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1 Introduction

The shortest path problem is a fundamental problem with numerous applications. In this paper we study
one of the most common variants of the problem, where the goal is to find a point-to-point shortest path in
a directed graph. We refer to this problem as the P2P problem. We assume that for the same underlying
network, the problem will be solved repeatedly. Thus, we allow preprocessing, with the only restriction
that the additional space used to store precomputed data is limited: linear in the graph size with a small
constant factor.1 Our goal is a fast algorithm for answering point-to-point shortest path queries. A natural
application of the P2P problem is providing driving directions, for example services like Mapquest, Yahoo!
Maps and Microsoft MapPoint, and some GPS devices. One can spend time preprocessing maps for these
applications, but the underlying graphs are very large, so memory usage much exceeding the graph size is
prohibitive. This motivates the linear-space assumption.

Shortest path problems have been extensively studied. The P2P problem with no preprocessing has been
addressed, for example, in [17, 25, 27, 33]. While no nontrivial theoretical results are known for the general
P2P problem, there has been work on the special case of undirected planar graphs with slightly superlinear
preprocessing space. The best bound in this context (see [9]) is superlinear in the output path size unless the
path is very long. Preprocessing using geometric information and hierarchical decomposition is discussed
in [15, 26, 31]. Other related work includes algorithms for the single-source shortest path problem, such
as [1, 4, 5, 6, 10, 11, 12, 13, 14, 18, 22, 29, 32], and algorithms for approximate shortest paths that use
preprocessing [3, 19, 30].

Usually one can solve the P2P problem while searching only a small portion of the graph; the algorithm’s
running time then depends only on the number of visited vertices. This motivates an output-sensitive
complexity measure that we adopt. We measure algorithm performance as a function of the number
of vertices on the output path. Note that this measure has the additional benefit of being machine-
independent.

In Artificial Intelligence settings, one often needs to find a solution in a huge search space. The classical
A∗ search2 [7, 16] technique often finds a solution while searching a small subspace. A∗ search uses
estimates on distances to the destination to guide vertex selection in a search from the source. Pohl [25]
studied the relationship between A∗ search and Dijkstra’s algorithm in the context of the P2P problem. He
observed that if the bounds used in A∗ search are feasible (as defined in section 2), A∗ search is equivalent
to Dijkstra’s algorithm on a graph with nonnegative arc lengths and therefore finds the optimal path.
In classical applications of A∗ search to the P2P problem, distance bounds are implicit in the domain
description, with no preprocessing required. For example, for Euclidean graphs, the Euclidean distance
between two vertices (which is a part of the domain knowledge) gives a lower bound on the distance between
them.

Our first contribution is a new preprocessing-based technique for computing distance bounds. The pre-
processing entails carefully choosing a small (constant) number of landmarks, then computing and storing
shortest path distances between all vertices and each of these landmarks. Lower bounds are computed in
constant time using these distances in combination with the triangle inequality. These lower bounds yield
a new class of algorithms, which we call ALT algorithms since they are based on A∗ search, landmarks,
and the triangle inequality. Here we are talking about the triangle inequality with respect to the shortest
path distances in the graph, not an embedding in Euclidean space or some other metric, which need not be
present. Our experimental results show that ALT algorithms are very efficient on several important graph
classes.

To illustrate just how effective our approach can be, consider a square grid with integral arc lengths
selected uniformly at random from the interval {100, . . . , 150}. Figure 1 shows the area searched by three
different algorithms. Dijkstra’s algorithm searches a large “Manhattan ball” around the source. Note that

1During preprocessing, we either determine that the graph has a negative cycle and the problem is infeasible, or replace

the input length function by an equivalent nonnegative one. Thus we assume, without loss of generality, that the input length

function is nonnegative.
2Also known as heuristic search.
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Figure 1: Vertices visited by Dijkstra’s algorithm (left), A∗ search with Manhattan lower bounds (middle),
and an ALT algorithm (right) on the same input.

for a pair of points, the Manhattan distance between them times 100 is a decent lower bound on the true
distance, and that for these points the bounding rectangle contains many near-shortest paths. With these
observations in mind, one would expect that A∗ search based on Manhattan distance bounds will be able
to prune the search by an area slightly larger than the bounding box, and it fact it does. However, in spite
of many near-optimal paths, our ALT algorithm is able to prune the search to an area much smaller than
the bounding box.

The intuitive reason for good performance is in tune with our use of AI techniques. During prepro-
cessing, our algorithm learns about useful paths and encodes the resulting knowledge in the landmark
distances. During shortest path computations, this knowledge is used to direct the search. For example,
suppose we want to find a shortest path from our office in Mountain View, California, to the Squaw Valley
ski resort in the Lake Tahoe area (also in California). Suppose further that we have a landmark in New
York City. The best way to get to New York, which we precomputed, is to get to highway 80 east and
follow it to New York. The best way to get to Squaw Valley is also to get to highway 80 east and then
exit in the Truckee area and follow a local highway. These two routes share a common initial segment
that takes us very close to our destination ski resort. Our algorithm takes advantage of the knowledge of
the precomputed route in an implicit, but very efficient, way by using the stored distances in lower bound
computations. In effect, the edges in the shared segment appear to the algorithm to have zero length. Note
that a landmark in New York helps us even though it is over ten times further away than our destination.
Because of this phenomenon, our ALT algorithms get very good performance with only a small number of
landmarks.

Although landmark-based bounds have been previously used for some variants of shortest path compu-
tation (see e.g. [3]), the previous bounds are not feasible and cannot be used to obtain an exact A∗ search
algorithm. Our bounds are feasible.

Proper landmark selection is important to the quality of the bounds. As our second contribution, we
give several algorithms for selecting landmarks. While some of our landmark selection methods work on
general graphs, others take advantage of additional information, such as geometric embeddings, to obtain
better domain-specific landmarks. Note that landmark selection is the only part of the algorithm that may
use domain knowledge. For a given set of landmarks, no domain knowledge is required.

As we shall see, making bidirectional A∗ search work correctly is nontrivial. Pohl [25] and Ikeda et
al. [17] give two ways of combining A∗ search with the bidirectional version of Dijkstra’s method [4, 8, 23]
to get provably optimal algorithms. Our third contribution is an improvement on Pohl’s algorithm and an
alternative to the Ikeda et al. algorithm. Our bidirectional ALT algorithms outperform those of Pohl and
Ikeda et al. (which use Euclidean bounds).

Our fourth contribution is an experimental study comparing the new and the previously known algo-
rithms on synthetic graphs and on real-life road graphs taken from Microsoft’s MapPoint database. We
study which variants of ALT algorithms perform best in practice, and show that they compare very well
to previous algorithms. Our experiments give insight into how ALT algorithm efficiency depends on the
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number of landmarks, graph size, and graph structure. Some of the methodology we use is new and may
prove helpful in future work in the area.

Our output-sensitive way of measuring performance emphasizes the efficiency of our algorithms and
shows how much room there is for improvement, assuming that any P2P algorithm examines at least the
vertices on the shortest path. For our best algorithm running on road graphs, the average number of
vertices scanned varies between 4 and 30 times the number of vertices on the shortest path, over different
types of origin-destination pair distributions (for most graphs in our test set, it is closer to 4 than to 30).
For example, to find a shortest path with 1, 000 vertices on a graph with 3, 000, 000 vertices, our algorithm
typically scans only 10, 000 vertices (10 scanned vertices for every shortest path vertex) which is a tiny
fraction of the total number of vertices. Furthermore, the algorithm almost never performs much worse
than the average efficiency, and occasionally performs much better. Good ALT algorithms are one or more
orders of magnitude more efficient than the bidirectional variant of Dijkstra’s algorithm and Euclidean
distance-based algorithms.

2 Preliminaries

The input to the P2P problem is a directed graph with n vertices, m arcs, a source vertex s, a sink vertex
t, and nonnegative lengths `(a) for each arc a. Our goal in the P2P problem is to find the shortest path
from s to t.

Let dist(v, w) denote the shortest-path distance from vertex v to vertex w with respect to `. We will
often use edge lengths other than `, but dist(·, ·) will always refer to the original arc lengths. Note that in
general dist(v, w) 6= dist(w, v). In this paper we assume that arc lengths are real-valued, unless mentioned
otherwise.

A potential function is a function from vertices to reals. Given a potential function π, we define the
reduced cost of an edge by

`π(v, w) = `(v) − π(v) + π(w).

Suppose we replace ` by `π. Then for any two vertices x and y, the length of any x-y path changes by the
same amount, π(y)− π(x) (the other potentials telescope). Thus a path is a shortest path with respect to
` iff it is a shortest path with respect to `π, and the two problems are equivalent.

For a constant c, we define a shift by c to be a transformation that replaces π(v) by π(v) − c for all
vertices. Shifts do not change reduced costs.

We say that π is feasible if `π is nonnegative for all vertices. The following fact is well-known:

Lemma 2.1 Suppose π is feasible and for a vertex t ∈ V we have π(t) ≤ 0. Then for any v ∈ V ,
π(v) ≤ dist(v, t).

Thus in this case we think of π(v) as a lower bound on the distance from v to t.
Also observe that the maximum of two feasible potential functions is feasible.

Lemma 2.2 If π1 and π2 are feasible potential functions, then p = max(π1, π2) is a feasible potential
function.

Proof. Consider (v, w) ∈ E. Feasibility of π1 and π2 implies that `(v, w) − π1(v) + π1(w) ≥ 0 and
`(v, w) − π2(v) + π2(w) ≥ 0. Suppose π1(v) ≥ π2(v); the other case is symmetric. If π1(w) ≥ π2(w), then
`(v, w) − p(v) + p(w) = `(v, w) − π1(v) + π1(w) ≥ 0. Otherwise

`(v, w) − p(v) + p(w) = `(v, w) − π1(v) + π2(w) ≥ `(v, w) − π1(v) + π1(w) ≥ 0.

One can also combine feasible potential functions by taking the minimum, or, as observed in [17], the
average or any convex linear combination of feasible potential functions. We use the maximum in the
following context. Given several feasible lower bound functions, we take the maximum of these to get a
feasible lower bound function that at any vertex is at least as high as each original function.
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3 The labeling method and Dijkstra’s algorithm

The labeling method for the shortest path problem [20, 21] finds shortest paths from the source to all
vertices in the graph. The method works as follows (see for example [28]). It maintains for every vertex v its
distance label ds(v), parent p(v), and status S(v) ∈ {unreached, labeled, scanned}. Initially ds(v) = ∞,
p(v) = nil, and S(v) = unreached for every vertex v. The method starts by setting ds(s) = 0 and
S(s) = labeled. While there are labeled vertices, the method picks a labeled vertex v, relaxes all arcs out
of v, and sets S(v) = scanned. To relax an arc (v, w), one checks if ds(w) > ds(v) + `(v, w) and, if true,
sets ds(w) = ds(v) + `(v, w), p(w) = v, and S(w) = labeled.

If the length function is nonnegative, the labeling method always terminates with correct shortest path
distances and a shortest path tree. The efficiency of the method depends on the rule to chose a vertex to
scan next. We say that ds(v) is exact if the distance from s to v is equal to ds(v). It is easy to see that
if the method always selects a vertex v such that, at the selection time, ds(v) is exact, then each vertex is
scanned at most once. Dijkstra [6] (and independently Dantzig [4]) observed that if ` is nonnegative and v

is a labeled vertex with the smallest distance label, then ds(v) is exact. We refer to the scanning method
with the minimum labeled vertex selection rule as Dijkstra’s algorithm for the single-source problem.

Theorem 3.1 [6] If ` is nonnegative then Dijkstra’s algorithm scans vertices in nondecreasing order of
their distances from s and scans each vertex at most once.

Note that when the algorithm is about to scan the sink, we know that ds(t) is exact and the s-t path
defined by the parent pointers is a shortest path. We can terminate the algorithm at this point. We refer
to this P2P algorithm as Dijkstra’s algorithm. Intuitively, Dijkstra’s algorithm searches a ball with s in
the center and t on the boundary.

One can also run the scanning method and Dijkstra’s algorithm in the reverse graph (the graph with
every arc reversed) from the sink. The reversal of the t-s path found is a shortest s-t path in the original
graph.

The bidirectional algorithm [4, 8, 23] works as follows. It alternates between running the forward and
reverse version of Dijkstra’s algorithm. We refer to these as the forward and the reverse search, respectively.
During initialization, the forward search scans s and the reverse search scans t. In addition, the algorithm
maintains the length of the shortest path seen so far, µ, and the corresponding path as follows. Initially
µ = ∞. When an arc (v, w) is scanned by the forward search and w has already been scanned in the
reversed direction, we know the shortest s-v and w-t paths of lengths ds(v) and dt(w), respectively. If
µ > ds(v) + `(v, w) + dt(w), we have found a shorter path than those seen before, so we update µ and its
path accordingly. We do similar updates during the reverse search. The algorithm terminates when the
search in one directing selects a vertex that has been scanned in the other direction.

Note that any alternation strategy works correctly. We use the one that balances the work of the
forward and reverse searches. One can show that this strategy is within a factor of two of the optimal
off-line strategy. Also note that a common mistake in defining the bidirectional algorithm is to assume
that if the algorithm stops at vertex v, then the shortest path goes through v. This is not necessarily the
case. However, upon termination the path yielding µ is optimal.

Theorem 3.2 [25] If the sink is reachable from the source, the bidirectional algorithm finds an optimal
path, and it is the path stored along with µ.

Intuitively, the bidirectional algorithm searches two touching balls centered at s and t. To understand
why this algorithm usually outperforms Dijkstra’s algorithm, consider an infinite k dimensional grid with
each vertex connected to its neighbors by an arc of length one. If the s-t distance is D, Dijkstra’s algorithm
visits about (2D)k vertices versus 2 · Dk for the bidirectional algorithm. In this case, the bidirectional
algorithm gives a factor 2k−1 speedup.
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4 A
∗ Search

Consider the problem of looking for a path from s to t and suppose we have a (perhaps domain-specific)
function πt : V → R such that πt(v) gives an estimate on the distance from v to t. In the context of this
paper, A∗ search is an algorithm that works like Dijkstra’s algorithm, except that at each step it selects
a labeled vertex v with the smallest value of k(v) = ds(v) + πt(v) to scan next. It is easy to see that A∗

search is equivalent to Dijkstra’s algorithm on the graph with length function `πt
. If πt is feasible, `πt

is
nonnegative and Theorem 3.1 holds.

Note that the selection rule used by A∗ search is a natural one: the chosen vertex is on an s-t path
with the shortest estimated length. In particular, if πt gives exact distances to t, the algorithm scans only
vertices on shortest paths from s to t, and if the shortest path is unique, the algorithm terminates after
scanning exactly the vertices on the shortest path except t. Intuitively, the better the estimates, the fewer
vertices are scanned.

We refer to the class of A∗ search algorithms that use a feasible function πt with πt(t) ≤ 0 as lower-
bounding algorithms.

5 Bidirectional Lower-Bounding Algorithms

In this section we show how to combine the ideas of bidirectional search and A∗ search. This seems trivial:
just run the forward and the reverse searches and stop as soon as they meet. This does not work, however.

Let πt be a potential function used in the forward search and let πs be one used in the reverse search.
Since the latter works in the reversed graph, each arc (v, w) ∈ E appears as (w, v), and its reduced cost
w.r.t. πs is `πs

(w, v) = `(v, w) − πs(w) + πs(v), where `(v, w) is in the original graph.
We say that πt and πs are consistent if for all arcs (v, w), `πt

(v, w) in the original graph is equal to
`πs

(w, v) in the reverse graph. This is equivalent to πt + πs = const.
It is easy to come up with lower-bounding schemes for which πt and πs are not consistent. If they are

not, the forward and the reverse searches use different length functions. Therefore when the searches meet,
we have no guarantee that the shortest path has been found.

One can overcome this difficulty in two ways: develop a new termination condition, or use consistent
potential functions. We call the algorithms based on the former and the latter approaches symmetric and
consistent, respectively. Each of these has strengths and weaknesses. The symmetric approach can use the
best available potential functions but cannot terminate as soon as the two searches meet. The consistent
approach can stop as soon as the searches meet, but the consistency requirement restricts the potential
function choice.

5.1 Symmetric Approach

The following symmetric algorithm is due to Pohl [25]. Run the forward and the reverse searches, alter-
nating in some way. Each time a forward search scans an arc (v, w) such that w has been scanned by the
reverse search, see if the concatenation of the s-t path formed by concatenating the shortest s-v path found
by the forward search, (v, w), and the shortest w-t path found by the reverse search, is shorter than best
s-t path found so far, and update the best path and its length, µ, if needed. Also do the corresponding
updates during the reverse search. Stop when one of the searches is about to scan a vertex v with k(v) ≥ µ

or when both searches have no labeled vertices. The algorithm is correct because the search must have
found the shortest path by then.

Our symmetric algorithm is an improvement on Pohl’s algorithm. When the forward search scans an
arc (v, w) such that w has been scanned by the reverse search, we do nothing to w. This is because we
already know the shortest path from w to t. This prunes the forward search. We prune the reverse search
similarly. We call this algorithm the symmetric lower-bounding algorithm.

5



Theorem 5.1 If the sink is reachable from the source, the symmetric lower-bounding algorithm finds an
optimal path.

Proof. If the sink is reachable from the source, the set of labeled vertices is nonempty while µ = ∞, and
therefore the algorithm stops with a finite value of µ and finds some path. Let P be the path found and
let µ′, the final value of µ, be its length.

Suppose for contradiction that a shortest path, Q, is shorter that P . Then for every vertex v on Q, we
have dist(s, v)+πt(v) ≤ `(Q) < µ′ and dist(v, t)+πs(v) ≤ `(Q) < µ′. Therefore each vertex on Q has been
scanned by one of the searches. Since s is scanned by the forward search and t by the backward search,
there must be an arc (v, w) on Q such that v was scanned by the forward search and w by the backward
search. Then the arc (v, w) has been scanned, and during this scan µ was updated to `(Q). Since µ never
increases in value, µ′ ≤ `(Q); this is a contradiction.

5.2 Consistent Approach

Given a potential function p, a consistent algorithm uses p for the forward computation and −p (or its shift
by a constant, which is equivalent correctness-wise) for the reverse one. These two potential functions are
consistent; the difficulty is to select a function p that works well.

Let πt and πs be feasible potential functions giving lower bounds to the source and from the sink,

respectively. Ikeda et al. [17] use pt(v) = πt(v)−πs(v)
2 as the potential function for the forward computation

and ps(v) = πs(v)−πt(v)
2 = −pt(v) for the reverse one. We refer to this function as the average function.

(They also observed that any convex combination of pt and ps can be used.) They show that the consistent
algorithm that uses this function with Euclidean lower bound functions πt and πs outperforms the standard
bidirectional algorithm on certain graphs. However, the improvement is relatively modest.

Notice that each of pt and −ps is feasible in the forward direction. Thus ps(t)−ps(v) gives lower bounds
on the distance from v to t, although not necessarily good ones. Feasibility of the average of pt and −ps is
obvious. Slightly less intuitive is the feasibility of the maximum, as shown in Lemma 2.2.

We define an alternative potential function pt by pt(v) = max(πt(v), πs(t)−πs(v)+β), where for a fixed
problem β is a constant that depends on πt(s) and/or πs(t) (our implementation uses a constant fraction
of πt(s)). It is easy to see that pt is a feasible potential function. We refer to this function as the max
function.

The intuition for why the max function is a good choice is as follows. Both πt(v) and πs(t)− πs(v) are
lower bounds on the distance from v to t. Since πt is specifically designed to be a lower bound on distances
to t and πs is a lower bound on distances from s converted into a lower bound on distances to t, πt(v) will
be significantly bigger than πs(t) − πs(v) for v far away from t, in particular for v near s. Therefore for
v around s, πt(v) will tend to determine the value of p and for an initial period, the forward search will
behave like the one that uses πt. Since πt(t) = 0 and πt(t) − πt(t) + β = β > 0, in the vicinity of t the
second term will dominate πt and therefore determine the value of −pt. Thus for v around t, the reverse
search will be directed by a shift of πs and will behave like the one that uses πs. Choosing β properly will
balance the two sides so that as few vertices total as possible are scanned.

In our experiments, the average function had a somewhat better performance than the max function.
However, its performance was close, and it may perform better with some landmark selection heuristics.

6 Computing Lower Bounds

Previous implementations of the lower bounding algorithm used information implicit in the domain, like
Euclidean distances for Euclidean graphs, to compute lower bounds. We take a different approach. We
select a small set of landmarks and, for each vertex, precompute distances to and from every landmark.
Consider a landmark L and let d(·) be the distance to L. Then by the triangle inequality, d(v) − d(w) ≤
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Figure 2: Why our ALT algorithms work well.

dist(v, w). Similarly, if d(·) is the distance from L, d(w)−d(v) ≤ dist(v, w). To compute the tightest lower
bound, one can take the maximum, for all landmarks, over these bounds.

Usually it is better to use only some of the landmarks. First, this is more efficient. Second, a tighter
bound is not necessarily better for the search. Intuitively, a landmark away from the shortest s-t path may
attract the search towards itself at some point, which may not be desirable. For a given s and t, we select
a fixed-size subset of landmarks that give the highest lower bounds on the s-t distance. During the s-t
shortest path computation, we limit ourselves to this subset when computing lower bounds.

To get an understanding of why the ALT algorithms often work well, suppose we have a map with s

and t far from each other, and a landmark L so that t is approximately between s and L. It is likely that
the shortest route from s to L consists of a segment from s to a highway, a segment that uses highways
only, and a segment from a highway to L. Furthermore, the shortest route to t follows the same path to
the highway and goes on the same highway path for a while, but exits earlier and takes local roads to t.
In other words, for a good choice of L, the shortest paths from s to L and t share an initial segment. See
Figure 2. Consider an arc (v, w) on this segment. It is easy to see that the lower bound π given by the
distances to L and the triangle inequality has the following property: `π(v, w) = 0. Thus for the shortest
path from s, the reduced costs of arcs on the shared path segment are zero, so these arcs will be the first
ones the ALT algorithm will scan.

This argument gives intuition for why the bidirectional algorithms work so well when the landmarks
are well-chosen. Both backward and forward searches follow zero reduced costs path for a while. In the
consistent algorithm case, the paths sometimes meet and the resulting path is the shortest path. However,
the paths need not meet, but they usually come close to each other, and the two searches expand the
paths and meet quickly. For the symmetric algorithm, the searches cannot stop even if the paths meet, but
still the searches are biased towards each other and the algorithm terminates faster than the bidirectional
algorithm.

7 Landmark Selection

Finding good landmarks is critical for the overall performance of lower-bounding algorithms. Let k denote
the number of landmarks we would like to choose. The simplest way of selecting landmarks is to select k

landmark vertices at random. This works reasonably well, but one can do better.
One greedy landmark selection algorithm works as follows. Pick a start vertex and find a vertex v1

that is farthest away from it. Add v1 to the set of landmarks. Proceed in iterations, at each iteration
finding a vertex that is farthest away from the current set of landmarks and adding the vertex to the set.
This algorithm can be viewed as a quick approximation to the problem of selecting a set of k vertices so
that the minimum distance between a pair of selected vertices is maximized. Call this method the farthest
landmark selection.

For road graphs and other geometric graphs, having a landmark geometrically lying behind the des-
tination tends to give good bounds. Consider a map or a graph drawing on the plane where graph and
geometric distances are strongly correlated.3 A simple planar landmark selection algorithm works as fol-

3The graph does not need to be planar; for example, road networks are nonplanar.
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lows. First, find a vertex c closest to the center of the embedding. Divide the embedding into k pie-slice
sectors centered at c, each containing approximately the same number of vertices. For each sector, pick a
vertex farthest away from the center. To avoid having two landmarks close to each other, if we processed
sector A and are processing sector B such that the landmark for A is close to the border of A and B, we
skip the vertices of B close to the border. We refer to this as planar landmark selection.

The above three selection rules are relatively fast, and one can optimize them in various ways. In
the optimized farthest landmark selection algorithm, for example, we repeatedly remove a landmark and
replace it with the farthest one from the remaining set of landmarks.

Another optimization technique for a given set of landmarks is to remove a landmark and replace it by
the best landmark in the set of candidate landmarks. To select the best candidate, we compute a score for
each landmark and select one with the highest score. We use a fixed sample of vertex pairs to compute
scores. For each pair in the sample, we compute the distance lower bound b as the maximum over the
lower bounds given by the current landmarks. Then for each candidate, we compute the lower bound b′

given by it. If the b′ > b, we add b′ − b to the candidate’s score.4 To obtain the sample of vertex pairs, for
each vertex we chose a random one and add the pair to the sample.

We use this technique to get optimized random and optimized planar landmark selection. In both cases,
we make passes over landmarks, trying to improve a landmark at each step. For the former, a set of
candidates for a given landmark replacement contains the landmark and several other randomly chosen
candidates. For the latter, we use a fixed set of candidates for each sector. We divide each sector into
subsectors and choose the farthest vertex in each subsector to be a candidate landmark for the sector. In
our implementation the total number of candidates (over all sectors) is 64.

Optimized landmark selection strategies can be computationally expensive. The optimized planar
selection is especially expensive and takes hours to compute for the biggest problems in our tests. This
selection rule, however, is superior to regular planar selection, and in fact is our best landmark selection
rule for graphs with a given planar layout.

Optimized farthest selection, however, does not seem to improve on the regular one. Regular farthest
selection is relatively efficient, and would be our choice for road networks if the layout information were
not available. Optimized random selection is usually superior to regular random selection, but has lower
overall performance than farthest selection and takes longer to produce landmarks.

8 Experimental Setup

8.1 Problem Families

Short name # of vertices # of arcs Description Latitude/longitude range
M1 267,403 631,964 New Mexico [34,37]/[-107,-103]
M2 330,024 793,681 San Francisco Bay Area [37,39]/[-123,-121]
M3 563,992 1,392,202 Los Angeles area [33,35]/[-120,-115]
M4 588,940 1,370,273 St. Louis area [37,40]/[-92,-88]
M5 639,821 1,522,485 Dallas area [31,34]/[-98,-94]
M6 1,235,735 2,856,831 US west coast [33,45]/[-130,-120]
M7 2,219,925 5,244,506 Rocky mountains/plains [33,45]/[-110,-100]
M8 2,263,758 5,300,035 Western US [33,45]/[-120,-110]
M9 4,130,777 9,802,953 Central US [33,45]/[-100,-90]
M10 4,469,462 10,549,756 US east coast [33,45]/[-80,-70]
M11 6,687,940 15,561,631 Central-eastern US [33,45]/[-90,-80]

Table 1: Road network problem descriptions, sorted by size.

4We also tried adding 1 instead, which seems to produce worse landmarks.
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We ran experiments on road graphs and on several classes of synthetic problems. The road graphs
are subgraphs of the graph used in MapPoint. The full MapPoint graph includes all of the roads, local
and highway, in North America. There is one vertex for each intersection of two roads and one directed
arc for each road segment. There are also degree two vertices in the middle of some road segments, for
example where the segments intersect the map grid. Each vertex has a latitude and a longitude, and each
road segment has a speed limit and a length. The full graph is too big for the computer used in our
experiments, so we ran experiments on smaller subgraphs. Our subgraphs are created by choosing only the
vertices inside a given rectangular range of latitudes and longitudes, then reducing to the largest strongly
connected component of the corresponding induced subgraph. For bigger graphs, we took vertices between
33 and 45 degrees of Northern longitude and partitioned them into regions between 130–120, 120–110,
110–100, 100–90, 90–80, and 80–70 degrees Western latitude. This corresponds roughly to the dimensions
of the United States. Smaller graphs correspond to the New Mexico, San Francisco, Los Angeles, St. Louis
and Dallas metropolitan areas.

Table 1 gives more details of the graphs used, as well as the shorthand names we use to report data.
This leaves open the notion of distance used. For each graph, we used two natural distance notions:

Transit time: Distances are calculated in terms of the time needed to traverse each road,
assuming that one always travels at the speed limit.

Distance: Distances are calculated according to the actual Euclidean length of the road
segments.

The synthetic classes of graphs used are as follows:

Grid: For n total vertices, this is a directed
√

n×√
n grid graph, with each vertex connected

to its neighbor above, below, to the left, and to the right (except the border vertices, which
have fewer connections). Each edge weight is an integer chosen uniformly at random from the
set {1, . . . ,M} for M ∈ {10, 1000, 100000}. Note that this graph is directed, since for adjacent
vertices v and w, `(v, w) is not necessarily the same as `(w, v).

We tested on square grids of side-length 256, 512, 1024 and 2048. Let Gij denote the grid
graph which is 256 ·2i−1 on a side, and has edge weights randomly chosen from {1, . . . , 10 ·10j}.
For example, G23 is a 512 × 512 grid with edge weights chosen uniformly at random from
{1, . . . , 100000}.
Random: For n vertices and m arcs, this is a random directed multigraph G(n,m) with
exactly m arcs, where each edge is chosen independently and uniformly at random. Each
edge weight is an integer chosen uniformly at random from the set {1, . . . ,M}, for M ∈
{10, 1000, 100000}.
We tested on average degree four random graphs with 65536, 262144, 1048576 and 4194304
vertices. Let Rij denote a random directed graph with 65536 ·2i−1 vertices, 4 ·65536 ·2i−1 arcs,
and edge weights chosen uniformly at random from {1, . . . , 10 · 10j}.

Each of these is a natural family of graphs.
For a given graph, we study two distributions of s, t pairs:

rand: In this distribution, we select s and t uniformly at random among all vertices. This
natural distribution has been used previously (e.g., [32]). It produces “hard” problems for the
following reason: s and t tend to be far apart when chosen this way, thus forcing Dijkstra’s
algorithm to visit most of the graph.

bfs: This distribution is more local. In this distribution, we chose s at random, run breadth-
first search from s to find all vertices that are k arcs away from s, and chose one of these vertices
uniformly at random. On road and grid graphs, we use k = 50. Note that the corresponding
shortest paths tend to have between 50 and 100 arcs. On road networks, this corresponds to

9



trips on the order of an hour, where one passes through 50 to a 100 road segments. In this
sense it is a more “typical” distribution. On random graphs we use k = 6 because these graphs
have small diameters.

Although we compared all variants of regular and bidirectional search, we report only on the most
promising or representative algorithms.

D: Dijkstra’s algorithm, to compare with the bidirectional algorithm.

AE: A∗ search with Euclidean lower bounds. This was previously studied in [25, 27].

AL: Regular ALT algorithm.

B: The bidirectional variant of Dijkstra’s algorithm, to provide a basis for comparison.

BEA: The bidirectional algorithm with a consistent potential function based on average Euclidean bounds.
This was previously studied in [17].

BLS: The symmetric bidirectional ALT algorithm.

BLA: The consistent bidirectional ALT algorithm with the average potential function.

BLM: The consistent bidirectional ALT algorithm with the max potential function.

8.2 Landmark Selection Algorithms Tested

In our work we compared six different landmark selection algorithms from three general approaches. The
algorithms are described in section 7 and are as follows:

R : random;

R2 : optimized random;

F : farthest;

P : planar;

P2 : optimized planar.

8.3 Implementation Choices

Euclidean bounds. For road networks, exact Euclidean bounds offer virtually no help, even for the
distance-based length function. To get noticeable improvement, one needs to scale these bounds up. This
is consistent with comments in [17]. Such scaling may result in nonoptimal paths being found. Although
we are interested in exact algorithms, we use aggressive scaling parameters, different for distance- and
time-based road networks. Even though the resulting codes sometimes find paths that are longer than the
shortest paths (on the average by over 10% on some graphs), the resulting algorithms are not competitive
with landmark-based ones.

Landmark selection. When comparing algorithms, we set the number of landmarks to 16 with the P2
landmark selection algorithm when it is applicable, and the F algorithm otherwise (for the case of random
graphs). We use the P2 algorithm because it has the best efficiency on almost all test cases (see section
9.6), and 16 because is the maximum number that fits in memory for our biggest test problem.

10



Name D AE AL B BEA BLS BLM BLA

M1 0.5 (116.4) 0.5 (126.7) 6.5 (202.7) 0.7 (194.8) 0.8 (176.1) 8.2 (148.3) 14.9 (117.0) 16.9 (146.5)
62.6 110.2 7.2 43.1 120.4 5.7 5.6 5.2

M2 0.3 (127.9) 0.3 (162.0) 3.0 (544.0) 0.4 (173.7) 0.4 (173.7) 3.5 (311.0) 6.1 (253.2) 7.8 (305.3)
82.4 135.2 12.8 59.8 163.6 13.5 13.5 11.6

M3 0.2 (90.5) 0.2 (86.7) 2.5 (418.6) 0.3 (95.4) 0.3 (140.1) 2.8 (326.1) 4.3 (350.0) 5.6 (365.1)
173.1 324.9 19.9 111.9 290.1 20.2 22.7 18.3

M4 0.3 (93.7) 0.3 (102.5) 4.1 (319.2) 0.4 (109.9) 0.4 (113.8) 5.0 (211.5) 8.4 (180.6) 10.6 (206.1)
162.2 353.1 14.2 108.5 341.4 12.3 13.3 11.5

M5 0.2 (101.6) 0.2 (229.5) 3.3 (449.4) 0.4 (134.6) 0.4 (161.3) 3.8 (343.4) 5.2 (235.0) 7.1 (285.5)
180.5 321.1 18.4 119.6 310.6 17.7 24.7 18.1

M6 0.3 (160.2) 0.3 (301.2) 2.3 (411.3) 0.3 (285.4) 0.3 (224.4) 3.0 (381.5) 6.6 (301.2) 8.6 (334.0)
338.3 613.7 63.5 349.1 922.0 51.5 44.3 36.3

M7 0.1 (65.1) 0.2 (91.8) 2.7 (542.1) 0.2 (84.5) 0.2 (96.8) 3.0 (411.7) 4.3 (402.3) 5.6 (401.1)
692.3 1197.0 50.4 537.0 1328.0 51.9 64.9 54.2

M8 0.2 (88.3) 0.2 (108.9) 2.8 (521.7) 0.2 (141.5) 0.2 (213.4) 3.1 (344.7) 4.9 (322.9) 6.0 (403.5)
679.9 1303.1 62.1 557.1 1456.6 68.7 72.3 62.5

M9 0.1 (109.8) 0.1 (164.1) 2.1 (393.5) 0.1 (169.8) 0.2 (196.9) 2.2 (265.8) 3.9 (316.2) 5.5 (300.1)
1362.4 2489.0 87.0 1074.1 2631.4 92.4 90.4 69.6

M10 0.1 (78.0) 0.1 (214.0) 1.7 (762.0) 0.1 (83.4) 0.1 (103.5) 2.0 (462.6) 3.7 (356.0) 4.7 (491.6)
1474.6 2606.1 138.6 1240.3 2912.3 122.3 108.5 97.6

M11 0.1 (110.8) 0.1 (147.5) 1.7 (299.4) 0.1 (174.6) 0.1 (193.7) 1.7 (266.3) 2.5 (511.9) 3.6 (531.6)
2450.2 4431.4 152.9 1999.3 4813.6 188.2 213.4 161.0

Table 2: Algorithm comparison for the rand source-destination distribution on road networks with Tran-

sit Time distances and 16 landmarks calculated with algorithm P2. Efficiency (%) is in Roman and time
(ms) is in italics. Standard deviations (% of mean) are indicated in parentheses.

Name D AE AL B BEA BLS BLM BLA

M1 0.44 0.46 5.34 0.67 0.69 7.43 13.13 13.51
57.14 112.42 8.01 41.49 121.18 5.91 6.12 6.25

M2 0.26 0.28 3.02 0.37 0.38 3.74 5.93 6.45
66.38 140.90 13.05 53.93 228.17 18.18 22.08 19.19

M3 0.17 0.18 2.90 0.29 0.29 3.16 5.77 7.22
137.46 326.12 15.50 94.14 290.00 15.58 14.03 11.88

M4 0.24 0.24 3.82 0.38 0.39 4.48 6.90 10.71
139.34 353.95 14.20 96.91 339.57 13.56 15.76 10.42

M5 0.22 0.23 4.21 0.35 0.36 4.29 5.23 7.70
240.52 521.61 13.04 175.21 319.05 14.39 21.93 14.98

M6 0.25 0.26 2.39 0.29 0.30 3.29 8.20 8.82
281.19 641.15 62.33 300.25 906.57 49.61 36.09 35.61

M7 0.14 0.15 3.13 0.20 0.21 3.61 6.58 7.56
605.04 1252.61 40.67 482.99 1332.02 38.77 38.75 36.19

M8 0.15 0.16 2.69 0.21 0.21 3.47 5.63 7.21
579.59 1325.01 59.78 492.49 1464.67 52.27 55.06 43.91

M9 0.09 0.10 1.87 0.14 0.14 2.02 3.27 3.87
1208.30 2565.61 92.88 954.08 2620.47 97.69 100.80 91.68

M10 0.10 0.10 1.56 0.14 0.14 1.91 3.31 4.69
1249.86 2740.81 147.54 1085.57 2958.20 146.22 132.64 102.53

M11 0.08 0.08 1.81 0.11 0.11 2.01 2.82 4.01
2113.80 4693.30 132.83 1736.52 4775.70 145.12 176.84 133.29

Table 3: Algorithm comparison for the rand source-destination distribution on road networks with Dis-

tance distances and 16 landmarks calculated with algorithm P2. Efficiency (%) is in Roman and time
(ms) is in italics.
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Name D AE AL B BEA BLS BLM BLA

M1 1.75 2.43 15.28 3.97 4.60 15.87 15.04 19.19
1.64 2.09 0.35 0.71 2.07 0.34 0.59 0.45

M2 0.93 1.33 8.03 1.77 2.04 8.76 8.73 11.83
3.69 4.53 0.79 1.89 5.37 0.78 1.29 0.86

M3 0.76 0.81 7.27 1.56 1.92 7.34 7.21 10.35
4.35 8.72 0.84 2.11 6.13 0.80 1.40 0.93

M4 1.65 1.90 18.89 3.37 3.56 19.62 18.13 24.23
1.74 3.21 0.32 0.88 2.74 0.29 0.50 0.38

M5 1.52 2.19 16.99 3.26 3.69 18.80 18.87 22.68
1.87 2.51 0.33 0.89 2.71 0.30 0.47 0.39

M6 1.38 2.51 12.35 2.72 3.48 14.61 12.17 17.70
2.01 2.08 0.44 1.10 2.84 0.37 0.73 0.51

M7 1.74 3.00 18.83 3.87 4.90 21.04 19.51 24.66
1.60 1.80 0.29 0.73 1.98 0.25 0.43 0.35

M8 1.36 1.23 10.01 2.77 3.36 11.39 9.28 14.02
2.22 5.66 0.57 1.08 3.28 0.51 0.99 0.63

M9 1.42 2.22 16.81 3.25 3.87 21.38 18.27 25.30
2.00 2.63 0.35 0.93 2.53 0.26 0.50 0.35

M10 1.15 1.98 9.78 2.65 3.33 10.73 8.80 13.86
2.75 2.89 0.63 1.17 3.27 0.56 1.14 0.68

M11 1.48 2.40 14.37 3.35 4.07 15.99 13.21 20.31
1.97 2.23 0.40 0.84 2.39 0.34 0.69 0.43

Table 4: Algorithm comparison for the bfs source-destination distribution on road networks with Transit

Time distances and 16 landmarks calculated with algorithm P2. Efficiency (%) is in Roman and time (ms)
is in italics.

Name D AE AL B BEA BLS BLM BLA

M1 1.74 2.21 16.20 3.73 4.12 19.22 16.97 22.54
1.45 2.29 0.32 0.70 2.13 0.26 0.47 0.37

M2 0.82 1.10 9.48 1.58 1.78 9.86 9.84 12.55
3.17 5.03 0.64 1.77 8.30 1.07 1.78 0.79

M3 0.69 0.78 8.36 1.35 1.57 8.48 8.18 10.84
3.82 8.55 0.67 2.07 6.83 0.63 1.09 0.81

M4 1.58 1.72 22.43 3.19 3.32 22.50 20.52 26.40
1.61 3.32 0.25 0.84 2.70 0.24 0.41 0.32

M5 1.46 1.89 17.96 3.02 3.28 22.83 22.67 26.47
1.84 4.70 0.30 0.99 2.88 0.23 0.38 0.33

M6 1.40 1.99 12.43 2.80 3.21 13.53 11.77 16.89
1.70 2.60 0.44 0.89 2.84 0.38 0.70 0.47

M7 1.63 2.42 17.63 3.57 4.19 17.72 16.62 19.82
1.52 2.21 0.29 0.70 2.20 0.30 0.51 0.43

M8 1.27 1.38 10.68 2.53 2.79 11.57 9.29 14.46
1.99 4.51 0.50 1.05 3.46 0.46 0.91 0.57

M9 1.37 1.83 19.55 3.05 3.43 22.42 19.98 24.93
1.85 3.16 0.29 0.85 2.71 0.24 0.42 0.33

M10 1.03 1.34 12.79 2.37 2.59 13.96 11.48 17.74
2.49 4.32 0.46 1.16 3.87 0.41 0.86 0.51

M11 1.59 1.93 18.45 3.58 3.83 19.76 17.46 22.38
1.50 2.71 0.33 0.71 2.32 0.30 0.54 0.40

Table 5: Algorithm comparison for the bfs source-destination distribution on road networks with Distance

distances and 16 landmarks calculated with algorithm P2. Efficiency (%) is in Roman and time (ms) is in
italics.
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Data Structures. In implementing graph data structure, we used a standard cache-efficient representa-
tion of arc lists where for each vertex, its outgoing arcs are adjacent in memory.

Although in general we attempted to write efficient code, to facilitate flexibility we used the same
graph data structure for all algorithms. For a given algorithm, some of the vertex-related data may be
unused. For example, we store geographic information for each vertex, even though only the algorithms
based on Euclidean bounds need it. The resulting loss of locality hurts algorithm performance somewhat,
but probably not by more than 50%. Note, however, that we use running times as a supplement to a
machine-independent measure of performance which is not affected by these issues.

9 Experimental Results

In this section we present experimental results. As a primary measure of algorithm performance, we use
an output-sensitive measure we call efficiency. The efficiency of a run of a P2P algorithm is defined as
the number of vertices on the shortest path divided by the number of vertices scanned by the algorithm.5

We report efficiency in percent. An optimal algorithm that scans only the shortest path vertices has 100%
efficiency. Note that efficiency is a machine-independent measure of performance.

We also report the average running times of our algorithms in milliseconds. Running times are machine-
and implementation-dependent. In all our experiments, all data fits in main memory. When the graph fits
in memory, factors like the lower bound computation time have more influence on the running time. In
particular, Euclidean bound computation is somewhat expensive because of the floating point operations
involved. Despite their shortcomings, running times are important and complement efficiency to provide a
better understanding of practical performance of algorithms under consideration. Note that more compli-
cated bidirectional search algorithms have somewhat higher overhead and need higher efficiency to compete
with the corresponding regular search algorithms.

All experiments were run under Redhat Linux 9.0 on an HP XW-8000 workstation, which has 4GB of
RAM and a 3.06 Ghz Pentium-4 processor. Due to limitations of the Linux kernel, however, only a little
over 3GB was accessible to an individual process. Finally, all reported data points are the average of 128
trials.

For most algorithms, we used priority queues based on multi-level buckets [5, 13, 14]. For algorithms
that use Euclidean bounds, we used a standard heap implementation of priority queues, as described in, for
example, [2]. This is because these algorithms use aggressive bounds which can lead to negative reduced
costs, making the use of monotone priority queues, such as multi-level buckets, impossible.

9.1 Algorithms Tested

Deviation bounds. The efficiency (and hence also running time) data presented in our tables has very
high deviation relative to the mean; see Table 2. However, efficiency is almost never significantly below
the mean, but sometimes is much greater than the mean. This is good because surprises in efficiency are
almost entirely positive. Examples of this phenomenon are given in Figure 3. In order to avoid clutter, we
omit standard deviations from other tables.

9.2 Road Networks

Tables 2, 3, 4 and 5 give data for road networks with both types of arc lengths and input distributions. All
algorithms perform better under the bfs s-t distribution than under the rand distribution. As expected,
efficiency for rand problems generally goes down with the problem size while for bfs problems, the
efficiency depends mostly on the problem structure. Road networks on the west coast map, the Rocky
mountain map, and the east coast map are less uniform than the other maps, and Dijkstra’s algorithm

5This does not include vertices that were labeled but not scanned.
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Figure 3: Two example runs of a bidirectional ALT algorithm. The input graph represents the road
network in the San Francisco Bay Area. The first example (top) is an input for which our algorithm runs
extremely fast; the second (bottom) is one which is a bit worse than the “average” query. Dark areas
represent scanned vertices and light areas represent the rest of the underlying graph.
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efficiency on bfs problems for these graphs is worse. With minor exceptions, this observation applies to
the other algorithms as well.

Next we discuss performance. A∗ search based on Euclidean lower bounds offers little efficiency im-
provement over the corresponding variant of Dijkstra’s algorithm but hurts the running time, both in its
regular and bidirectional forms. On the other hand, combining A∗ search with our landmark-based lower
bounds yields a major performance improvement.

BLA is the algorithm with the highest efficiency. Its efficiency is higher than that of B by roughly
a factor of 30 on the rand problems and about a factor of 6 on the bfs problems. The three fastest
algorithms are AL, BLS, and BLA, with none dominating the other two. Of the codes that do not use
landmarks, B is the fastest, although its efficiency is usually a little lower than that of BEA. As noted in
the previous section, BEA and AE are slower for the same efficiency because the time to compute lower
bounds is much greater.

Comparing AL with BLA, we note that on rand problems, bidirectional search usually outperforms
the regular one by more than a factor of two in efficiency, while for bfs problems, the improvement is
usually less that a factor of 1.5.

9.3 Grids

The main goal of our grid graph experiments is to see how algorithm performance depends on the grid
graph size and the arc length range. Tables 6 and 7 give data for the two input distributions and three arc
length ranges. However, even for the {1, . . . , 10} and {1, . . . , 100000} ranges, algorithm efficiency is very
similar, so we discuss the results together. On grid networks, geometric (Euclidean or Manhattan) bounds
are very weak. We do not run AE and BEA on grid problems.

Qualitatively, the results are similar to those for road networks, although more well-behaved as the
problem structure is very uniform. In particular, efficiency of D and B on rand problems is inversely
proportional to the grid length. Every time the grid length doubles (and the size quadruples), the efficiency
halves. On bfs problems, efficiency of these algorithms shows much less dependence on problem size. This
is to be expected because the area of a two-dimensional circular region increases as the square of the area
of a thin region. Hence when dimension length is doubled, the former increases by a factor of four, while
the latter by a factor of two, and the efficiency (the ratio of these two) is halved.

On grids, as on road networks, landmark based codes outperform AL and B by an order of magnitude.
Qualitative results for the former are similar to those for the latter, although the numbers are not quite
as well-behaved. We note that on these problems, BLS seems to have slightly lower overall efficiency than
AL. As usual, BLA has the highest efficiency. On rand problems, the efficiency starts in the mid-twenty
percent range and drops to about 3% for the biggest problem. On bfs problems, the efficiency is roughly
between 1/3 and 1/4, meaning that three to four vertices are scanned for every output vertex.

9.4 Random Graphs

For random graphs, B outperforms D by orders of magnitude, both in terms of efficiency and running time.
This is to be expected, as a ball of twice the radius in an expander graph contains orders of magnitude
more vertices. Tables 8 and 9 give data for these graphs.

Using landmark-based A∗ search significantly improves regular search performance: AL is over an order
of magnitude faster and more efficient than D. However, it is still worse by a large margin than B.

Performance of BLA is slightly below that of B. Interestingly, BLS performance is significantly below
that of B and, overall, is slightly below that of AL. Recall that on the other classes, BLS was somewhat
less efficient, but often a little faster than BLA. Our random graph experiments suggest that BLS is less
robust than BLA.

For random graphs, our techniques do not improve the previous state of the art: B is the best algorithm
among those we tested. This shows that ALT algorithms do not offer a performance improvement on all
graph classes.
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Name D AL B BLS BLM BLA

G11 0.56 11.51 0.84 12.54 14.58 25.10
11.75 1.91 8.38 1.71 2.91 1.69

G12 0.58 12.49 0.89 12.86 13.98 26.22
14.90 1.90 10.72 1.80 3.13 1.74

G13 0.58 12.51 0.89 12.87 14.00 26.47
18.39 1.92 12.93 1.90 3.19 1.76

G21 0.28 7.31 0.42 7.26 8.00 14.32
53.59 7.59 41.79 7.67 12.31 6.96

G22 0.29 7.46 0.44 7.56 7.60 14.12
65.63 7.94 50.83 7.90 13.63 7.55

G23 0.29 7.47 0.44 7.56 7.60 14.11
79.58 8.09 58.88 8.05 14.14 7.76

G31 0.14 3.94 0.21 3.86 4.25 7.48
313.81 33.69 249.64 35.82 53.33 31.68

G32 0.14 4.31 0.22 4.23 4.45 8.10
360.81 29.09 281.73 32.96 49.30 28.40

G33 0.14 4.24 0.22 4.18 4.45 8.11
429.57 32.01 322.97 33.37 49.18 28.40

G41 0.07 1.98 0.11 1.74 1.84 2.86
2080.46 147.73 1509.83 187.26 274.11 193.83

G42 0.07 2.08 0.11 1.78 2.07 3.24
2260.67 143.30 1680.36 181.06 237.14 163.74

G43 0.07 2.08 0.11 1.78 2.07 3.25
2536.80 146.06 1878.31 181.73 236.13 166.86

Table 6: Algorithm comparison for the rand source-destination distribution on grid networks and 16
landmarks calculated with algorithm P2. Efficiency (%) is in Roman and time (ms) is in italics.

Name D AL B BLS BLM BLA

G11 1.27 26.61 2.53 27.11 24.92 33.27
1.48 0.27 0.79 0.27 0.48 0.39

G12 1.33 28.09 2.67 27.47 26.40 34.44
1.78 0.28 1.02 0.29 0.48 0.39

G13 1.33 28.15 2.67 27.47 26.45 34.49
2.09 0.28 1.10 0.28 0.50 0.41

G21 1.14 22.73 2.39 23.10 21.72 28.47
1.74 0.37 0.87 0.34 0.65 0.49

G22 1.18 23.54 2.49 22.95 23.29 28.45
2.22 0.39 1.10 0.38 0.64 0.53

G23 1.18 23.46 2.49 22.92 23.30 28.49
2.58 0.40 1.29 0.38 0.65 0.53

G31 1.14 24.20 2.37 24.00 23.56 30.24
1.81 0.44 0.93 0.43 0.78 0.63

G32 1.18 25.71 2.49 24.64 24.03 29.92
2.23 0.38 1.14 0.42 0.74 0.61

G33 1.18 25.72 2.49 24.62 23.97 30.04
2.61 0.43 1.33 0.43 0.73 0.57

G41 1.10 22.52 2.31 23.87 22.73 28.88
1.94 0.47 0.96 0.44 0.82 0.66

G42 1.14 22.66 2.43 22.52 22.35 27.69
2.41 0.51 1.22 0.46 0.92 0.68

G43 1.14 22.73 2.44 22.56 22.44 27.69
2.77 0.56 1.40 0.51 0.92 0.73

Table 7: Algorithm comparison for the bfs source-destination distribution on grid networks and 16
landmarks calculated with algorithm P2. Efficiency (%) is in Roman and time (ms) is in italics.
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Name D AL B BLS BLM BLA

R11 0.035 0.322 1.947 0.329 1.095 1.618
41.850 19.977 0.887 17.063 6.780 4.726

R12 0.040 0.385 1.926 0.318 1.165 1.759
47.915 19.119 0.824 19.709 7.454 5.167

R13 0.040 0.385 1.924 0.317 1.163 1.764
53.206 19.427 0.925 19.891 7.363 5.020

R21 0.009 0.075 1.054 0.083 0.551 0.840
219.529 119.427 1.684 95.273 19.112 12.702

R22 0.010 0.087 1.036 0.075 0.545 0.867
274.250 114.541 2.058 113.695 20.886 13.686

R23 0.010 0.083 1.035 0.076 0.535 0.886
301.165 123.411 2.257 116.649 22.293 14.106

R31 0.003 0.025 0.600 0.025 0.317 0.464
912.840 468.785 3.898 412.553 42.523 29.304

R32 0.003 0.029 0.577 0.024 0.287 0.484
1155.378 454.630 4.889 448.477 49.789 30.722

R33 0.003 0.029 0.577 0.024 0.285 0.485
1298.041 454.845 5.199 469.109 51.038 31.902

R41 0.001 0.006 0.343 0.008 0.158 0.261
4192.350 2259.739 8.556 1756.248 108.516 65.308

R42 0.001 0.008 0.340 0.008 0.154 0.268
5007.551 2155.511 10.307 2003.515 116.236 71.369

R43 0.001 0.008 0.340 0.008 0.153 0.268
5884.373 2065.892 10.913 1922.259 116.174 70.873

Table 8: Algorithm comparison for the rand source-destination distribution on random networks and 16
landmarks calculated with algorithm F2. Efficiency (%) is in Roman and time (ms) is in italics.

Name D AL B BLS BLM BLA

R11 0.024 0.128 2.022 0.182 0.951 1.636
76.169 59.104 0.880 38.030 10.024 5.954

R12 0.026 0.210 2.111 0.249 1.241 2.248
87.903 38.512 1.013 29.447 8.213 4.815

R13 0.026 0.211 2.111 0.250 1.239 2.255
97.224 39.476 1.089 29.955 8.393 4.844

R21 0.007 0.051 1.318 0.079 0.652 1.125
368.850 219.394 1.897 131.852 21.508 13.020

R22 0.007 0.070 1.391 0.078 0.632 1.207
461.453 176.563 2.071 143.200 23.836 13.379

R23 0.007 0.064 1.390 0.079 0.614 1.147
504.651 193.788 2.277 142.798 25.225 14.453

R31 0.002 0.019 0.761 0.029 0.395 0.711
1672.077 761.569 4.239 457.577 44.608 25.581

R32 0.002 0.025 0.799 0.027 0.385 0.721
2133.890 636.455 4.714 498.045 47.440 26.852

R33 0.002 0.025 0.799 0.027 0.385 0.720
2402.068 617.263 5.018 515.936 48.384 27.569

R41 0.001 0.003 0.379 0.005 0.155 0.298
7696.567 6529.415 10.260 3969.952 148.765 77.373

R42 0.001 0.006 0.421 0.006 0.202 0.432
9670.789 3619.273 10.908 2866.274 109.631 55.217

R43 0.001 0.006 0.422 0.006 0.201 0.432
11393.517 3414.361 11.548 2704.135 108.754 54.531

Table 9: Algorithm comparison for the bfs source-destination distribution on random networks and 16
landmarks calculated with algorithm F2. Efficiency (%) is in Roman and time (ms) is in italics.
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9.5 Number of Landmarks

In this section we study the relationship between algorithm efficiency and the number of landmarks. We
ran experiments with 1, 2, 4, 8, and 16 landmarks for the AL and BLA algorithms. Tables 10-13 give
results for road networks.

First, note that even with one landmark, AL and BLA outperform all non-landmark-based codes in
our study. In particular, this includes BEA on road networks. As the number of landmarks increases, so
does algorithm efficiency. The rate of improvement is substantial for rand selection up to 16 landmarks
and somewhat smaller for bfs. For the former, using 32 or more landmarks is likely to give significantly
better results.

An interesting observation is that for a small number of landmarks, regular search often has higher
efficiency than bidirectional search. This brings us to the following point. Consider the memory tradeoff
question for regular vs. bidirectional search. Efficient implementation of the latter requires the list of
reverse arcs in addition to the list of forward arcs. Given the same storage limit, one can have a few (2
to 4 for natural graph representations) more landmarks for AL than for BLA. Which code will perform
better? The data suggests that if the number of landmarks is large, bidirectional search is more efficient
in spite of the landmark deficit. If the number of landmarks is small, regular search with extra landmarks
is more efficient.

9.6 Landmark Selection

Tables 14-19 give data comparing our landmark heuristics. We give data only for the choice of 16 landmarks;
similar results hold for fewer. Note also that this data does not give information about the tradeoff between
precomputation time and efficiency. Keep in mind when reading the data that the algorithms R and F are
both quite fast, P is a bit slower, and R2 and P2 are slow, taking hours to compute for the largest graphs.

For all graph types, random (R) landmark selection, while typically the worst efficiency-wise, still does
reasonably well. Farthest (F) is a modest improvement on random, while retaining the feature that it
works on an arbitrary graph with no geometric information, and optimized planar (P2) is the best on
nearly every example.

Next observe that, for road and grid networks, the difference between algorithms is much less pro-
nounced for the bfs input distribution than for rand. One intuition for this is that, since a typical input
s, t under bfs has endpoints very close to one another, we need only make sure we have landmarks far
away, with one “behind” t from the perspective of s, and one “behind” s from the perspective of t. Under
the rand distribution, this is much more difficult to have happen because the endpoints are so often very
far apart.

10 Concluding Remarks

We proposed a new lower-bounding technique based on landmarks and triangle inequality, as well as
several landmark selection techniques. Our best landmark selection strategies consistently outperform
näıve random landmark selection. However, luck still plays a role in landmark selection, and there may be
room for improvement in this area.

We would like to comment on the use of ALT algorithms in dynamic settings where arc lengths change
(note that additions and deletions can be modeled using infinite arc lengths). First consider a semi-dynamic
case when arc lengths can only increase, like on road networks due to traffic congestion and road closures.
In this case, our lower bounds remain valid and the algorithms work correctly. One would hope that if
the changes are not dramatic, the performance remains good. In the fully dynamic case or with drastic
changes, one can keep landmark placement but periodically recompute distances to and from landmarks.
Single-source shortest path computation is fairly efficient, and for a reasonable number of landmarks the
time to update the distances may be acceptable in practice. For example, for road networks the update can
be done on the order of a minute. Reoptimization techniques (see e.g. [24]) may further reduce the update
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Name AL-1 AL-2 AL-4 AL-8 AL-16

M1 1.16 1.63 3.82 5.63 6.49
35.71 25.88 12.08 8.07 7.23

M2 0.73 1.01 2.17 2.85 3.00
50.71 36.68 17.12 12.96 12.84

M3 0.51 0.66 1.48 1.85 2.48
93.05 74.62 36.87 27.28 19.92

M4 0.58 0.75 2.01 2.92 4.14
103.49 79.15 31.54 21.82 14.24

M5 0.58 0.82 1.81 2.72 3.34
104.64 73.28 36.81 23.70 18.43

M6 0.75 1.08 1.47 2.07 2.25
172.94 106.32 93.83 67.26 63.47

M7 0.36 0.53 1.32 1.82 2.72
446.21 270.18 124.21 82.60 50.39

M8 0.44 0.67 1.42 2.09 2.76
353.61 255.91 132.30 80.53 62.15

M9 0.27 0.37 0.88 1.45 2.07
697.65 521.85 251.52 132.98 86.99

M10 0.26 0.36 0.76 1.29 1.67
813.70 545.79 319.62 184.66 138.58

M11 0.21 0.23 0.65 1.12 1.74
1261.50 1194.78 436.46 257.65 152.90

Table 10: Landmark quantity comparision for the rand source-destination distribution on road networks
with Transit Time distances and landmarks calculated with algorithm P2. Efficiency (%) is in Roman
and time (ms) is in italics.

Name AL-1 AL-2 AL-4 AL-8 AL-16

M1 1.05 1.47 3.14 4.49 5.34
36.46 26.85 13.49 9.30 8.01

M2 0.73 1.02 2.03 2.55 3.02
43.22 33.37 17.88 14.19 13.05

M3 0.51 0.56 1.43 2.24 2.90
80.00 76.63 34.10 20.03 15.50

M4 0.55 0.76 2.07 3.06 3.82
98.63 71.00 28.43 18.09 14.20

M5 0.55 0.71 1.96 3.13 4.21
100.65 81.30 32.15 18.33 13.04

M6 0.77 1.06 1.53 2.11 2.39
162.52 110.90 98.47 73.11 62.33

M7 0.36 0.51 1.34 1.95 3.13
427.43 280.55 115.33 72.54 40.67

M8 0.42 0.61 1.31 2.00 2.69
335.42 247.90 132.69 83.93 59.78

M9 0.25 0.34 0.89 1.27 1.87
681.07 533.54 228.41 142.88 92.88

M10 0.27 0.38 0.73 1.18 1.56
766.34 514.13 342.43 198.76 147.54

M11 0.20 0.24 0.67 1.17 1.81
1251.07 1088.48 423.39 222.17 132.83

Table 11: Landmark quantity comparision for the rand source-destination distribution on road networks
with Distance distances and landmarks calculated with algorithm P2. Efficiency (%) is in Roman and
time (ms) is in italics.
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Name AL-1 AL-2 AL-4 AL-8 AL-16

M1 4.70 9.74 14.05 14.79 15.28
1.02 0.46 0.35 0.35 0.35

M2 2.53 4.03 7.41 8.26 8.03
2.10 1.31 0.79 0.75 0.79

M3 2.45 4.24 6.78 7.31 7.27
2.05 1.19 0.83 0.81 0.84

M4 5.07 7.51 14.65 17.16 18.89
0.95 0.65 0.37 0.33 0.32

M5 4.60 7.43 14.64 17.08 16.99
1.00 0.63 0.35 0.32 0.33

M6 4.01 6.40 7.91 9.05 12.35
1.15 0.76 0.68 0.62 0.44

M7 5.50 7.82 14.89 15.25 18.83
0.90 0.63 0.35 0.35 0.29

M8 3.90 6.40 9.35 9.41 10.01
1.22 0.75 0.56 0.59 0.57

M9 4.33 7.39 15.28 17.69 16.81
1.05 0.62 0.35 0.31 0.35

M10 3.62 5.36 8.38 9.77 9.78
1.39 0.95 0.67 0.60 0.63

M11 4.51 7.59 11.78 12.92 14.37
1.06 0.60 0.42 0.40 0.40

Table 12: Landmark quantity comparision for the bfs source-destination distribution on road networks
with Transit Time distances and landmarks calculated with algorithm P2. Efficiency (%) is in Roman
and time (ms) is in italics.

Name AL-1 AL-2 AL-4 AL-8 AL-16

M1 4.84 9.50 14.06 14.75 16.20
0.86 0.44 0.33 0.33 0.32

M2 2.60 3.89 7.18 8.94 9.48
1.78 1.23 0.73 0.64 0.64

M3 2.44 3.74 6.87 8.47 8.36
1.86 1.28 0.76 0.64 0.67

M4 5.01 7.82 16.73 21.46 22.43
0.88 0.56 0.31 0.25 0.25

M5 4.95 7.37 15.52 18.36 17.96
0.95 0.61 0.31 0.28 0.30

M6 4.09 6.92 9.60 11.55 12.43
1.03 0.63 0.48 0.42 0.44

M7 4.90 7.70 14.80 17.46 17.63
0.97 0.60 0.35 0.28 0.29

M8 3.76 6.88 8.50 10.04 10.68
1.17 0.65 0.58 0.52 0.50

M9 4.66 8.25 15.93 19.01 19.55
0.92 0.51 0.31 0.27 0.29

M10 3.68 5.64 9.68 12.14 12.79
1.23 0.84 0.56 0.51 0.46

M11 5.60 8.71 14.19 16.72 18.45
0.79 0.49 0.34 0.30 0.33

Table 13: Landmark quantity comparision for the bfs source-destination distribution on road networks
with Distance distances and landmarks calculated with algorithm P2. Efficiency (%) is in Roman and
time (ms) is in italics.
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Name AL-R AL-R2 AL-F AL-P AL-P2

M1 4.47 6.47 5.28 5.46 6.49

M2 1.88 2.94 2.74 2.36 3.00

M3 1.80 2.28 2.06 2.04 2.48

M4 2.30 3.27 3.66 3.25 4.14

M5 2.02 2.97 3.16 2.74 3.34

M6 1.49 2.12 2.07 1.93 2.25

M7 1.19 1.58 2.07 2.26 2.72

M8 1.52 2.35 2.05 2.13 2.76

M9 1.15 1.54 1.51 1.73 2.07

M10 0.92 1.10 1.47 1.17 1.67

M11 0.65 1.16 1.28 1.52 1.74

Table 14: Landmark type comparison for the rand source-destination distribution on road networks with
Transit Time distances and 16 landmarks. Efficiency (%) is in Roman.

Name AL-R AL-R2 AL-F AL-P AL-P2

G11 6.28 7.75 11.06 11.88 11.51

G12 6.66 8.04 11.11 12.10 12.49

G13 6.67 8.04 11.13 12.12 12.51

G21 3.06 5.21 5.55 5.62 7.31

G22 3.19 5.60 5.83 6.14 7.46

G23 3.20 5.60 5.83 6.15 7.47

G31 1.38 2.60 3.21 3.20 3.94

G32 1.40 2.88 3.13 3.12 4.31

G33 1.40 2.86 3.17 3.17 4.24

G41 0.83 1.59 1.85 1.78 1.98

G42 0.86 1.64 1.77 1.86 2.08

G43 0.87 1.64 1.78 1.86 2.08

Table 15: Landmark type comparison for the rand source-destination distribution on grid networks and
16 landmarks. Efficiency (%) is in Roman.

Name AL-R AL-R2 AL-F

R11 0.31 0.31 0.33

R12 0.37 0.38 0.36

R13 0.37 0.38 0.36

R21 0.08 0.08 0.07

R22 0.09 0.09 0.09

R23 0.09 0.09 0.08

R31 0.02 0.03 0.02

R32 0.03 0.03 0.03

R33 0.03 0.03 0.03

R41 0.01 0.01 0.01

R42 0.01 0.01 0.01

R43 0.01 0.01 0.01

Table 16: Landmark type comparison for the rand source-destination distribution on random networks
and 16 landmarks. Efficiency (%) is in Roman.
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Name AL-R AL-R2 AL-F AL-P AL-P2

M1 12.05 14.08 12.82 14.95 15.28

M2 6.86 8.01 8.38 7.78 8.03

M3 6.54 6.87 6.98 6.65 7.27

M4 15.83 16.20 17.97 16.50 18.89

M5 12.67 15.66 16.21 15.45 16.99

M6 10.47 12.47 11.90 10.29 12.35

M7 13.51 13.96 17.66 16.18 18.83

M8 8.59 9.67 9.42 9.47 10.01

M9 13.39 15.47 15.83 15.39 16.81

M10 7.99 8.81 10.06 9.30 9.78

M11 10.28 11.51 13.31 12.47 14.37

Table 17: Landmark type comparison for the bfs source-destination distribution on road networks with
Transit Time distances and 16 landmarks. Efficiency (%) is in Roman.

Name AL-R AL-R2 AL-F AL-P AL-P2

G11 19.92 22.76 25.77 24.76 26.61

G12 20.95 23.43 26.82 25.35 28.09

G13 20.98 23.48 27.05 25.43 28.15

G21 17.49 20.05 21.26 22.08 22.73

G22 17.39 19.90 21.31 21.04 23.54

G23 17.38 19.85 21.32 21.04 23.46

G31 16.11 20.12 22.24 22.15 24.20

G32 16.70 20.05 22.96 23.43 25.71

G33 16.72 20.06 22.98 23.46 25.72

G41 15.65 18.89 19.87 20.58 22.52

G42 15.60 19.02 20.84 20.61 22.66

G43 15.59 19.05 20.91 20.64 22.73

Table 18: Landmark type comparison for the bfs source-destination distribution on grid networks and 16
landmarks. Efficiency (%) is in Roman.

Name AL-R AL-R2 AL-F

R11 0.124 0.127 0.160

R12 0.154 0.155 0.212

R13 0.155 0.156 0.212

R21 0.039 0.039 0.051

R22 0.052 0.051 0.067

R23 0.052 0.051 0.068

R31 0.012 0.012 0.017

R32 0.016 0.017 0.021

R33 0.016 0.017 0.021

R41 0.003 0.003 0.004

R42 0.004 0.003 0.005

R43 0.004 0.003 0.005

Table 19: Landmark type comparison for the bfs source-destination distribution on random networks
and 16 landmarks. Efficiency (%) is in Roman.
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time. Finally, one can recompute landmarks themselves using an efficient landmark selection strategy
(observe that farthest landmark selection takes less time than updating landmark distances).

When our experiments were near completion, we learned about the work of Gutman [15], who studies the
P2P problem in a similar setting to ours. Gutman’s algorithms are based on the concept of reach and need
to store a single “reach value” and Euclidean coordinates of every vertex. Based on indirect comparison,
which is imprecise for several reasons, performance of the fastest reach- and ALT-based algorithms with
16 landmarks appears to be similar, at least on the Bay Area graphs with random vertex pair selection.
With substantially fewer landmarks, our algorithm is slower. With substantially more landmarks, our
algorithm is faster. Gutman’s approach requires more assumptions about the input domain than ours, his
preprocessing is more time-consuming, and his approach does not seem to adapt to dynamic settings as
well as ours. However, his results are very interesting. If space is very limited, his algorithm is faster.
Furthermore, Gutman observes that his ideas can be combined with A∗ search. It would be interesting
to see if using Gutman’s reach-based pruning in ALT algorithms will noticeably improve their efficiency.
Another possibility is to use our lower-bounding technique in place of Euclidean lower bounds in his
algorithm. This would have the advantage of making reach-based routing apply to an arbitrary graph,
and may improve performance for map graphs as well. However, this still leaves open the questions of
computing the reach data quickly and of characterizing graphs on which the approach works well.

Unless the number of landmarks is very small, landmark distances dominate the space required by
our algorithm. We would like to note that one can compress these distances by using locality, domain
knowledge, and by trading space for time. For example for road networks, compression by a factor of two
to four is easily achievable. Such compression techniques are an interesting direction for further research.

Finally, many applications of A∗ search (e.g., solving the 15 puzzle) work with implicit representations
of huge search spaces. It would be interesting to see if our techniques can be used in such a context.
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