the samples are added to the pool of features. These random features are

called “probes,” because once the feature selection algorithm picks any of these probes as

the most informative feature, the selection stops. Inspired by the idea of probe features,

this dissertation proposes the idea of “probe inputs.” Randomly-generated input sequences

are supplied to the classification model trained by correct signings, and the similarity (like-

lihood) of the random data to the trained model serves as the threshold for verification.

Intuitively, signings are rejected as “no-match” if their likelihoods are no higher than those

of the random inputs. The experiments in Chapter 6 show that the thresholds computed by

such an intuitive strategy provide comparable results with empirically determined thresh-

olds using exhaustive search.

The merit of using probe instead of exhaustive search is fast online adaptation. Although

brute force search on a ROC curve computed from some training data can be automated

by a script; (1) this search is costly and thus must be executed offline, (2) this search
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assumes that the offline training data adequately represent the testing data, and (3) a user-

independent verifier has to make a trade-off when selecting a fixed threshold. For example,

if the signing from one child has a higher likelihood for matching than that from another

child, a single, fixed threshold will either create unnecessary false positives for the first child

or false negatives for the second child. In comparison, the probe technique can be easily

implemented as a online process and can be applied to multiple users.

5.2.1 Recognizer versus Verifier

A verifier generalizes traditional recognizers R(FQ) = arg maxP {L(P, FQ)}. An ideal rec-

ognizer observes Q = P ∗ = arg maxP {L(P, FQ)}, that is, the script that matches the input

is the true script signed. Meanwhile, the probe-based verifier is actually V(P, FQ) = 1(P =

Q∗ = arg maxQ{L(P, FQ)}), that is, the signing that best matches the script is the true

input instead of other random signings.

5.3 Phrase Selection for Game Re-design

This section addresses the second challenge in CopyCat, phrase selection. In this scenario,

the game designer has complete power to choose the verification phrases of the game. As

described in Chapter 1, the choices of the phrases do not have to include the entire ASL

vocabulary but are required to interact with the user (deaf children) at an acceptable

accuracy. In speech recognition, if the accuracy is higher than 95%, most users are willing

to repeat their utterrance in case of error [80]; otherwise, the users become impatient and

tend to abandon the automatic system. Similarly, a low verification accuracy may discourage

users. For example, in one of our pilot studies, one deaf child, after being prompted with

the confused cat several times, signed the phrase “stupid cat” to the camera.

Therefore, the success of CopyCat depends on a high true positive rate in verification.

The true positive rate can be improved by selecting the phrases that are the “most distin-

guishable” to the verifier: among the correct signings by children, these phrases are most

accurately identified as a “match” by the verifier V(P, FP ). Therefore, in phrase selection,

the true positive rate is the same as the classification accuracy, and a verifier is the same as

a recognizer. We use these terms interchangeably in the rest of the chapter, which describes
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Table 12: The four phrases for a simplified game, mini-CopyCat, ranked by an artificial
testing accuracy

Subject Preposition Object Testing Error % Rank
SPIDER ON WALL 5% 1

ALLIGATOR UNDER WALL 15% 2
ALLIGATOR ON BOX 30% 3

SPIDER ON BOX 35% 4

the selection procedure in detail.

The syntax used by CopyCat is restricted: Each phrase is composed by an optional

adjective, a subject, a preposition, an optional adjective, and an object, in order, as shown

in Tables 5, 6, 7, and 8. Given a set of signs, such as those in Table 5, the phrase selection

algorithm should pick a total of k triplets, quadruplets, or quintuplets. To achieve high

recognition accuracy, we should reduce two types of ambiguity. The first is ambiguity

between signs in the same grammatical location of the phrase, e.g., GREEN and BLUE,

which usually causes substitution errors when both signs are in the vocabulary. Therefore,

we should either introduce new features to disambiguate this confusing pair or remove

at least one sign of the pair from the vocabulary to ensure recognition quality. In fact,

mis-alignment may cause substitution errors as well. However, such errors are unlikely

because (1) in a sign verification task, we expect the recognizer to have reasonably high

accuracy already; and (2) the alignment problem is further averted when the second type of

ambiguity, which results from co-articulation between two adjacent signs, diminishes. The

second type of ambiguity can be reduced by carefully selecting the combination of the signs

in the phrases used.

5.4 Phrase Selection

To explain clearly the minimization of co-articulation errors by using phrase selection, this

section uses a simplified game, called mini-CopyCat, which contains only four three-sign

phrases shown in Table 12. Note that in this section many values, such as the testing

accuracy, are artificial for illustration purposes.
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Table 13: All eight possible phrases for mini-CopyCat ranked by their artificial testing
accuracy

Subject Preposition Object Testing Error % Rank
ALLIGATOR ON WALL 0% 1

SPIDER ON WALL 5% 2
SPIDER UNDER WALL 10% 3

ALLIGATOR UNDER WALL 15% 4
SPIDER UNDER BOX 20% 5

ALLIGATOR UNDER BOX 25% 6
ALLIGATOR ON BOX 30% 7

SPIDER ON BOX 35% 8

5.4.1 Selection by Classification Accuracy

If we assume that each phrase in Table 12 occurs 100 times, the average testing error for

mini-CopyCat is (100 ∗ 5% + 100 ∗ 15% + 100 ∗ 30% + 100 ∗ 35)/400 = 22%. A simple way

to improve accuracy is to remove the least accurate phrase, SPIDER ON BOX, from the

game. The new average error is (100 ∗ 5% + 100 ∗ 15% + 100 ∗ 30%)/300 = 17%. However,

this approach also reduces the complexity of the game complexity by 25%. Can we improve

the classification accuracy with four phrases in the game? The answer is “yes, we can.” If

we test the accuracy of more phrases that can be constructed using the six signs, we will be

able to select the four phrases with best testing accuracy among them, and thus improve the

average accuracy and create a better gaming experience. In an extreme case, if we test all

eight combinations by subject = {ALLIGATOR, SPIDER}, preposition = {ON, UNDER},

and object = {WALL, BOX}, as shown in Table 13, we will be able to select the ‘best” four

phrases for the game.

However, in order to obtain the “best” four phrases, we need to build a mini-CopyCat

game with all eight phrases and have the children test all of them in the game. Such an

exhaustive approach is intractable in real-world game design. In fact, the current version

of CopyCat will yield 4*4*6+4*6*5*4+5*4*6*5*4=2976 phrases to be tested. If we assume

that there are n signs per category, and the length of the phrases is m, the combinations are

on a scale of O(nm), which is exponential in m. The next section presents two algorithms

that can reduce the complexity to quadratic O(n2 ·m).
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Table 14: Artificial likelihoods for the preposition signs in the five sessions of mini-CopyCat
Subject Preposition Log-likelihood Object

ALLIGATOR ON -0.2 BOX
SPIDER ON -0.5 BOX

ALLIGATOR ON -0.3 BOX
ALLIGATOR ON -0.4 BOX

SPIDER ON -0.7 BOX

5.4.2 Bi-gram Predictor for Phrase Accuracy

The goal of our prediction is to approximate the phrase ranking of the true testing error

by the ranking of a score that is easy to compute. In order to predict the relative ranking

of the testing accuracy of unseen phrases, this dissertation proposes a prediction technique

based on partial information (segments) of seen phrases, called the bi-gram error-ranking

(BIG) predictor. Since the likelihood for each sign in the phrase indicates how similar

the signing is to the model, we can measure the co-articulation effect by computing how

much the previous sign affects the likelihood of the one that follows. Let us assume that

Table 14 contains the log-likelihoods of the preposition signs measured in five sessions of

mini-CopyCat.

Then we are able to compute the average log-likelihoods for ON in a particular combi-

nation and all combinations:

L̄L(ON|ALLIGATOR) = [(−0.2) + (−0.3) + (−0.4)] /3 = −0.3.

L̄L(ON|SPIDER) = [(−0.5) + (−0.7)] /2 = −0.6.

L̄L(ON) = L̄L(ON|ALLIGATOR)∗P (ALLIGATOR)+L̄L(ON|SPIDER)∗P (SPIDER) =

(−0.3) ∗ 3/5 + (−0.6) ∗ 2/5 = −0.42.

Therefore, we define the “cost” to have ON after ALLIGATOR as the difference between

the average log-likelihoods of ON for this particular combination and all combinations:

C(ALLIGATOR,ON) = L̄L(ON)− L̄L(ON|ALLIGATOR) = (−0.42)− (−0.3) = −0.12,

and the “cost” to have ON after spider as

C(SPIDER,ON) = L̄L(ON)− L̄L(ON|SPIDER) = (−0.42)− (−0.6) = 0.18.
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If we define the phrase score for ALLIGATOR ON BOX as

S(ALLIGATOR,ON,BOX) = C(ALLIGATOR) + C(ALLIGATOR,ON) + C(ON,BOX),

then we can then rank all the phrases according to the phrase score in an ascending order.

Note that the first sign has no preceding signs, so the cost is defined as its marginal log-

likelihood.

5.4.3 Uni-gram Predictor for Phrase Accuracy

For comparison, this dissertation also computes a uni-gram predictor for phrase accuracy.

A uni-gram predictor is similar to a bi-gram predictor except that the “cost” of a sign

is solely determined by the unconditioned likelihood without context information. For

example S(ALLIGATOR) = L̄L(ALLIGATOR). A uni-gram predictor, being a simplified

version of a bi-gram predictor, simulates the sequential likelihood computation by a uni-

gram observation model of the underlying graphic model (a hidden Markov model in this

dissertation) without a transition model. The computational complexity to learn a uni-

gram model is linear O(n). The advantages of using a uni-gram predictor are that it is less

complex and less prone to noise or lack of data in the transition model, while the greatest

disadvantages of using it is that the uni-gram model is unable to address co-articulation, if

it exists.

5.4.4 Measurement of the Quality of Prediction

This section describes how to measure the quality of the approximation. In information

retrieval, a standard way of evaluating one ranking function is normalized discounted cu-

mulative gain (nDCG) [37]. Here, we compare two ranking functions. This dissertation

compares the ranking results by Spearman footrule distance (Manhattan distance) [45],

described as follows.

Assume that we have two ranking functions fa(·) and f b(·); the set of phrases is Z =

{z1, z2, . . . , znz}. The rankings are Ra = {rai |fa(si) = rai } and Rb = {rbi |f b(si) = rbi}.

Define the “distance” between the two ranking results as the L1 distance between two

vectors Ra and Rb,
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DL1(a, b) =
nz∑
i=1

|rai − rbi |. (7)

The average distance is

aDL1(a, b) = DL1(a, b)/nz. (8)

Other alternatives to measure the difference of two ranking functions include Kendal tau

distance [45] and Pearson product-moment correlation coefficient (PMCC) [101]. Kendal

tau distance computes the pairwise disagreements between two rankings Ra and Rb, as

shown in Equation 9. Let n = ||Ra|| = ||Rb||, then this measurement equals zero when

Ra and Rb are identical and nz ∗ (nz − 1)/2 when Ra is in reverse order of Rb. Kendal

tau distance is usually normalized by nz ∗ (nz − 1)/2 so that it ranges between zero and

one. PMCC computes the linear correlation between two sets of data points Ra and Rb, as

shown in Equation 10, in which µa and µb are the mean value of Ra and Rb. ρ = 0 when Ra

and Rb have no correlation; and ρ = ±1 when Ra and Rb are in perfect positive/negative

linear correlation.

K(a, b) =
∑
∀i,j

1(rai < raj and rbi ≥ rbj). (9)

ρ =
∑

(rai − µa)(rbi − µb)/(n− 1)√∑
(rai − µa)2

∑
(rbi − µb)2

. (10)

5.4.5 Selection for Unseen Phrases

We are able to compute the score of any unseen phrases as long as they are composed by

seen bi-grams using BIG in polynomial time O(n2 ·m). However, because there are O(nm)

phrases, computing the ranking of all unseen phrases still takes exponential time. This sec-

tion claims that selecting the top k phrases from the ranking can be reduced to a “k-shortest

path problem” in graph theory and solved in polynomial time by Yen’s algorithm [107].
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5.4.5.1 The k-shortest Path Problem

Given a directed graph G(V,E,W ), V is a set of vertices (signs in CopyCat) and E is a

set of directed edges (the adjacency ordering or grammar of signs) with W as their weight

(cost computed in the previous section), a path P (phrase) starting at v(i1) and ending at

v(il) is a sequence of vertices P = (v(i1), v(i2), · · · , v(il)), connected by edges in E, and the

distance of the path w(P) (phrase score) is the sum of the weight of the connected edges.

The shortest path problem finds P∗ = arg minw(P) (lowest phrase score). This problem

can be solved easily by Dijkstra’s algorithm [21]. The k-shortest path problem is to find k

paths P1,P2, · · · ,Pk from all the paths that start at vertex v(s) and end at vertex v(t),

such that w(P1) ≤ w(P2) ≤ · · · ≤ w(Pk) ≤ w(P#), for ∀P# 6= P1,P2, · · · ,Pk. Numerous

studies [26, 60, 107] have been published on this subject for polynomial time solutions, most

of which are deviation algorithms.

Deviation algorithms search for the k-shortest paths based on the construction of a

“pseudo”-tree. The root of the tree is the start node, and the leaves are some end nodes.

Each sub-optimal path is a “deviation” from the optimal (shortest) path. For example,

Figure 8(e) is the pseudo-tree for the k-shortest path (k = 4) from A to D in the graph

shown in Figure 8(a). The tree is “pseudo” in the sense that it can contain repeated

nodes, yet the multiple appearance of the same node can be distinguished by its association

with different paths. The intuition of the deviation algorithm is that the (k+1)th shortest

path can be created by deviation from the kth shortest path with proper restrictions. For

example, the pseudo-tree in Figure 8(e) can be constructed by the following steps: compute

the shortest path from A to D by the Dijkstra algorithm [21], shown in Figure 8(b); then

compute the second shortest path by choosing the shorter of the two deviation paths (one

at node B and the other at node A) shown in Figure 8(c); similarly, we can compute the

third-shortest and fourth shortest paths by deviation, shown in Figures 8(d) and (e). This

dissertation employs a variation of Yen’s algorithm [60] to compute the k-shortest path in

O(kn(m+n log n)), in which n = |V | and m = |E|. Although this variation shares the same

bound as the original Yen’s algorithm [107], it performs more efficiently in practice.
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Figure 8: (a) a simple example of graph; (b),(c),(d), and (e), the construction of the
pseudo-tree for (a).
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CHAPTER VI

EXPERIMENTAL VALIDATIONS

To validate the claims about segmental features in Chapter 3, we first conduct a synthetic

experiment, in which we show that feature selection in a segmental manner is the key

to improving discrimination when the time sequences have different informative features

at different phases. Then we evaluate the performance of the SBHMMs across the four

domains and compare it with that reported previously by other researchers. Next we show

some results of the performance of DISC-SBHMMs. Note that the size of the boosting

ensembles is empirically determined for each application. Finally, we show the results of

the probe technique and the bi-gram error ranking predictor (BIG) for sign verification in

CopyCat and CopyCat-Adult dataset.

6.1 The Synthetic Experiment

We construct two six-state left-to-right HMMs (sequence generators), with the mean of the

Gaussian observation model listed in Table 15. The covariance of the Gaussian is diagonal,

and the variance of each dimension is fixed at 0.1. We sample 2,000 sequences of length 12

from each of the two HMMs. In the three-dimensional observation vectors, the informative

feature is highlighted in blue in the table. The other two dimensions contain irrelevant

dynamics. For training, we randomly pick 1,000 sequences generated by HMM1 and 1,000

by HMM2 and use the remaining 2,000 sequences for testing. Because the data are truly

generated by HMMs, and feature 1 provides a clean indication of the class label, the two

HMMs (sequence recognizers) trained on these data produce a perfect (0% error) recognition

rate. We call this the “clean” experiment.

We then experiment using sequences with different informative features at different

phases (states). For the 4,000 sequences obtained, we swap feature 1 with feature 3 in

the first three states while maintaining the other parameters the same as before, shown in

Table 16. Note that because the three features are still conditionally independent of each
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Table 15: Synthetic example (clean)
model feature state 1 state 2 state 3 state 4 state 5 state 6

HMM1
f1 1 3 5 7 9 11
f2 1 2 3 4 5 6

(orange) f3 6 5 4 3 2 1

HMM2
f1 2 4 6 8 10 12
f2 1 2 3 4 5 6

(green) f3 6 5 4 3 2 1

other, the diagonal Gaussian observation model is still valid. We use the same training and

testing split as the “clean” experiment and learn two HMMs (recognizers), which we refer

to as “swapped.” In the “swapped” setting, highly informative feature(s) still exist just as

in the “clean” setting; however, traditional HMMs with MLE training are unable to identify

this feature. The disturbance of the irrelevant dynamics creates an inferior model, which

yields 10.1% error in testing.

Next, we apply the SBHMMs to the “swapped” data. The piecewise i.i.d. assumption

allows the SBHMMs to select different features for different temporal segments (states) ob-

tained by the initial round of the Viterbi decoding. Weight αj of boosting can be considered

as an indicator of “importance” of the corresponding feature j. Figure 9(a), the feature

weights of the two SBHMMs, shows that segmental feature selection successfully identifies

feature 3 as the informative feature in the first three states, feature 1 as that in the last

three states, and feature 2 as the uninformative feature all the time. The SBHMMs then

project the data into the 12-dimensional output space. To illustrate the distribution after

this nonlinear projection in low dimension, we compute the most discriminatory W12×1
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Table 16: Synthetic example (segmental)
model feature state 1 state 2 state 3 state 4 state 5 state 6

HMM1
f1 1 2 3 7 9 11
f2 6 5 4 4 5 6

(orange) f3 1 3 5 3 2 1

HMM2
f1 1 2 3 8 10 12
f2 6 5 4 4 5 6

(green) f3 2 4 6 3 2 1

projection using Fisher Linear Discriminant Analysis (FLDA) [23]. The data are plotted in

Figure 9(b), which the Y-axis being the projected feature value and X-axis being the data

index (2,000 sequences times six sample points per sequence). Although they are still not

completely separated, the HMMs in the segmentally-boosted new feature space are capable

of using the temporal correlation to disambiguate the two classes. SBHMMs achieve an

error rate of 2.3%; the reduction of error is 77.2%.

This set of experiments shows that the segmental feature selection can extract dis-

criminative features even if they are just “sometimes informative” while traditional HMMs

cannot. In the following sections, we show that in many real world applications in which one

discriminative feature for class separation is unlikely, SBHMMs join the efforts of different

features at different times in order to reduce error in recognition.
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(a) (b)

Figure 9: (a) feature weights obtained from the SBHMMs; (b) the data after segmental
feature selection, projected in 2D by FLDA

6.2 American Sign Language Recognition Results

In the application of continuous American Sign Language recognition (ASLR), we compare

SBHMMs with two baseline HMMs [93, 61]1. In the first continuous recognition experiment,

500 sentences of 40 different signs are performed by one subject in five-sign phrases. We

compute 16 features from the two hand blobs, including the position, the velocity, the

size, the length and the angle of the first eigenvector, and the eccentricity of bounding

ellipse from a color-based hand tracker. We choose the same 400 sentences for training and

100 sentences for testing as the original researchers [93]. We use four-state HMMs, shown

in Figure 10(a), for recognition. The second continuous recognition experiment uses the

“Acceleglove” [102], which has two-axis accelerometers mounted on a glove, an elbow, and

a shoulder providing 17 features, such as wrist rotation and hand movement [102]. This

dataset contains 665 sentences with 141 different signs. We use three-state HMMs, shown

in Figure 10(b), on this dataset with ten-fold cross-validation. The experimental results are

listed in Table 18. Despite the high accuracy of the original HMM baselines, SBHMMs are

able to reduce the error rate by about 20% on both datasets, with or without postprocessing

by grammar, as shown in Table 18.

To prove that SBHMMs actually select the right features, we manually examined the

selected features of the Acceleglove dataset. The meanings of the 17 features, including 15

1Both datasets are available at http://wiki.cc.gatech.edu/ccg/projects/asl/asl.
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(a) (b)

Figure 10: (a) HMM used in vision-based ASLR. It contains four states, with one “skip”
link (b) HMM used in Acceleglove-based ASLR. It contains three states, with one “skip”
link.

accelerometers (the first 15) and two potentiometers (the last two) are listed in Table 17. We

found that SBHMMs corrected three instances of misclassification made by HMMs on the

minimal pair BROTHER and SISTER.2 The signs BROTHER and SISTER are illustrated

in Figure 11. The only difference between the two signs is the initial location of the hand,

which should relate to the readings by the accelerometers on the shoulder. Indeed, the

feature weight computed by the SBHMMs in Figures 12(a) and (c) shows that the readings

of the accelerometers on the shoulder are considered moderately important when we use all

141 different signs for training.

To show the impact of the minimal pairs in feature weighting, we also conducted training

using only the samples of BROTHER and SISTER, and then using all the signs including

SISTER but excluding BROTHER. The feature weights are plotted in Figure 12(b), (d),

and (e). Note that the red dots are the weight assigned to the first state. We can see that

when using only the minimal pair of BROTHER and SISTER to train, the weight of the

shoulder accelerometers at the beginning (first state) is significantly higher in Figure 12(b)

and (d), which illustrate the power of segmental feature selection. In addition, when training

with the 140 types of signs without BROTHER, the weight of the shoulder accelerometer for

SISTER is reduced in Figure 12(e) because of the relaxed competition in classification. Note

that other signs that need the reading of the accelerometers on the shoulder to discriminate

may still exist. Therefore, their weights do not necessarily vanish 3.

2The minimal pair is defined in Appendix A. In proper ASL, BROTHER ans SISTER are disambiguated
by both the starting position and the initial handshape. However, in this dataset, collected previously using
a non-native signer, the signing of the two are effectively minimal pairs with the only difference being the
starting position.

3Some change in the weight of irrelevant features can be a result of overfitting because SISTER and
BROTHER share sign parts (inseparable states), as explained in Chapter 4 and Section 6.5.
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Table 17: The meaning of the 17 accelerometer readings
feature index meaning

1 and 2 thumb outside
3 and 4 thumb top (on thumbnail)
5 and 6 index finger
7 and 8 middle finger
9 and 10 ring finger
11 and 12 little finger

13 wrist perpendicular to bones
14 wrist parallel to fingers
15 wrist perpendicular to palm
16 shoulder elevation (forward)
17 shoulder (outward)

(a) (b) (c) (d)

Figure 11: Illustration of the formation of the minimal pair BROTHER and SISTER.
(a)(b) BROTHER and (c)(d) SISTER.

In summary, the validation on ASLR data shows that SBHMMs assign heavy weights

on features such as shoulder elevation, which is considered meaningful by our sign language

expert, Dr. Harley Hamilton.

6.3 Human Gait Identification Results

We compare SBHMMs with the human gait recognition results previously reported by Kim

and Pavlovic [47]. In their paper, the performance of several established discriminative

training methods for mixtures of Bayesian network classifiers such as conditional maximum

Table 18: Comparison of the test error on vision-based ASLR (top) and accelerometer-
based ASLR (bottom)

With grammar Without grammar
error HMM SBHMM reduction HMM SBHMM reduction
vision 2.2% 1.4% 36.4% 3.2% 2.0% 37.5%
accel. 2.2% 1.8% 17.1% 4.9% 3.8% 22.4%
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(a) (c)

(b) (d)

(e)

Figure 12: The impact of minimal pairs in feature weighting obtained by the SBHMMs.
(a) and (b): the feature weighting for the signs SISTER and BROTHER, trained with
all the classes; (c) and (d): the feature weighting for the signs SISTER and BROTHER,
trained with only those two signs; (e): the feature weighting for the sign SISTER, trained
with all the classes except BROTHER.
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Table 19: Comparison of the test error on Georgia Tech speed-control gait dataset. The
first five rows are directly from Kim and Pavlovic [47]

Approach Error
1-NN DTW 8.38±3.68%

HMM 11.50±4.78%
BML [39] 10.13±3.61%

MixCML [47] 4.00±3.48%
BoostML [74] 11.87±5.11%
BHMM [110] 5.93±6.64%

SBHMM 3.44±1.43%

likelihood (CML) are evaluated using the gait data [96]. This dataset4 consists of nine

trials of 15 subjects walking at four different speeds. The data record the 3D position

of 22 markers on the subject at 120Hz. Following the authors’ convention exactly, we

obtain 180 sub-sequences for the five subjects at various speeds. These sequences are then

truncated to sub-sequences of length around 80. Each sequence contains six dimensional

feature vector describing the joint angle of torso-femur, femur-tibia, and tibia-foot. We

randomly choose 100 sequences for training and the other 80 for testing. We execute such

random training/testing splits ten times and report the average test error in Table 19, in

which three-state HMMs with a single Gaussian are used to identify the subjects. This

table shows that the SBHMM outperforms all the other six algorithms, and the reduction

in the mean test error ranges from 14% (MixCML [47]) to 70% (HMM). The variance of

the error with SBHMMs is also relatively low compared to the other methods.

6.4 Audio and Visual Speech Recognition Results

We also test our SBHMM algorithm on the Georgia Tech Speech Reading (GTSR) dataset [110]

with two tasks: lip reading [76] (visual feature only) and speech recognition (acoustic feature

only)5. The visual features are 18 infrared trackers around the lip. Their three-dimensional

positions are recorded at 120Hz. The audio features are the first 13 orders of MFCCs [80] and

their derivatives, computed from a 10ms sliding window at 120Hz from a 16kHz sound track.

The ground truth segmentation is obtained by forced alignment using CMU Sphinx [53].

4The dataset is available at ftp://ftp.cc.gatech.edu/pub/gvu/cpl/walkers/speed_control_data/.
5The dataset is available at http://www.cc.gatech.edu/cpl/projects/speechreading/index.html.
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Table 20: Georgia Tech Speech Reading Database
Total Length 30m45s Sampling Rate 120Hz
Training Data 24m42s Testing Data 06m03s
Total Sentences 275 Total Phones 8468
Total Phonemes 39 Total Samples >200,000

Table 21: Comparison of the test error on visual lip reading (top) and acoustic speech
recognition (bottom).

HMM BHMM [110] SBHMM AdaBoost
Visual 50.36±1.16% 42.56±1.11% 34.16±1.85% 60.18±0.00%
Acoustic 32.30±2.06% 26.54±0.83% 19.65±1.00% 39.69±0.00%

Since the goal is to illustrate automatic feature selection on the baseline HMM, we did

not perform elaborate preprocessing steps as most state-of-the-art speech recognizers do.

The dataset is described by Table 20. Both visual and acoustic recognition systems are

implemented using three-state HMMs with diagonal Gaussians mixtures. Note that the

visual phonemes (visemes) are defined the same as the acoustic phonemes, and the reported

test errors are averaged from five runs. SBHMMs reduce the test error by 30% compared

to HMMs in Table 21. Tables 19 and 21 also illustrate that, by assuming piecewise i.i.d.

instead of i.i.d. for the entire sequence, the SBHMM has higher accuracy than the boosted

HMM (BHMM) [110], which selects features using (x = ot, y = c). The “AdaBoost” re-

sults in Table 21 selects feature using (x = ot, y = c) without temporal smoothing through

HMMs.

Table 22: The two highest generalized Rayleigh quotients
wTSBw
wTSWw

HMM SBHMM

generalized eigenvalue 1 1.9004 10.0361
generalized eigenvalue 2 0.8140 1.8098

Table 23: Average likelihood ratio of the correct over maximal incorrect HMM decoding
HMM SBHMM

Ratio 0.87 1.16

We further validate our approach by comparing SBHMMs with traditional HMMs on

the GTSR dataset based on four criteria as follows:
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Figure 13: Sample distribution of viseme /EY/ and /N/ in the feature space of the
standard HMM (left) and in the feature space computed by the SBHMMs, both then re-
projected to the most discriminatory 2D space by FLDA.

Table 24: Average variance of the diagonal Gaussians of the HMM
HMM SBHMM

Avrg Var 0.2573 0.0136

• Class Separability

We compute the generalized Rayleigh quotient, which is the ratio of the interclass

variance to the intraclass variance, illustrated in Table 22. The higher generalized

eigenvalue of the quotient reflects the better separability of the data. SBHMMs man-

age to obtain a generalized first eigenvalue an order of magnitude higher than tradi-

tional HMMs, which illustrates the effectiveness of the discriminative feature space.

As a qualitative study, we also randomly picked two viseme (the visual phoneme [14])

classes /EY/ and /N/ and plot their sample distribution in the feature space of HMMs

and SBHMMs (re-projected to two dimensions using FLDA). As can be seen, the class

separability is improved by segmental feature selection and the non-linear projection.

• Model Discrimination

In Equation 2 in Chapter 3, the model distance is the average likelihood ratio of

the correct label to the incorrect label, which is usually differentiable and conve-

nient for optimization. In the classification stage, the label is actually determined by

Equation 1 in Chapter 3. Therefore, a high likelihood ratio of P (Oc|λc)
maxv 6=c P (Oc|λv) (dis-

criminative power) is desirable. Table 23 shows that the average “correct:incorrect”
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likelihood ratio for the standard HMMs in the GTSR data is lower than 1.0, but

this ratio is remarkably improved by the SBHMMs. We are able to achieve better

model discrimination, that is, to make more confident and accurate predictions, after

segmental discriminative feature selection.

• Model Precision

For statistical reasons (e.g., maximum entropy) and technical convenience, the Gaus-

sian observation model is widely used for HMMs. In practice, the unknown underlying

data distribution may or may not be Gaussian. Therefore, the mixture of the Gaus-

sian (MoG) model is introduced to compensate for the discrepancy. However, the

number of Gaussians in the mixture model is yet another parameter to be tuned.

If each feature is normalized within a range of [−1, 1], we consider the width of the

Gaussians as an indicator of the modeling precision: a wide Gaussian indicates that

the samples are sparsely distributed and that such a high variance may result from

inaccurate modeling (of using one Gaussian), while a narrow Gaussian indicates that

the samples are compactly distributed around the mean, and produces a “thin” enclo-

sure of HMM sample points. We obviously prefer a “thin” enclosure to “fat” ones for

classification. Table 24 shows that the diagonal covariance of the SBHMMs is much

lower than that of the HMMs, thanks to the discriminative feature space by segmental

feature selection.

• Model Fitness

We apply statistical tests to show that segmental feature selection for HMM increases

the “Gaussianness” of the data in the discriminative feature space, which in turn

improves the quality of the learned Gaussian observation model. It also sheds some

light on the improvement of the model precision mentioned above.

No convenient statistical procedures are available to test a multidimensional Gaus-

sian assumption, but all marginal distributions have to be univariate Gaussian if the

joint distribution is a multivariate Gaussian. Therefore, we test the Gaussianness
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of the marginal distribution (along each feature dimension) using the normal prob-

ability plot, the skewness measure, the unbiased kurtosis measure, z-tests, and the

Kolmogorov-Smirnov test. (Mathematical definitions and details are in Appendix B.)

The normal probability plot qualitatively illustrates how the real data distribution

differs from the ideal Gaussian in the accumulated distribution. The dashed straight

line in Figures 14(a)-(b) is the accumulated distribution of an ideal Gaussian. If the

real data are from a distribution similar to an ideal Gaussian, the “dots” are expected

to remain close to the line. Figure 14(a) indicate that the marginal distribution of the

original data has a big tail, which is quite different from the Gaussian distribution; the

sample distribution produced by the nonlinear projection of SBHMMs in Figure 14(b)

is much closer to a Gaussian distribution.

For the four quantitative statistical tests, a true Gaussian distribution will have a

score of 0; and the lower the score, the closer the distribution to a true Gaussian.

Figure 14(c) compares the statistical test results averaged6 over all the dimensions

of all the viseme classes, and Figure 14(d) compares the maximum value of a single

dimension (the “worst dimension”) of the sample distribution of HMMs and SBHMMs.

It again validates the choice of using the output space of segmental boosting as the

new feature space.

6.5 Results with Discriminative State-Space Clustering

This section presents results on DISC. We first validate DISC using the accelerometer-

based ASLR dataset [61]. We choose this dataset because its 665 sentences contain 141

signs, allowing more opportunities for state-tying than the vision-based dataset of 40 signs.

Without state-space clustering, three-state SBHMMs create a 3*141=423 set of features. We

expect DISC to find a more parsimonious model representation that results in comparable

accuracy.

6When we compute this average, the positive and negative values will cancel each other out. To avoid
cancellation, we take the sum of the absolute values. Since the sign of the kurtosis matters, we examine the
sign of the individual dimensions of the kurtosis test, most of which are positive (leptokurtic).
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Figure 14: Statistical measurements

Table 25 shows the top ten confusable state-pairs in one run of the ten-fold validation

and the SBHMMs reported in Section 6.2. The rightmost column of Table 25 illustrates

the meaning or reason of the top ten confusable state-pairs, which are also candidates for

sub-sign units in our approach, to be merged. For example, WIFE/HUSBAND is composed

of FEMALE/MALE, a transitional move, and MARRIAGE respectively. DISC successfully

identified the shared state of MARRIAGE. Another example is APOLOGIZE, which con-

tains a repetitive movement of hand cycling in front of the chest. DISC suggested that such

repetitive states can be merged and thus reduced the 3-state HMM of APOLOGIZE to a

2-state HMM. After tying the top ten confusable state-pairs and re-training the SBHMMs

with less states, we achieved the recognition results by the same ten-fold cross-validation

data shown in Table 26. DISC-SBHMMs reduce the error of HMMs by 29%, and reduce

the error of SBHMMs by 13%. In this study, DISC-SBHMMs, which have a more compact
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Table 25: Top ten confusable states computed by SBHMMs on the third fold of the
accelerometer-based ASLR dataset
Rank Sign Name State Number Sign Name State Number Semantic Reason

01 DAUGHTER 3 SON 3 BABY
02 WIFE 3 HUSBAND 3 MARRIAGE
03 MORNING 1 THING 1 stretching arm
04 APOLOGIZE 1 APOLOGIZE 2 repetitive pattern
05 WATER 1 WINE 1 W
06 ROOSTER 1 ROOSTER 2 repetitive pattern
07 TOILET 1 TOILET 2 repetitive pattern
08 SICK 1 SMART 2 folding middle finger
09 SUSPECT 2 PUZZLE 2 touch forehead
10 USE 1 USE 2 repetitive pattern

model, achieve comparable accuracies with SBHMMs; we believe that the reduction of error

is achieved by less overfitting in SBHMMs after state tying.

Table 26: Results of DISC-SBHMMs. Comparison of the test error on the accelerometer-
based ASLR dataset based on ten-fold cross-validation.

HMMs SBHMMs DISC-SBHMMs
4.85±1.78% 3.83±1.24% 3.29±1.13%

Further investigating the impact on recognition accuracy by SBHMMs and DISC-SBHMMs,

Table 27 lists paired t-tests (mathematical definition and details in Appendix B) on the ten-

fold Acceleglove-ASLR data. All comparisons are statistically significant. In other words,

DISC-SBHMMs and SBHMMs consistently improve traditional HMM result in the tests.

Table 27: Paired t-test results of testing error using HMMs, SBHMMs, and DISC-
SBHMMs on the accelerometer-based ASLR dataset based on ten-fold cross-validation.

SBHMMs DISC-SBHMMs DISC-SBHMMs
versus HMMs versus HMMs versus SBHMMs

t-value 2.67 3.44 2.06
one-sided p-value 1.29 ∗ 10−2 3.69 ∗ 10−3 3.46 ∗ 10−2

In order to test the consistency of DISC-SBHMMs, we manually examined the ten most

confusable pairs for each of the ten folds in cross-validation. These 100 most confusing state

pairs reported by DISC-SBHMMs contains 35 distinct pairs: 20 state pairs are reported

once and the other 15 state pairs are discovered by more than one fold (80 pairs). On the

one hand, the high overlap in most confusing pairs reported by different folds illustrates
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Table 28: Top six confusable state clusters (from top ten pairs) computed by SBHMMs
for one subject of the CopyCat dataset.

Rank Sign Names and State Numbers Semantic Reason
01 SNAKE state 1 and WHITE state 1 hand position
02 ORANGE state 2 and ORANGE state 3 repetitive pattern

03
SNAKE state 2, WHITE state 2,

hand position
FLOWERS state 1, and FLOWERS state 4

04 BLUE state 1, BLUE state 3, and BLUE state 4 repetitive pattern
05 BOX state 3, BOX state 4, and CHAIR state 4 hand location
06 WALL state 1, WALL state 2, and WALL state 3 repetitive pattern

that the tied states are not obtained by chance. It proves that a consistent tying can be

inferred from data automatically. On the other hand, the other distinct pairs suggests

that more interesting patterns may be extracted with more data. From these results, we

believe that DISC-SBHMMs can extract a meaningful set of sub-sign units, which provide

a parsimonious and discriminative representation for ASLR.

Then, we run DISC on the CopyCat dataset which consists of multiple children signing

three-, four-, and five-sign phrases. Due to the high signing variations compared to the

features and samples available, a direct application of the DISC algorithm produces much

noise, although DISC is still able to identify and tie states of the only minimal pair BLUE

and GREEN in the data. In order to reduce the variations among different children, we

picked the subject with the clearest sign and applied DISC to her signing only. Although

noise, such as matching of transitional moves and misalignments, still exists, DISC on one

subject produces some meaningful tying results, listed in Table 28.

6.6 Probes

ASL verification requires a rejection threshold for the similarity measurement (the likelihood

in our application). Usually, a rejection threshold is empirically optimized using a hold-out

validation set, then any sign that has lower likelihood in testing will be rejected (as is the

input phrase containing it). In this experiment, we compare the rejection threshold com-

puted manually using exhaustive search and the proposed automatic probe method. In one

implementation, we set the probe threshold in the following way: we first train the standard
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HMM model and then compute the likelihood of the forced alignment of the temporally re-

versed input sequences to the groundtruth scripts. For example, if the original signing is

ALLIGATOR ON WALL described by frame sequence F =< f1, f2, . . . , fT−1, fT > in time

T , we compute the likelihood for F ′ =< fT , fT−1, . . . , f2, f1 >.7 F ′ is a “garbage” input for

the trained model, and the likelihood of L(ALLIGATOR, F ′ROTAGILLA), L(ON, F ′NO),

and L(WALL, F ′LLAW) will be used as the threshold to reject incorrect signing. We choose

the temporally reversed input as a probe for many reasons: it is convenient to acquire,

simple to compare (the same length as the true input), and reasonably similar to the true

input (a reversed sequence still contains some form of structure, compared to a completely

random sequence). In addition, the reversed input can easily adapt to the global parameters

of a particular child (head/hand default position), and it has the same means/distributions

of movements and location features.

Tables 29 and 30 compare the verification results in CopyCat using a manual exhaustive

search of the optimal rejection threshold (tied for all signs) and automatic computation by

the probe; Figures 15 and 16 summarize the same results by a receiver operating charac-

teristic (ROC) curve. In the ROC curve, good results should be as close to the top left

corner (100% true positives and 0% false positives) as possible. The automatic computed

probe achieves results comparable to the best results by a brute force search in CopyCat. In

CopyCat-Adult, the automatic threshold adapatation by a probe at the sign level actually

achieves slightly superior performance over the manual search. Note that the methodology

of our comparison here actually favors manual search, which actually does not have the

access to a ROC curve that is computed using the test data. In practice, an “optimal”

threshold in the ROC curve from a separate validation set may be sub-optimal for the test

set, and thus yields even inferior performance than reported here. In contrast, the probe

does not need a separate validation set, so the probe results in this dissertation are the

“true” performance.

7Due to disfluencies in the signing, the input sequences are actually used in a backward order. ALLIGA-
TOR ON WALL will be LLAW NO ROTAGILLA. We adopted this convention in our training and testing:
that is, we actually compute the probe using forward input on models trained with backward data. In this
dissertation, however, we still present the sequences in forward order to simplify the discussion.
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Because verification is rather a subjective task (e.g., whether a sloppy signing should

be considered match or no-match), the criterion for human eyes and machines can be quite

different. Generally speaking, the performance of the automatic verifier, even with probe, is

still less accurate than the human verifier we have. The main problem is high false positives.

One may use a more strict rejection threshold, but it will cost more in false negatives in

the current system. After carefully examining the failed cases of the probe method, we

found that some error made by the probe method is due to the simple experimental setup:

certain signs, such as ALLIGATOR, are composed by repetitive movements over time, so

the temporally-reversed inputs look very similar to the original inputs and thus create false

negatives. This problem can be fixed by alternative designs described next.

The currently used probe is tailored to the needs of the CopyCat game with an as-

sumption that false positives and false negatives are weighted equally. Other applications

may weigh these two errors differently. For example, false positives are undesired in an

educational verification task, such as CopyCat. Therefore, we can use minimal pairs as the

probe input. For example, when the verifier expects MOTHER NEED BLUE PAPER, the

probe can be FATHER MUST GREEN CHEESE, because (MOTHER, FATHER), (NEED,

MUST), (BLUE, GREEN), and (PAPER, CHEESE) are all minimal pairs. The user that

is signing will need to be very precise to be accepted as correct. In contrast, false nega-

tives are rather annoying in an entertainment game that requires user engagement, such

as CopyCat. We can use fully random input as the probe, which represents a very loose

threshold. Moreover, when a sign exists in multiple phrases, the reject thresholds can be

tied to the minimum value to emphasize recall rate (reducing false negatives).

6.7 Phrase Selection

This experiment compares different error ranking prediction methods. Denote the groundtruth

error ranking of testing phrases, which is unreachable in the real world as GTH, a randomly-

generated ranking prediction that serves as a control group as RAN, the ranking of training

phrases, which is arguably “the best you can do” as TAT, and finally the proposed bigram

ranking predictor as BIG. We measure the average Spearman footrule distance aDL1 of
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Table 29: CopyCat verification results with manually specified thresholds and the auto-
matically computed threshold by the probe

Threshold True Positive rate (%) False Positive Rate (%) Accuracy (%)
-120 72.0 32.1 70.5
-160 83.7 59.7 76.6
-200 91.7 60.5 76.4
-240 98.0 73.4 77.1
-320 98.0 73.4 77.1
-400 99.3 83.1 75.2
−∞ 100 100 71.4

Probe 98.4 73.6 77.1

Figure 15: ROC curve of the verification results in CopyCat.

Table 30: CopyCat-Adult verification results with manually specified thresholds and the
automatically computed threshold by the probe

Threshold True Positive rate (%) False Positive Rate (%) Accuracy (%)
-100 75.8 9.1 80.4
-110 91.9 13.6 90.2
-120 95.0 22.7 89.5
-160 97.0 38.6 86.0
-200 98.0 63.6 79.0
-240 98.0 81.8 73.4
−∞ 100 100 69.2

Probe 97.0 15.9 93.0
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Figure 16: ROC curve of the verification results in CopyCat-Adult.

these rankings using the CopyCat data and the CopyCat-Adult data, the goal of which is

to be as close to GTH as possible.

We computed the training and testing errors of the CopyCat data and the CopyCat-

Adult data, ranking the phrases by their error rates in Tables 31, 33, 32, and 34, respectively.

These tables are the actual TAT (training) and GTH (testing) results. From the experi-

mental results summarized in Tables 35, 36, Figures 17, and 18,8 we are able to draw the

following conclusions:9

1. BIG and TAT predictions are significantly better than RAN with a confidence greater

than 98%.

2. BIG and TAT results are comparable with each other.

3. BIG uses significantly fewer resources for prediction than TAT.

These conclusions are also supported by normalized Kendall tau distance [45] and Pear-

son product-moment correlation coefficient (PMCC) [101], listed in Tables 37 and 38. A

“good” ranking algorithm should produce a normalized Kendall tau distance close to zero

and a PMCC close to one.

8We compute the expectation of aDL1(RAN, GTH), which has a close form solution, analytically, but
we estimate the standard deviation, which is very difficult to compute, by one million simulations.

9Please refer to Appendix B for a brief explanation of hypothesis testing.
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Table 31: The training error ranking of the CopyCat data
Phrase Error Rate (%) Error Rank
SNAKE BEHIND WALL 0 1
SNAKE UNDER CHAIR 14.29 2
SNAKE ON BOX 22.22 3
ALLIGATOR BEHIND WALL 33.33 4
SPIDER UNDER WAGON 33.33 4
SPIDER ON WALL 40.00 6
SPIDER UNDER BED 40.00 6
SNAKE IN FLOWERS 40.00 6
WHITE CAT ON ORANGE WALL 42.86 9
ALLIGATOR UNDER GREEN BED 42.86 9
ALLIGATOR BEHIND CHAIR 50.00 11
CAT UNDER CHAIR 50.00 11
ALLIGATOR ON BED 50.00 11
CAT ON WALL 50.00 11
ALLIGATOR ON BLUE WALL 50.00 11
ALLIGATOR IN WAGON 50.00 11
BLACK ALLIGATOR BEHIND ORANGE WAGON 50.00 11
BLACK CAT ON GREEN BED 53.85 18
GREEN SPIDER UNDER ORANGE CHAIR 58.33 19
SPIDER ON CHAIR 60.00 20
ALLIGATOR BEHIND BLACK WALL 60.00 20
WHITE CAT IN GREEN BOX 60.00 20
SNAKE UNDER BLACK CHAIR 60.00 20
SNAKE IN GREEN WAGON 60.00 20
ORANGE SPIDER UNDER GREEN FLOWERS 61.54 25
BLACK CAT IN BLUE WAGON 61.54 25
SPIDER UNDER BLUE CHAIR 62.50 27
WHITE ALLIGATOR ON BLUE WALL 63.63 28
SPIDER IN BOX 66.67 29
CAT BEHIND BOX 66.67 29
CAT BEHIND BED 66.67 29
CAT BEHIND ORANGE BED 66.67 29
SPIDER IN ORANGE FLOWERS 66.67 29
ALLIGATOR IN ORANGE FLOWERS 66.67 29
SNAKE UNDER BLUE CHAIR 66.67 29
BLACK SNAKE UNDER BLUE CHAIR 66.67 29
SNAKE UNDER BLUE FLOWERS 66.67 29
ORANGE SPIDER IN GREEN BOX 66.67 29
BLACK CAT BEHIND GREEN BED 66.67 29
SPIDER ON WHITE WALL 70.00 40
ALLIGATOR IN BOX 71.43 41
ORANGE ALLIGATOR IN GREEN FLOWERS 71.43 41
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Table 31 continued.
Phrase Error Rate (%) Error Rank
ALLIGATOR BEHIND BLUE WAGON 75.00 43
BLUE ALLIGATOR ON GREEN WALL 75.00 43
SNAKE UNDER BED 77.78 45
BLACK SPIDER IN WHITE FLOWERS 77.78 45
WHITE SNAKE IN BLUE FLOWERS 80.00 47
CAT UNDER ORANGE CHAIR 80.00 47
GREEN ALLIGATOR UNDER BLUE FLOWERS 80.00 47
CAT ON GREEN WALL 80.00 47
CAT UNDER BLUE BED 83.33 51
GREEN SNAKE UNDER BLUE CHAIR 85.00 52
ORANGE SNAKE UNDER BLUE FLOWERS 85.71 53
BLUE SPIDER ON GREEN BOX 85.71 53
ALLIGATOR BEHIND ORANGE WAGON 87.50 55
CAT BEHIND FLOWERS 100.00 56
SPIDER IN BLUE BOX 100.00 56
SPIDER IN GREEN BOX 100.00 56
CAT ON BLUE BED 100.00 56

Table 32: The training error ranking of the CopyCat-Adult data
Phrase Error Rate (%) Error Rank
SNAKE BEHIND WALL 0.00 1
SPIDER ON WALL 0.00 1
CAT ON WALL 0.00 1
SNAKE UNDER CHAIR 0.00 1
ALLIGATOR BEHIND CHAIR 0.00 1
CAT UNDER CHAIR 0.00 1
SPIDER IN BOX 0.00 1
SNAKE ON BOX 0.00 1
CAT BEHIND BED 0.00 1
ALLIGATOR ON BED 0.00 1
SNAKE UNDER BED 0.00 1
SPIDER UNDER BED 0.00 1
ALLIGATOR IN WAGON 0.00 1
SPIDER UNDER WAGON 0.00 1
SPIDER IN ORANGE FLOWERS 0.00 1
CAT ON GREEN WALL 0.00 1
ALLIGATOR UNDER GREEN BED 0.00 1
ALLIGATOR IN ORANGE FLOWERS 0.00 1
CAT BEHIND ORANGE BED 0.00 1
CAT UNDER ORANGE CHAIR 0.00 1

68



Table 32 continued.
Phrase Error Rate (%) Error Rank
SNAKE UNDER BLUE CHAIR 0.00 1
SPIDER ON CHAIR 0.00 1
SNAKE IN FLOWERS 0.00 1
SPIDER IN BLUE BOX 0.00 1
WHITE CAT IN GREEN BOX 0.00 1
BLACK ALLIGATOR BEHIND ORANGE WAGON 7.69 26
ORANGE ALLIGATOR IN GREEN FLOWERS 9.09 27
BLACK CAT ON GREEN BED 10.00 28
BLACK SNAKE UNDER BLUE CHAIR 12.50 29
WHITE CAT ON ORANGE WALL 15.00 30
ALLIGATOR IN BOX 16.67 31
BLACK SPIDER IN WHITE FLOWERS 16.67 31
BLACK CAT BEHIND GREEN BED 19.05 33
ORANGE SPIDER IN GREEN BOX 20.00 34
ALLIGATOR ON BLUE WALL 20.00 34
ALLIGATOR BEHIND ORANGE WAGON 25.00 36
SPIDER UNDER BLUE CHAIR 28.57 37
GREEN SPIDER UNDER ORANGE CHAIR 29.41 38
SNAKE IN GREEN WAGON 30.00 39
SPIDER IN GREEN BOX 33.33 40
ALLIGATOR BEHIND BLACK WALL 33.33 40
BLACK CAT IN BLUE WAGON 40.00 42
SPIDER ON WHITE WALL 40.00 42
GREEN ALLIGATOR UNDER BLUE FLOWERS 42.86 44
GREEN SNAKE UNDER BLUE CHAIR 43.48 45
ORANGE SNAKE UNDER BLUE FLOWERS 44.44 47
ALLIGATOR BEHIND WALL 50.00 48
CAT BEHIND BOX 50.00 48
CAT BEHIND FLOWERS 50.00 48
ALLIGATOR BEHIND BLUE WAGON 50.00 48
SNAKE UNDER BLUE FLOWERS 50.00 48
WHITE ALLIGATOR ON BLUE WALL 50.00 48
WHITE SNAKE IN BLUE FLOWERS 55.56 54
ORANGE SPIDER UNDER GREEN FLOWERS 55.56 54
BLUE SPIDER ON GREEN BOX 66.67 56
SNAKE UNDER BLACK CHAIR 80.00 57
BLUE ALLIGATOR ON GREEN WALL 81.82 58
CAT ON BLUE BED 100.00 59
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Table 33: The true error ranking of the CopyCat data
Phrase Error Rate (%) Error Rank
SNAKE UNDER CHAIR 0.00 1
ALLIGATOR BEHIND WALL 0.00 1
SPIDER UNDER WAGON 0.00 1
ALLIGATOR BEHIND CHAIR 0.00 1
CAT UNDER CHAIR 0.00 1
ALLIGATOR ON BED 0.00 1
CAT ON WALL 0.00 1
ALLIGATOR ON BLUE WALL 0.00 1
SPIDER ON CHAIR 0.00 1
SPIDER IN BOX 0.00 1
SPIDER ON WHITE WALL 0.00 1
ALLIGATOR BEHIND BLUE WAGON 0.00 1
SNAKE UNDER BED 0.00 1
CAT UNDER BLUE BED 0.00 1
ORANGE SNAKE UNDER BLUE FLOWERS 0.00 1
CAT BEHIND FLOWERS 0.00 1
SPIDER ON WALL 33.33 17
SPIDER UNDER BED 33.33 17
CAT BEHIND BOX 33.33 17
CAT BEHIND BED 33.33 17
CAT BEHIND ORANGE BED 33.33 17
ALLIGATOR IN BOX 33.33 17
WHITE CAT ON ORANGE WALL 36.36 23
SNAKE ON BOX 50.00 24
ALLIGATOR IN WAGON 50.00 24
ALLIGATOR BEHIND BLACK WALL 50.00 24
WHITE ALLIGATOR ON BLUE WALL 50.00 24
SPIDER IN ORANGE FLOWERS 50.00 24
ALLIGATOR IN ORANGE FLOWERS 60.00 29
SNAKE BEHIND WALL 66.67 30
BLACK ALLIGATOR BEHIND ORANGE WAGON 66.67 30
SNAKE UNDER BLUE CHAIR 66.67 30
GREEN SPIDER UNDER ORANGE CHAIR 75.00 33
WHITE SNAKE IN BLUE FLOWERS 75.00 33
GREEN SNAKE UNDER BLUE CHAIR 78.95 35
BLACK SPIDER IN WHITE FLOWERS 80.00 36
CAT UNDER ORANGE CHAIR 80.00 36
BLACK SNAKE UNDER BLUE CHAIR 83.33 38
GREEN ALLIGATOR UNDER BLUE FLOWERS 85.71 39
BLACK CAT ON GREEN BED 90.91 40
ORANGE ALLIGATOR IN GREEN FLOWERS 90.91 40
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Table 33 continued.
Phrase Error Rate (%) Error Rank
WHITE CAT IN GREEN BOX 91.67 42
SNAKE IN FLOWERS 100.00 43
ALLIGATOR UNDER GREEN BED 100.00 43
SNAKE UNDER BLACK CHAIR 100.00 43
SNAKE IN GREEN WAGON 100.00 43
ORANGE SPIDER UNDER GREEN FLOWERS 100.00 43
BLACK CAT IN BLUE WAGON 100.00 43
SPIDER UNDER BLUE CHAIR 100.00 43
SNAKE UNDER BLUE FLOWERS 100.00 43
ORANGE SPIDER IN GREEN BOX 100.00 43
BLACK CAT BEHIND GREEN BED 100.00 43
BLUE ALLIGATOR ON GREEN WALL 100.00 43
CAT ON GREEN WALL 100.00 43
BLUE SPIDER ON GREEN BOX 100.00 43
ALLIGATOR BEHIND ORANGE WAGON 100.00 43
SPIDER IN BLUE BOX 100.00 43
SPIDER IN GREEN BOX 100.00 43
CAT ON BLUE BED 100.00 43

Figure 17: Ranking approximation measured by Spearman footrule distance in the Copy-
Cat data.
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Table 34: The true error ranking of the CopyCat-Adult data
Phrase Error Rate (%) Error Rank
SNAKE BEHIND WALL 0.00 1
SPIDER ON WALL 0.00 1
CAT ON WALL 0.00 1
SNAKE UNDER CHAIR 0.00 1
ALLIGATOR BEHIND CHAIR 0.00 1
CAT UNDER CHAIR 0.00 1
SPIDER IN BOX 0.00 1
SNAKE ON BOX 0.00 1
CAT BEHIND BED 0.00 1
ALLIGATOR ON BED 0.00 1
SNAKE UNDER BED 0.00 1
SPIDER UNDER BED 0.00 1
ALLIGATOR IN WAGON 0.00 1
SPIDER UNDER WAGON 0.00 1
SPIDER IN ORANGE FLOWERS 0.00 1
CAT ON GREEN WALL 0.00 1
ALLIGATOR UNDER GREEN BED 0.00 1
ALLIGATOR IN ORANGE FLOWERS 0.00 1
CAT BEHIND ORANGE BED 0.00 1
CAT UNDER ORANGE CHAIR 0.00 1
BLACK ALLIGATOR BEHIND ORANGE WAGON 0.00 1
BLACK CAT ON GREEN BED 0.00 1
ALLIGATOR IN BOX 0.00 1
BLACK SPIDER IN WHITE FLOWERS 0.00 1
ORANGE SPIDER IN GREEN BOX 0.00 1
ALLIGATOR BEHIND ORANGE WAGON 0.00 1
SPIDER UNDER BLUE CHAIR 0.00 1
SNAKE IN GREEN WAGON 0.00 1
SPIDER IN GREEN BOX 0.00 1
ALLIGATOR BEHIND BLACK WALL 0.00 1
ORANGE SNAKE UNDER BLUE FLOWERS 0.00 1
ALLIGATOR BEHIND WALL 0.00 1
CAT BEHIND BOX 0.00 1
CAT BEHIND FLOWERS 0.00 1
ALLIGATOR BEHIND BLUE WAGON 0.00 1
SNAKE UNDER BLUE FLOWERS 0.00 1
CAT ON BLUE BED 0.00 1
BLACK SNAKE UNDER BLUE CHAIR 25 38
SNAKE UNDER BLUE CHAIR 33.33 39
WHITE CAT ON ORANGE WALL 33.33 39
GREEN SPIDER UNDER ORANGE CHAIR 33.33 39
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Table 34 continued.
Phrase Error Rate (%) Error Rank
GREEN SNAKE UNDER BLUE CHAIR 40.00 42
SPIDER ON CHAIR 50.00 43
SNAKE IN FLOWERS 50.00 43
SPIDER IN BLUE BOX 50.00 43
WHITE CAT IN GREEN BOX 50.00 43
ORANGE ALLIGATOR IN GREEN FLOWERS 50.00 43
BLACK CAT IN BLUE WAGON 50.00 43
WHITE ALLIGATOR ON BLUE WALL 50.00 43
GREEN ALLIGATOR UNDER BLUE FLOWERS 66.67 50
WHITE SNAKE IN BLUE FLOWERS 66.67 50
BLACK CAT BEHIND GREEN BED 75.00 52
BLUE ALLIGATOR ON GREEN WALL 75.00 52
ALLIGATOR ON BLUE WALL 100.00 54
SPIDER ON WHITE WALL 100.00 54
ORANGE SPIDER UNDER GREEN FLOWERS 100.00 54
BLUE SPIDER ON GREEN BOX 100.00 54
SNAKE UNDER BLACK CHAIR 100.00 54
CAT UNDER BLUE BED 100.00 54

Table 35: Spearman footrule distance computed from the CopyCat data.
aDL1(BIG,GTH) aDL1(TAT,GTH) µ(aDL1(RAN,GTH)) σ(aDL1(RAN,GTH))

17.0 16.6 19.8 1.57

Table 36: Spearman footrule distance computed from the CopyCat-Adult data.
aDL1(BIG,GTH) aDL1(TAT,GTH) µ(aDL1(RAN,GTH)) σ(aDL1(RAN,GTH))

12.3 11.7 18.6 1.98

Figure 18: Ranking approximation measured by Spearman footrule distance in the
CopyCat-Adult data.
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Table 37: Kendall tau distance and Pearson product-moment correlation coefficient com-
puted from the CopyCat data.

K(BIG,GTH) K(TAT,GTH) K(RAN,GTH) Ideal
0.202 0.194 0.413 0.000

ρ(BIG,GTH) ρ(TAT,GTH) ρ(RAN,GTH) Ideal
0.307 0.240 0.000 1.000

Table 38: Kendall tau distance and Pearson product-moment correlation coefficient com-
puted from the CopyCat-Adult data.

K(BIG,GTH) K(TAT,GTH) K(RAN,GTH) Ideal
0.412 0.326 0.440 0.000

ρ(BIG,GTH) ρ(TAT,GTH) ρ(RAN,GTH) Ideal
0.557 0.372 0.000 1.000

6.7.1 Discussion

The results in the previous section show that BIG is comparable to TAT. On the one

hand, even TAT, which requires exhaustive enumeration of all possible combination of

signs, is prohibitive to compute in real applications. Thus, this finding is very promising.

However, an ideal predictor should produce an average Spearman footrule distance of zero, a

normalized Kendall tau distance of zero, and a PMCC of one; currently the BIG predictor

is still far from satisfactory. Part of the reason is the discrepancy between training and

testing data. As we can see, even the TAT prediction is not close to accurate.

6.7.2 Bi-gram versus Uni-gram

This dissertation compares a uni-gram ranking predictor (UNG) with a bi-gram ranking

predictor (BIG) in Tables 39 and 40. Surprisingly, UNG accuracy is comparable to or even

slightly better than BIG in CopyCat and CopyCat-Adult data. After inspecting the data,

we found that this phenomenon can be mainly explained by the following two reasons.

First, the context-sensitive bi-gram model closely captures the pattern of the training

data, and thus is prone to the discrepancy in training and testing data. For example, the

worst BIG prediction in the CopyCat data is the phrase “CAT BEHIND FLOWERS.” BIG

predicts its rank at 58, TAT predicts its rank at 56, UNG predicts its rank at 20, while GTH

is at rank 1. The CopyCat dataset has a higher amount of noise, and thus the algorithm

can easily overfit the training data, which has been demonstrated by other experiments.

74



Table 39: Comparison of uni-gram versus bi-gram models using CopyCat data
aDL1(BIG,GTH) aDL1(UNG,GTH) aDL1(TAT,GTH) µ(aDL1(RAN,GTH))

17.0 13.7 16.7 19.8

Table 40: Comparison of uni-gram versus bi-gram models using CopyCat-Adult data
aDL1(BIG,GTH) aDL1(UNG,GTH) aDL1(TAT,GTH) µ(aDL1(RAN,GTH))

12.3 13.0 12.9 12.8

Therefore, the rather simple UNG model can achieve better results. In a cleaner dataset,

CopyCat-Adult, BIG works much better as shown in Table 40. The second reason is the

strict grammar in the game. All words except adjectives can appear in only one place in

any phrase. The restriction limits the contribution of the bi-gram estimation.

6.7.3 Suggesting New Phrases

Tables 42, 43, 44, 45, 46, and 47 list the suggested new phrases (including existing ones and

unseen ones) computed by BIG and Yen’s algorithm from CopyCat and CopyCat-Adult.

We set k = 59 to be consistent with that of the original CopyCat game. The quality of the

prediction requires further validation by designing and deploying a new version of the Copy-

Cat game. Currently, we estimate the quality of the prediction as follows. We conducted a

“leave-one-out” (L1O) test, which takes 58 out of the 59 phrases in the CopyCat training

data to train BIG and predict the ranking of the remaining one in the CopyCat testing data.

Compared with the experiment in Table 35, BIG in this test has no information about the

phrase whose ranking is to be predicted. Because the ranking of 11 phrases that contains

unique bi-gram segments that cannot be predicted in our leave-one-out test, we ran a 48-

fold (59-11) cross-validation on the CopyCat data. The average aDL1(BIG,GTH)L1O is

13.5 as shown in Table 41, which is lower than aDL1(BIG,GTH), aDL1(TAT,GTH), and

µ(aDL1(RAN,GTH)) in Table 35. Strictly speaking, aDL1(BIG,GTH)L1O is averaged

over 48 runs, so the number is not directly comparable to the numbers in Table 35. Nev-

ertheless, it qualitatively illustrates that BIG is able to achieve relatively accurate ranking

predictions for unseen phrases.

One additional observation is that the proposed algorithm trades signing variety for
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Table 41: Result of leave-one-out (L1O) test compared with others using CopyCat data
aDL1(BIG,GTH)L1O aDL1(BIG,GTH) aDL1(TAT,GTH) µ(aDL1(RAN,GTH))

13.5 17.0 16.7 19.8

Table 42: Twenty three-sign phrases for CopyCat suggested by this dissertation
Index Phrase Cost
1 CAT BEHIND BOX 58.84
2 CAT BEHIND WALL 67.56
3 CAT ON BOX 69.42
4 CAT IN BOX 73.44
5 CAT ON WALL 74.38
6 ALLIGATOR BEHIND BOX 137.00
7 CAT UNDER WAGON 139.13
8 ALLIGATOR BEHIND WALL 145.73
9 SNAKE BEHIND BOX 148.30
10 CAT IN WAGON 149.71
11 SPIDER ON BOX 149.95
12 CAT IN FLOWERS 153.58
13 SNAKE ON BOX 153.98
14 ALLIGATOR ON BOX 154.38
15 SPIDER ON WALL 154.91
16 CAT BEHIND CHAIR 156.67
17 SNAKE BEHIND WALL 157.02
18 CAT ON BED 158.11
19 ALLIGATOR IN BOX 159.83
20 SPIDER IN BOX 162.55

verification accuracy in suggesting phrases. However, should the game require more variety,

the game designer could either easily pick other phrases from the ranking by specifying

a larger k, or modify the Yen’s algorithm to skip certain sign combinations after k0 < k

paths have been generated. This flexibility allows a game designer to conveniently trade

verification accuracy with phrase variety in a scalable way.
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Table 43: Twenty four-sign phrases for CopyCat suggested by this dissertation
Index Phrase Cost
21 CAT UNDER BLUE BOX 75.69
22 CAT UNDER GREEN BOX 76.19
23 CAT BEHIND GREEN BOX 84.07
24 CAT UNDER BLUE WALL 84.36
25 CAT UNDER BLACK WALL 84.39
26 CAT IN GREEN BOX 86.38
27 CAT UNDER GREEN WALL 91.07
28 CAT IN BLUE BOX 91.46
29 CAT UNDER ORANGE WALL 94.66
30 CAT IN WHITE WALL 96.04
31 CAT ON BLUE BOX 97.89
32 CAT ON GREEN BOX 98.94
33 CAT BEHIND GREEN WALL 98.95
34 CAT IN BLUE WALL 100.13
35 CAT BEHIND ORANGE WALL 102.80
36 CAT ON WHITE WALL 105.23
37 CAT ON ORANGE WALL 107.60
38 CAT BEHIND BLUE BOX 110.28
39 CAT BEHIND BLACK WALL 110.86
40 CAT BEHIND BLUE WALL 118.95

Table 44: Nineteen five-sign phrases for CopyCat suggested by this dissertation
Index Phrase Cost
41 BLUE ALLIGATOR BEHIND GREEN BOX 97.32
42 BLUE ALLIGATOR UNDER GREEN BOX 105.91
43 BLUE ALLIGATOR IN GREEN BOX 107.86
44 BLUE ALLIGATOR BEHIND GREEN WALL 112.21
45 BLUE ALLIGATOR UNDER BLACK WALL 114.11
46 BLUE ALLIGATOR BEHIND ORANGE WALL 116.05
47 BLUE SPIDER IN GREEN BOX 116.28
48 BLUE SPIDER UNDER GREEN BOX 116.75
49 BLUE ALLIGATOR IN WHITE WALL 117.52
50 BLUE ALLIGATOR ON GREEN BOX 118.99
51 BLUE SPIDER ON GREEN BOX 120.26
52 BLUE ALLIGATOR UNDER GREEN WALL 120.79
53 BLUE ALLIGATOR BEHIND BLACK WALL 124.11
54 BLUE ALLIGATOR UNDER ORANGE WALL 124.38
55 BLUE SPIDER UNDER BLACK WALL 124.95
56 BLUE ALLIGATOR ON WHITE WALL 125.28
57 BLUE SPIDER IN WHITE WALL 125.94
58 BLUE SPIDER ON WHITE WALL 126.55
59 BLUE ALLIGATOR ON ORANGE WALL 127.65
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Table 45: Twenty three-sign phrases for CopyCat-Adult suggested by this dissertation
Index Phrase Cost
1 CAT ON BOX 68.10
2 CAT ON WALL 68.60
3 CAT BEHIND WALL 70.91
4 CAT BEHIND BOX 71.21
5 CAT IN BOX 89.09
6 CAT BEHIND BED 129.68
7 CAT BEHIND FLOWERS 130.18
8 SPIDER ON BOX 137.00
9 SPIDER ON WALL 137.51
10 SNAKE ON BOX 139.12
11 CAT BEHIND CHAIR 139.53
12 SNAKE ON WALL 139.62
13 CAT IN FLOWERS 141.25
14 SNAKE BEHIND WALL 145.18
15 SNAKE BEHIND BOX 145.49
16 ALLIGATOR BEHIND WALL 147.34
17 ALLIGATOR BEHIND BOX 147.65
18 CAT ON BED 148.25
19 CAT IN WAGON 148.93
20 ALLIGATOR ON BOX 151.08

Table 46: Twenty four-sign phrases for CopyCat-Adult suggested by this dissertation
Index Phrase Cost
21 CAT IN BLUE BOX 87.39
22 CAT UNDER BLUE BOX 88.13
23 CAT IN WHITE WALL 89.02
24 CAT ON BLUE BOX 91.19
25 CAT UNDER GREEN WALL 93.01
26 CAT BEHIND GREEN WALL 93.49
27 CAT IN GREEN WALL 93.63
28 CAT UNDER GREEN BOX 93.86
29 CAT BEHIND GREEN BOX 94.33
30 CAT BEHIND BLACK WALL 94.78
31 CAT IN ORANGE WALL 94.86
32 CAT IN BLUE WALL 97.71
33 CAT UNDER BLUE WALL 98.45
34 CAT ON GREEN WALL 101.97
35 CAT ON GREEN BOX 102.82
36 CAT UNDER ORANGE WALL 103.88
37 CAT BEHIND BLUE BOX 103.93
38 CAT ON WHITE WALL 105.85
39 CAT ON ORANGE WALL 106.37
40 CAT UNDER BLACK WALL 108.04
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Table 47: Nineteen five-sign phrases for CopyCat-Adult suggested by this dissertation
Index Phrase Cost
41 BLUE ALLIGATOR UNDER GREEN WALL 107.29
42 BLUE ALLIGATOR UNDER GREEN BOX 108.14
43 BLUE ALLIGATOR IN WHITE WALL 110.52
44 BLUE ALLIGATOR BEHIND GREEN WALL 112.10
45 BLUE ALLIGATOR BEHIND GREEN BOX 112.95
46 BLUE ALLIGATOR BEHIND BLACK WALL 113.39
47 BLUE ALLIGATOR IN GREEN WALL 115.13
48 BLUE ALLIGATOR IN GREEN BOX 115.98
49 BLUE ALLIGATOR IN ORANGE WALL 116.36
50 BLUE ALLIGATOR UNDER ORANGE WALL 118.16
51 BLUE ALLIGATOR UNDER BLACK WALL 122.32
52 BLUE SPIDER IN WHITE WALL 124.48
53 BLUE SPIDER UNDER GREEN WALL 124.66
54 BLUE SPIDER UNDER GREEN BOX 125.51
55 BLUE ALLIGATOR BEHIND ORANGE WALL 126.89
56 BLUE ALLIGATOR ON GREEN WALL 127.14
57 BLUE ALLIGATOR ON GREEN BOX 127.99
58 BLUE SPIDER IN GREEN WALL 129.09
59 BLUE SPIDER IN GREEN BOX 129.94
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CHAPTER VII

DISCUSSION AND FUTURE WORK

Discriminative algorithms are designed to optimize for differences in data. They are sensi-

tive to noise, especially label noise [109]. Furthermore, segmental labels (states), unavailable

in sequence classification, are inferred indirectly by some initial modeling of the training

data. For example, segments of data are assigned to each state of an HMM in an unsuper-

vised manner (EM) during training. The boundary of these segments can vary significantly

if the training data are noisy or indistinct. The variance of signing also reduces the reliabil-

ity of the initial estimation, which affects the accuracy of segmental discriminative analysis.

For CopyCat data used in this dissertation, we have identified a few major sources of vari-

ance/noise as follows:

• Multiple users, especially child users

• Hand-dominance, including mixed and switching hand-dominance

• Different familiarity with ASL and the game

• Inaccurate labeling from inaccurate segmentation of the sequence (partly caused by

the problems listed above)

Our SBHMMs showed significant improvement in accuracy over traditional HMMs and

other current technologies in several domains. However, SBHMMs had significantly lower

performance with the full set of CopyCat data. We believe this is mainly due to the

variance/noise in the data, because testing on one child and the cleaner CopyCat-Adult

data did show the trend of improvement. Further inspection also shows that the data cloud

of many classes are inseparable even to a human, which suggests future improvement by

including better input features and using a stronger dynamic model. More accurate labeling

and segmentation should further reduce data variance of the same user. In the future,
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we would like to promote user invariance through creating user independent features and

preprocessing data (e.g., maximum likelihood linear transformation, MLLT), so that the

discriminative analysis results can be more reliable for feature selection. We strongly believe

that including handshape information will greatly improve the results. As a first step, the

CopyCat team has computed several handshape features as shown in Figure 19 [113]. In

addition, we can introduce more tokens in training and recognition to address variance

between users as well as some disfluencies. Discriminative clustering methods, such as

DISC proposed in this dissertation, can reduce the requirement on training data as the

number of tokens increases. However, generally speaking, we still need to collect more data

in order to improve accuracy through these efforts.

Figure 19: The new handshape features (courtesy to Zahoor Zafrulla) for ALLIGA-
TOR(left) BEHIND(middle) WALL(right).

Generally speaking, signing features such as the length of arms of adult participants

differ from those of children. Because the CopyCat-Adult data are higher quality, we are

also investigating if we can introduce normalization to merge the CopyCat-Adult data with

the CopyCat data. Another way to address data variance is to collect more data. As the

amount of data grows, the impact of random noise starts to fade.

We have started deploying a trained automatic verifier to the real environment to replace

the human verifier. As the project CopyCat proceeds to the next stage, we would like to

evaluate the testing accuracy of some unseen phrases suggested by the proposed technique

using Yen’s algorithm and the BIG/UNG predictor(s). The idea of modifying of the Yen’s

algorithm to improve variety in Section 6.7.3 can be also validated.
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The CopyCat game contains a small vocabulary and very limited phrases, but we are

confident in extending the proposed discriminative segmental analysis techniques to more

complicated ASL recognition/verification applications with a larger vocabulary. First, dif-

ferent ASL verification tasks may have different “costs” for false positives and false neg-

atives. Instead of manually searching the “best” trade-off, the probe technique is able to

automatically provide a reasonable “initial guess” for parameter tuning. Second, segmen-

tal phrase analysis tools, such as BIG, are scalable with increasing vocabulary size. Third,

DISC-SBHMMs help model complexity stay tractable by tying redundant states. For exam-

ple, explicitly modeling disfluencies such as false starts, sneezes, coughs, and so on usually

requires a very fine-scale labeling of data, which significantly increases the number of la-

bels for the recognition system [13]. We believe that DISC-SBHMMs should be able to tie

similar sub-sequences and remove unnecessary states from the expanded label set. In addi-

tion, when the vocabulary size becomes very large, generative algorithms that are relatively

lighter in computation, such as the clustering trees used for Chinese Sign Language recog-

nition [28], can preprocess the data for discriminative algorithms. Lastly, as the vocabulary

grows, disambiguating minimal pairs becomes more and more important to attain high

recognition accuracy. To disambiguate them, discriminative segmental feature selection can

be more effective than generative models. However, for the segmental discriminative analy-

sis techniques proposed in this dissertation, state labels, or sometimes even class labels, are

estimated from a continuous input stream, and thus they may be inaccurate. Therefore,

when increasing the size of vocabulary, we need to ensure that certain types of invariance

(e.g., within class and/or between users) exist in the dataset; otherwise, the algorithms can

become confused due to random noise.

In the future, we would also like to apply the proposed segmental discriminative analysis

to other sequence classification tasks, especially those with temporal structures. We believe

that the improvement in performance will be similar to that of the ASLR algorithms and

other example domains discussed in this work.
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CHAPTER VIII

CONCLUSION

This dissertation has presented segmental discriminative analysis techniques for American

Sign Language recognition and other sequence classification tasks. By grouping individual

frames into segments, SBHMM is able to automatically select discriminative features that

are only informative for part of the sequence, and DISC is able to discover the common

sub-signs to reduce modeling complexity. In contrast, by decomposing an entire temporal

sequence into segments, BIG is able to achieve scalability with strong prediction capabili-

ties that are comparable to the best training results that require intractable computation.

Experimental results, mostly in ASL recognition/verification but also in various other ap-

plications, show that the proposed segmental discriminative analysis techniques are able to

achieve high accuracy at manageable computational cost.

In summary, the proposed segmental discriminative analysis techniques include the fol-

lowing capabilities:

1. A discriminative feature selection algorithm for HMMs (SBHMMs).

2. A discriminative pattern discovery algorithm for HMMs (DISC).

3. A parsimonious representation of a given vocabulary of signs for machine perception.

4. A phrase selection method for sign language verification tasks using discriminative

analysis (BIG).
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APPENDIX A

BASICS OF LINGUISTICS

A.1 Linguistics of Spoken Language

In modern linguistics, “grammar” is the set of rules and elements, including phonology,

morphology, syntax, and so on, that make up a language [97]. Phonology studies the way

words are pronounced. For instance, the English word “bat” is pronounced with phonemes

/b/,/æ/, and /t/. A phoneme is the smallest contrastive unit in a minimal pair : two

different words that are otherwise identical except for one aspect of their production. Fur-

thermore, these aspects, or linguistic features [51] characterize the utterance, and thus can

measure the phonetic difference/similarity. Table 4 in Chapter 4 shows the contrast of /p/

and /b/. Morphology studies the way words are formed from “smaller meaning bearing

units.” For instance, “unable” is formed by two morphemes: an affix “un-” and a stem

“able.” Syntax studies the way sentences are composed by words. For instance, ‘I have had

lunch’ includes the subject “I,” the verb “have,” and the object “lunch.”

A.2 Linguistics of Sign Language

ASL is compositional and it can be broken down into smaller “basic units” as any spoken

language, first shown by Stokoe’s pioneering work [94] in 1960. Since then, different “basic

units” of ASL phonemes have been proposed. The Stokoe notation describes ASL according

to its three major formational categories: handshapes (dez ), locations (tab), and movements

(sig). However, these descriptors, which represent a sign as one simultaneous bundle of lin-

guistic features, inadequately capture sequential internal segments [95]. The first detailed

model of ASL capable of representing sequential segments was the movement-hold model,

proposed by Liddell and Johnson [56]. This model describes ASL according to two types of

sequentially ordered segments: movement segments (M) and hold segments (H). The third

model commonly used for ASL is the hand-tier model [82] based “on the fact that most
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signs are characterized by a single hand configuration in which no (linguistic) features vary

throughout the sign.”1 This model claims that the three major formational categories are

handshapes, locations, and movements as the Stokoe’s model, which are similar to vowels,

consonants, and tone in spoken languages, respectively [25]. However, while similar to the

movement-hold model, the hand-tier model organizes locations and movements sequentially,

the hand configuration typically characterizes the whole sequence simultaneously: that is,

only the changing linguistic features are represented sequentially for the purpose of prevent-

ing duplication. Beside the phonological motivations, the hand-tier model representation

also introduces morphological benefits.

1Some “hand shape changes” in signs are actually finger position changes, claimed by Sandler [82].
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APPENDIX B

STATISTIC TESTS USED IN THIS DISSERTATION

B.1 Significance Test

In hypothesis testing [101], a null hypothesis, H0 is to be tested. For example, “the GRA

compensation CGT for Georgia Tech student equals the compensation CO for students in

other public school,” and an alternative hypothesis, Ha is literally the alternative to the null

hypothesis. In the previous example, the alternative hypothesis can be “CGT differs from

CO,” which is a “two-sided test.” Other alternative hypotheses include “CGT < CO” and

“CGT > CO,” which are one-sided tests. The range of the test statistic, such as CGT−CO
σ , is

divided into the acceptance region and the rejection region for the null hypothesis separated

by critical values. For example, if the critical value is -2, when CGT−CO
σ < −2, we reject the

null hypothesis. During the setup of the critical value, two types of errors can occur. A Type

I error rejects the null hypothesis by mistake, and a Type II accepts the null hypothesis

by error. We can trade Type I errors with Type II errors by setting the critical value at a

different level. This setting of the critical value determines the significance level α and vice

versa. Significance level α is the probability that we will make type I errors. If α = 0.05 and

we reject the null hypothesis, we are (1− 0.05) ∗ 100% = 95% confident that the alternative

hypothesis is true.

B.2 Paired t-test

Paired t-test [101] measures the statistical significance of the difference between the popu-

lation mean of two set of measured value, {x1, x2, . . . , xn} and {y1, y2, . . . , yn} on the same

set of samples. The paired t-test uses correlation between pairs to reduce the variance and

thus has additional statistical power. The test statistic of a paired t-test is mathematically

defined as:
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t =
d̄

sd/
√
n
,

in which d̄ is the mean of the paired difference (xi−yi), sd is the standard deviation of the

paired difference, and n is the sample size. The p-value for null hypothesis (the probability

that the population means of xi and yi are equal) can be found in a t-distribution table.

B.3 Tests for Gaussian Distribution

Most of the quantitative tests listed here require the computation of the central moments.

The k-th order central moments Mk are defined by Mk =
∑

(X−X̄)k

N

Skew =
M3

M
3/2
2

Skewness measures the symmetry of a distribution. The Gaussian distribution and other

symmetric distributions have a skewness of zero.

Kurtosis =
(
M4

M2
2

)
− 3

Kurtosis measures the “peakiness” of the distribution. The original kurtosis has a sys-

tematic bias of 3. The formula above is the unbiased kurtosis, which is used in this disser-

tation. The Gaussian distribution has a kurtosis of zero. If the kurtosis is less than zero, the

distribution is “too flat,” defined as platykurtic. For example, Kurtosis(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) =

−1.22. A kurtosis is greater than zero is defined as leptokurtic. The leptokurtic distribution

can be explained as either a higher frequency than the Gaussian distribution around the

mean or a thicker tail than the Gaussian. For example, Kurtosis(0, 0, 0, 0, 0, 0, 0, 0, 0, 1) =

5.11.

Z =
Skew√

6/N

The z-test can measure whether a distribution differs significantly from the Gaussian

distribution. For the above formula, the Gaussian distribution will have a z-test value of 0.

The farther the z-test value is from zero, the further the data distribution departs from the

true Gaussian distribution.
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KS = max |F0(X)− SN (X)|

The Kolmogorov-Smirnov (KS) test measures the maximum difference between the accu-

mulated probability of the theoretical distribution F0(X) and the real distribution SN (X).

Here, F0(X) = 1− erf(X), and the data distribution will have a KS value closer to zero if

it is more “Gaussian.”
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