
KeyMenu: A Keyboard Based Hierarchical Menu

Kent Lyons, Nirmal J. Patel and Thad Starner
College of Computing, GVU Center

Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

{kent,merik,thad}@cc.gatech.edu

ABSTRACT
KeyMenu is a keyboard based hierarchical menu system orig-
inally designed for use on a wearable computer. The menu
uses a one to one mapping between buttons on the keyboard
and menu items. The KeyMenu leverages off of the advan-
tages of other pointer based menus such as Marking Menus.
It provides support for both novice and expert user interac-
tion through the use of a delay in popping up the menu. Fi-
nally, by using a consistent physical action we support the
transition from novice to expert.

KEYWORDS: Marking Menus, one-handed keypad inter-
action, wearable computers

INTRODUCTION
The KeyMenu is a new keyboard based hierarchical menu
which utilizes the same input method to navigate and activate
menu items for both the novice and expert. KeyMenu is a
pop-up menu using a grid of 3 columns and 4 rows of menu
items. Each item on the menu corresponds to a key on the
keyboard in the same relative position (Figure 1). The user
presses a special menu key to activate the menu and then
proceeds through the menu hierarchy by pressing a sequence
of keys.

In this paper we present the motivation for creating a key-
board based menu system and highlight some of the prob-
lems of keyboard access to traditional menus. We then ex-
amine alternative menus and present the design of KeyMenu
along with its advantages. Finally we discuss areas of possi-
ble future work.

MOTIVATION
The KeyMenu is an alternative to traditional menus which of-
ten require the use of a mouse and was originally inspired for
use on a wearable computer [5]. On a wearable, a pointing
device is often not appropriate. The wearable user is regu-
larly interacting with the real world, and the user’s primary
focus of attention is not on the screen shown in her head

Figure 1: Each of the twelve keys on the front of the
Twiddler (right) correspondencedirectly to a menu item
on the KeyMenu (left) in the same relative position.

mounted display. This style of use breaks the tight feedback
loop required for the hand-eye coordination needed to manip-
ulate a pointer on the display. The problem is compounded
by the small screen size both in terms of pixels and field of
view making the visual acquisition of the cursor on the dis-
play difficult.

The physical control of the pointer’s input device is another
problem on a wearable computer. Although there are a va-
riety of devices that can be used to control a pointer, many
become difficult to use when the user is not stationary. The
mechanical noise created by the user moving through her en-
vironment often affects the pointing device creating erratic
movement in the cursor. This effect was prominent in data
we collected while building a system to capture a wearable
user’s interaction in a realistic setting [4].

While using a pointing device is problematic while mobile,
touch typing using a one handed keyboard such as the Twid-
dler is still possible while running down a flight of stairs. The
Twiddler, shown on the right of Figure 1 and in use in Figure
2, is a chording keyboard with twelve buttons on the front op-
erated by the user’s four fingers and four to six modifier but-
tons on the back operated by the thumb. The KeyMenu is de-
signed to leverage this physical layout in navigating menus.

TRADITIONAL MENUS
Traditional menus can be navigated with a variety of tech-
niques such as using a mouse to select a top level menu item

1



Figure 2: The Twiddler chording keyboard has three
columns and four rows of buttons on the front operated
by the user’s four fingers. Four to six modifier keys
(such as “Alt”) are on the back and operated with the
thumb.

followed by either sub-menus or commands. Many menus
can also be navigated with the keyboard, and some com-
mands can be executed directly with a shortcut key sequence.

For example, the web browser Mozilla (Figure 3) supports
numerous ways to close the current window. With the mouse,
the user can select File and then Close. The next option is
to press “Alt+F” to open the File menu. The user then has
the choice of navigating the sub-menu using the arrow keys
(pressing down 4 times then “Enter”) or to activate Close di-
rectly by pressing “C”. Finally, an expert user can bypass the
menu entirely and use the shortcut key, pressing “Ctrl+W”
from the main window.

These methods offer varying levels of support for novice and
expert users; however, there is a disconnect between the dif-
ferent ways of executing a command. If the user is to change
between methods, she would need to make a mode switch
in how she controls the system. Changing from the mouse
to keyboard requires a very different interaction, and even
switching from navigating the menus with a keyboard to us-
ing shortcuts requires the use of different key presses. The
only support for making a transition between using the tech-
niques are the cues placed on the menu. In the above exam-
ple the “F” in File is underlined indicating it can be activated
with “Alt+F”. In the menu, the “C” is underlined indicating
that it can be activated by pressing that letter. The last cue is
the shortcut key sequence on the right side of the menu item.

Unfortunately, even the keyboard interaction is inconsistent.
The user presses “Alt+F” to open the File menu, but once the
menu is open “Alt+C” does not activate Close even though
both are highlighted with an underlined letter. Likewise, if
the File menu is open, pressing the shortcut key only dis-
misses the menu and does not execute the command. This is
not an isolated occurrence; a quick survey of several different
web browsers on different platforms (Mozilla and Netscape
Navigator on Linux and Navigator and Internet Explorer on

Figure 3: In Mozilla, there are several ways to activate
“Close” using either the keyboard or mouse.

Microsoft Windows) shows similar problems.

RELATED WORK
Pie Menus [1] and Marking Menus [3] are an alternative to
traditional menus which differ in layout and mouse utiliza-
tion. The menus are organized in a circle and the user selects
a menu item by moving the mouse pointer at the correct angle
into a wedge of that circle. Hierarchical Marking Menus [2]
allow multiple levels of menus. The user draws a stroke into
a wedge of the circle which can then pop-up a sub-menu.
The user selects the sub-menu by continuing the gesture in
the correct direction to select the desired element.

These radial menus support novice users by showing the
menu after a short delay. The display provides a prompt for
the user of the available menu options when needed. An ex-
pert uses the same physical motion as the novice but does not
pause during the stroke. When executed without delay the
menu is not shown, and the command is activated directly.
Thus, a novice can progress to an expert skill level with the
interface without needing to learn new actions. KeyMenu
transfers these benefits into a keyboard only interaction.

KeyMenu DESIGN
The KeyMenu is designed around a keyboard only input in-
teraction that provides menu prompts to a novice user and
allows an expert user to execute the command directly with-
out distractions. The design eliminates the mismatch in the
interaction methods of traditional menus highlighted in the
Web browser example. As in Marking Menus, we aid the
transition from novice to expert use by utilizing a consistent
input technique.

The KeyMenu uses a grid of three columns and four rows that
corresponds directly to the physical buttons on the Twiddler
keyboard or the keypad of a mobile phone (Figure 1). The
user activates the KeyMenu by pressing “Alt” which serves
as the menu key. This button is activated by the thumb on the
Twiddler and is not part of the twelve buttons used to navi-
gate the menu items. Once the menu is activated, the display

2



shows up to twelve menu items. The user navigates the menu
hierarchy by pressing buttons in the corresponding positions
on the keyboard. For example, to activate the menu item
in the top left corner of the menu, the user presses the top
left key on the keyboard. The current position in the menu
hierarchy is displayed at the top of the KeyMenu providing
feedback to the user.

Items on the KeyMenu are structured using a combination
of frequency of use and and ease of pressing the associated
keyboard button. This layout is used as an alternative to the
convention where the first letter of the menu item instanti-
ates the command. As with traditional menus, there is often
more than one item that could use the same letter. For per-
spective, a default install of Emacs has over 200 commands
bound to keys and there are over 2000 runnable commands
in total. Another difficulty with using the first letter of the
menu item is that very commonly accessed items might be
in very inconvenient locations. KeyMenu accounts for such
difficulties. For example, on the Twiddler the index finger
is used to press buttons on the top row. The “home row”
where the user’s fingers rest is the middle column of buttons.
Consequently, the optimal placement for the most commonly
accessed menu items is a “T” across the top and down the
middle of the KeyMenu.

KeyMenu INTERACTION
We used KeyMenu to provide a menu for Emacs. Figure
4 illustrates a novice user’s interaction with the system us-
ing a Twiddler style keyboard. To pop-up the menu the user
presses the menu key using her thumb. The user then waits
for a short period (approximately 0.5s) and the system dis-
plays the main menu showing the available options. Next,
the user presses the top middle key activating the File sub-
menu. Finally, the user presses the top right key activating
the Close command.

KeyMenu utilizes a delay in displaying the menu similar to
the Marking Menu [3]. After activating the KeyMenu, when-
ever there is a pause greater than 0.5s the menu is shown to
the user. This enables us to support both novice and expert
users with the same technique. In the above example the
user waits after pressing the menu key to see the available
options. As the user traverses the menu hierarchy by press-
ing keys, the menu updates showing the corresponding sub-
menus. The display is dismissed when the user activates a
command or cancels the menu by pressing the menu key.

The delay in showing the menu also affects more advanced
users. An intermediate user might know that Close is un-
der File but is not sure of exactly which key corresponds to
Close. The user can press the menu key and then the key for
File in quick succession. After a small pause the File sub-
menu is shown. The user can verify that she is in the correct
sub-menu be reading the top line of the menu which now
shows “File:”. The user can now see what key to press and
activates Close. An expert user can enter the entire key se-

Main menu is shown:

’File’ submenu is shown:

’Close’ command is executed:

Application:

User wants to see menu, 
presses menu key.

User wants to activate 
’Close’, presses 

top right key.

User wants to see ’File’ 
submenu, presses 

top middle key.

Figure 4: The KeyMenu is used in Emacs with a Twid-
dler style keyboard. The left column shows the applica-
tion state, and the right column represents the buttons
pressed on the keyboard.

quence without pause and the command is executed directly,
never displaying the menu. Here the key sequence acts like a
shortcut key.

We simplify user interaction by always using the same key
sequence to activate a command. KeyMenu gives prompts
to the user when needed by incorporating a delay which acti-
vates the menu’s display showing the user the available menu
options. Through repetition a novice user learns the key se-

3



quences used to select menu items. The KeyMenu responds
to the speed of the user’s interaction and changes feedback
accordingly. When the user knows the sequence of keys to
press, the menu stays hidden allowing the user to execute the
command directly without distraction.

While leveraging off the advantages of Pie Menus and Mark-
ing Menus, the KeyMenu does have some additional benefits.
The detection system is much simpler for the KeyMenu. In-
stead of interpreting a potentially ambiguous stroke the sys-
tem only needs to register a sequence of key presses. The
radial menus are also limited by the accuracy with which a
user can manipulate the pointer to select the region, which in
turn limits the number of menu items. With KeyMenu, the
user has the advantage of tactile feedback from the physical
buttons on a keyboard. The limit for the physical articula-
tion of KeyMenu becomes equivalent to what the user can
touch-type easily.

FUTURE WORK
There are several areas of future work. The first is in the area
of evaluation. Does transition from novice to expert happen
in the same way as in Marking Menus? Is the physical artic-
ulation easier with the KeyMenu and is there a similar cor-
responding decrease in error rate, reaction time or cognitive
load?

Another question concerns the number of items to use on the
menu. A grid of three columns and four rows in very natural
with the Twiddler. However a 3x3 grid might be easier to
conceptualize and may provide benefits to novice users.

As with other menus there are layout issues that could be
examined. It would be interesting to explore techniques for
menu item placement that exploit higher level semantic in-
formation of an item (similar to the first letter convention of
traditional menus) in addition to utilizing the “T” of loca-
tions that offer the easiest use on the KeyMenu. Also, many
commands in applications such as Emacs have duals (search
forwards or backwards) or operate on different targets such
as checking the spelling of a single word, a selected region
or a whole file. There is a tradeoff between making the menu
broader to incorporate each different permutation explicitly
and creating a deeper menu hierarchy such that the different
features can be composed using sub-menus. Kurtenbach ex-
plored some of these issues for Marking Menus [3]; it would
be interesting to determine if there are similar effects in Key-
Menus.

Mobile phones are increasingly becoming an area of user
interface research. They share some similar problems with
wearable computers with limited screen real estate and use
in a variety of environments and situations. Given the very
different interaction, a traditional desktop style pointer is not
appropriate and the interaction using various types of buttons
becomes critical. On these phones, menus are common al-
lowing access to the various features of the phone and allow-

ing configuration. The KeyMenu could leverage the phone’s
display and keypad (also a three column by four row layout)
to allow navigation of the menus.

Another area to investigate with the KeyMenu is with using
traditional desktop keyboards. Our prototype supports these
keyboards by rotating the menu 90 degrees into a 4x3 grid.
The home row of the right hand is used for the center row on
the menu. The question to explore is if the mapping is still
meaningful to the user. On the Twiddler or mobile phone the
mapping of keys to menu items is one to one. Which set of
twelve keys to use on the normal keyboard is less obvious to
the user and could potentially cause problems.

CONCLUSION
We have presented the KeyMenu, a keyboard based hierar-
chical menu system that mirrors the menu layout to the phys-
ical layout of the keyboard. Each key on the keyboard maps
directly to a menu item in the same relative layout.

We support novice use by using a delay similar to Marking
Menus. When the user pauses in entering a key sequence,
the menu is shown providing a prompt. As a user learns the
key sequences, she needs less support from the system and
can enter them swiftly. An expert enters the same sequence
without pause which bypasses the menu display entirely, ac-
tivating the command directly.

ACKNOWLEDGMENTS
This work is funded in part by NSF Career Grant #0093291.

REFERENCES
1. J. Callahan, D. Hopkins, M. Weiser, and B. Shneider-

man. An empirical comparison of pie vs. linear menus.
In Proceedings of CHI’88, pages 95–100, 1988.

2. G. Kurtenbach and W. Buxton. The limits of expert per-
formance using hierarchic marking menus. In Proceed-
ings of CHI’93, pages 482–487, 1993.

3. G. Kurtenbach and W. Buxton. User learning and perfor-
mance with marking menus. In Proceedings of CHI’94,
pages 258–264, 1994.

4. K. Lyons and T. Starner. Mobile capture for wearable
computer usability testing. In Proceedings of IEEE In-
ternational Symposium on Wearable Computing (ISWC
2001), Zurich, Switerland, 2001.

5. T. Starner. Wearable Computing and Context Aware-
ness. PhD thesis, MIT Media Laboratory, Cambridge,
MA, May 1999.

4


