Reach for \mathbf{A}^{*} : an Efficient
 Point-to-Point Shortest Path Algorithm

Andrew V. Goldberg
Microsoft Research
www.research.microsoft.com/~goldberg/

Joint with Chris Harrelson, Haim Kaplan, Renato Werneck

Outline

- Scanning method and Dijkstra's algorithm.
- Bidirectional Dijkstra's algorithm.
- A* search.
- ALT Algorithm
- Definition of reach
- Reach-based algorithm
- Reach for A^{*}

Example Graph

1.6 M vertices, 3.8 M arcs, travel time metric.

Dijkstra's Algorithm

Searched area

Bidirectional Algorithm

forward search/ reverse search

A* Search

[Doran 67], [Hart, Nilsson \& Raphael 68]

Similar to Dijkstra's algorithm but:

- Domain-specific estimates $\pi_{t}(v)$ on $\operatorname{dist}(v, t)$ (potentials).
- At each step pick a labeled vertex with the minimum $k(v)=$ $d_{s}(v)+\pi_{t}(v)$.
Best estimate of path length throgh v.
- In general, optimality is not guaranteed.

Computing Lower Bounds

Euclidean bounds:

[folklore], [Pohl 71], [Sedgewick \& Vitter 86].
For graph embedded in a metric space, use Euclidean distance. Limited applicability, not very good for driving directions.

We use triangle inequality

$$
\operatorname{dist}(v, w) \geq \operatorname{dist}(v, b)-\operatorname{dist}(w, b) ; \operatorname{dist}(v, w) \geq \operatorname{dist}(a, w)-\operatorname{dist}(a, v)
$$

Preprocessing

- Random selection is fast.
- Many heuristics find better landmarks.
- Local search can find a good subset of candidate landmarks.
- We use a heuristic with local search.

Preprocessing/query trade-off.

Query

- For a specific s, t pair, only some landmarks are useful.
- Use only active landmarks that give best bounds on dist (s, t).
- If needed, dynamically add active landmarks (good for the search frontier).

Allows using many landmarks with small time overhead.

Bidirectional ALT Example

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing method		query minutes				MB	avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74					
ALT	4	132	16276	150389	12.05					

[Gutman 04]

- Consider a vertex v that splits a path P into P_{1} and P_{2}. $r_{P}(v)=\min \left(\ell\left(P_{1}\right), \ell\left(P_{2}\right)\right)$.
- $r(v)=\max _{P}\left(r_{P}(v)\right)$ over all shortest paths P through v.

Using reaches to prune Dijkstra:

If $r(w)<\min (d(v)+\ell(v, w), L B(w, t))$ then prune w.

Reach Algorithm

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

	preprocessing		query			
method	minutes	MB	avgscan	maxscan	ms	
Bidirectional Dijkstra	-	28	518723	1197607	340.74	
ALT	4	132	16276	150389	12.05	
Reach	1100	34	53888	106288	30.61	

Shortcuts

- Consider the graph below.
- Many vertices have large reach.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.

Shortcuts

- Consider the graph below.
- Many vertices have large reach.
- Add a shortcut arc, break ties by the number of hops.
- Reaches decrease.
- Repeat.
- A small number of shortcuts can greatly decrease many reaches.

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

method	preprocessing minutes		MB				avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74				
ALT	4	132	16276	150389	12.05				
Reach	1100	34	53888	106288	30.61				
Reach+Short	17	100	2804	5877	2.39				

Experimental Results

Northwest (1.6M vertices), random queries, 16 landmarks.

method	preprocessing minutes		MB				avgscan	maxscan	ms
Bidirectional Dijkstra	-	28	518723	1197607	340.74				
ALT	4	132	16276	150389	12.05				
Reach	1100	34	53888	106288	30.61				
Reach+Short	17	100	2804	5877	2.39				
Reach+Short+ALT	21	204	367	1513	0.73				

North America (30M vertices), random queries, 16 landmarks.

	preprocessing mours		query		
method		avgscan	maxscan	ms	
Bidirectional Dijkstra	-	0.5	10255356	27166866	7633.9
ALT	1.6	2.3	250381	3584377	393.4
Reach	impractical				
Reach+Short	11.3	1.8	14684	24618	17.4
Reach+Short+ALT	12.9	3.6	1595	7450	3.7

Concluding Remarks

- Our heuristics work well on road networks.
- Have improvements for query time and space requirements.
- How to select good shortcuts? (Road networks/grids.)
- For which classes of graphs do these techniques work?
- Need theoretical analysis for interesting graph classes.
- Interesting problems related to reach, e.g.
- Is exact reach as hard as all-pairs shortest paths?
- Constant-ratio upper bounds on reaches in $\widetilde{O}(m)$ time.

