
Reach for A∗: an Efficient

Point-to-Point Shortest Path Algorithm

Andrew V. Goldberg

Microsoft Research

www.research.microsoft.com/∼goldberg/

Joint with Chris Harrelson, Haim Kaplan, Renato Werneck

Wednesday, January 26, 2011



Outline

• Scanning method and Dijkstra’s algorithm.

• Bidirectional Dijkstra’s algorithm.

• A∗ search.

• ALT Algorithm

• Definition of reach

• Reach-based algorithm

• Reach for A∗

Reach for A∗ 3

Wednesday, January 26, 2011



Example Graph

1.6M vertices, 3.8M arcs, travel time metric.

Reach for A∗ 6

Wednesday, January 26, 2011



Dijkstra’s Algorithm

Searched area

Reach for A∗ 7

Wednesday, January 26, 2011



Bidirectional Algorithm

forward search/ reverse search

Reach for A∗ 8

Wednesday, January 26, 2011



A∗ Search

[Doran 67], [Hart, Nilsson & Raphael 68]

Similar to Dijkstra’s algorithm but:

• Domain-specific estimates πt(v) on dist(v, t) (potentials).

• At each step pick a labeled vertex with the minimum k(v) =

ds(v) + πt(v).

Best estimate of path length throgh v.

• In general, optimality is not guaranteed.

Reach for A∗ 9

Wednesday, January 26, 2011



Computing Lower Bounds

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick & Vitter 86].

For graph embedded in a metric space, use Euclidean distance.

Limited applicability, not very good for driving directions.

We use triangle inequality

v w

a b

dist(v, w) ≥ dist(v, b)−dist(w, b); dist(v, w) ≥ dist(a, w)−dist(a, v).

Reach for A∗ 11

Home

School

Publix

Wednesday, January 26, 2011



Landmark Selection

Preprocessing

• Random selection is fast.

• Many heuristics find better landmarks.

• Local search can find a good subset of candidate landmarks.

• We use a heuristic with local search.

Preprocessing/query trade-off.

Query

• For a specific s, t pair, only some landmarks are useful.

• Use only active landmarks that give best bounds on dist(s, t).

• If needed, dynamically add active landmarks (good for the

search frontier).

Allows using many landmarks with small time overhead.

Reach for A∗ 14

Wednesday, January 26, 2011



Bidirectional ALT Example

Reach for A∗ 15

Wednesday, January 26, 2011



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach for A∗ 16

Wednesday, January 26, 2011



Reaches

[Gutman 04]

• Consider a vertex v that splits a path P into P1 and P2.

rP (v) = min(!(P1), !(P2)).

• r(v) = maxP (rP (v)) over all shortest paths P through v.

Using reaches to prune Dijkstra:

LB(w,t)
d(s,v) wv

ts

If r(w) < min(d(v) + !(v, w), LB(w, t)) then prune w.

Reach for A∗ 17

Wednesday, January 26, 2011



Reach Algorithm

Reach for A∗ 20

Wednesday, January 26, 2011



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach for A∗ 21

Wednesday, January 26, 2011



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

10001000

1010101010101010
100010101020103010401030102010101000 ts

Reach for A∗ 22

Wednesday, January 26, 2011



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

10001000

1010101010101010

80

ts

Reach for A∗ 23

Wednesday, January 26, 2011



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

1000605040304050601000 ts

Reach for A∗ 24

Wednesday, January 26, 2011



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

1000201020302010201000 ts

Reach for A∗ 25

Wednesday, January 26, 2011



Shortcuts

• Consider the graph below.

• Many vertices have large reach.

• Add a shortcut arc, break ties by the number of hops.

• Reaches decrease.

• Repeat.

• A small number of shortcuts can greatly decrease many reaches.

100001003001001000 ts

Reach for A∗ 26

Wednesday, January 26, 2011



Reach with Shortcuts

Reach for A∗ 28

Wednesday, January 26, 2011



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short 17 100 2804 5877 2.39

Reach for A∗ 29

Wednesday, January 26, 2011



Reach with Shortcuts and ALT

Reach for A∗ 31

Wednesday, January 26, 2011



Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB avgscan maxscan ms

Bidirectional Dijkstra — 28 518723 1197607 340.74

ALT 4 132 16276 150389 12.05

Reach 1100 34 53888 106288 30.61

Reach+Short 17 100 2804 5877 2.39

Reach+Short+ALT 21 204 367 1513 0.73

Reach for A∗ 32

Wednesday, January 26, 2011



The North America Graph

North America (30M vertices), random queries, 16 landmarks.

preprocessing query
method hours GB avgscan maxscan ms

Bidirectional Dijkstra — 0.5 10255356 27166866 7633.9

ALT 1.6 2.3 250381 3584377 393.4

Reach impractical

Reach+Short 11.3 1.8 14684 24618 17.4

Reach+Short+ALT 12.9 3.6 1595 7450 3.7

Reach for A∗ 33

Wednesday, January 26, 2011



Concluding Remarks

• Our heuristics work well on road networks.

• Have improvements for query time and space requirements.

• How to select good shortcuts? (Road networks/grids.)

• For which classes of graphs do these techniques work?

• Need theoretical analysis for interesting graph classes.

• Interesting problems related to reach, e.g.
◦ Is exact reach as hard as all-pairs shortest paths?

◦ Constant-ratio upper bounds on reaches in Õ(m) time.

Reach for A∗ 37

Wednesday, January 26, 2011


