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ABSTRACT
We describe our initial efforts to learn high level human

behaviors from low level gestures observed using on-body
sensors. Such an activity discovery system could be used to
index captured journals of a person’s life automatically. In
a medical context, an annotated journal could assist thera-
pists in helping to describe and treat symptoms character-
istic to behavioral syndromes such as autism. We review
our current work on user-independent activity recognition
from continuous data where we identify “interesting” user
gestures through a combination of acceleration and audio
sensors placed on the user’s wrists and elbows. We exam-
ine an algorithm that can take advantage of such a sensor
framework to automatically discover and label recurring be-
haviors, and we suggest future work where correlations of
these low level gestures may indicate higher level activities.

1. INTRODUCTION

On-body sensors provide a unique perspective into the ac-
tions and behaviors of their owner. A first-person view of
the environment and a direct, mobile relationship with the
wearer frees recognition systems built around on-body sen-
sors from many of the traditional perceptual problems that
have plagued sensor systems based in the environment. Per-
ceptual difficulties such as occlusion, scale, and interference
can be greatly diminished, while practical problems of de-
ployment and coverage can also be alleviated.

We believe that the reduction of perceptual problems
is also accompanied by a new set of physical constraints
that, rather than hinder analysis of gestural and behavioral
data, can be used to make simplifying assumptions that aid
recognition systems. In this paper, we present motivating
research that shows that careful placement of on-body sen-
sors can lead to simple, yet highly effective, detection and
segmentation methods for context dependent, “interesting”
behaviors. Our goal is to use such techniques, along with
traditional data-driven analysis and machine learning meth-
ods, to build an end-to-end system that processes raw data
from on-body sensors and learns contextual “primitive ac-
tions.” Ultimately, we plan to extend this learning to higher

level scripts composed of temporal relationships between
these primitives.

Automatically learning such scripts and primitive ac-
tions provides several benefits. Traditional arguments for
unsupervised learning, such as reducing cost by precluding
the need to manually label data, aiding adaptation to non-
stationary patterns, and providing early exploratory tools,
continue to apply in this setting. Furthermore, such systems
have the ability to learn useful patterns of behavior that may
be unknown or simply transparent to human observers, pos-
sibly including the user himself (for example, bouncing a
knee nervously when talking on the phone).

One practical application of activity discovery may be
in long term medical or behavioral treatments. For example,
austistic children often exhibit individualized self-stimulation
(“stimming”) behaviors such as rocking back and forth, walk-
ing on toes, or sudden flapping of the hands. If a system
can be created that can discover such behaviors and cor-
relate them to each other and to environmental factors, an
automatic, annotated journal of the child’s behavior can be
maintained. Such a journal may become a valuable tool for
therapists in describing children’s behavior and in analyzing
the effect of various treatments on that behavior.

2. RELATED WORK

Many other researchers have explored activity recognition
using on-body accelerometers, but most have worked with
comparatively simple activities such as walking, running,
sitting, and shaking hands [1, 2, 3]. We are unaware of
previous work that has explored the discovery of recurring
activities from accelerometer data. In the audio domain, sit-
uation analysis was investigated by Peltonen et al. [4], and
work by Clarkson et al. explored context awareness from
wearable sensors [5].

Ashbrook and Starner discovered “significant locations”
through unsupervised analysis of large GPS datasets [6], but
the discovery relied on the spatial nature of the data and
not on temporal patterns. Much literature in the data min-
ing community is concerned with clustering time series data
(see [7] for a review) but that work typically assumes a fixed



Fig. 1. Sensor locations: microphones (1, 2, 3), accelerom-
eters (4 and 5), and a wearable computer (6).

pattern length and univariate data, two unrealistic assump-
tions with regard to human actions. Systems such as MEME
in the bio-informatics field discovers noisy nucleotide pat-
terns [8], and recent innovations allow for variable length
patterns. The weak notion of time and naturally discrete al-
phabet, however, lead to several simplifications that are un-
realistic for accelerometer or audio data representing human
activities.

3. ON-BODY SENSORS

The on-body sensors used to support our research are based
on the ETH PadNET sensor network equipped with two 3-
axis accelerometers and two Sony microphones [9]. The
accelerometers were placed on the user’s wrists to capture
the gross motion of the hands, while the microphones were
attached at the wrist and upper forearm of the right arm (see
Figure 1).

The choice of placement of the microphones proved es-
sential to segmenting “interesting” behaviors. Because the
distance between the microphones is constant due to the
fixed length of the user’s forearm, the intensity difference
between the microphones can be used as a rough indica-
tion of the proximity of an audio source to the user’s hand.
We expect sounds caused by the hand interacting with an
object to be very loud in the wrist-mounted microphone rel-
ative to the forearm. In contrast, sounds that are far from
the user should have roughly equal intensity at both micro-
phones (see Figure 2). Previous experiments placed the sec-
ond microphone at the user’s chest (microphone position 1
in 1), but this led to significantly worse segmentation per-
formance due to the high variation in distance between the
microphones as the user moved his arm, thus breaking the
correlation between intensity difference and proximity.

Fig. 2. When an interaction at the hand creates a sound, the
sound intensity at the hand is much greater than that at the
elbow. When a sound occurs in the environment, the sound
intensity at the hand and elbow are approximately equal.

4. MODELING PRIMITIVE ACTIONS

Given the ability to roughly segment actions that are caused
by the user, it is still necessary to recognize known behav-
iors and to cluster new behaviors to facilitate learning and
adaptation.

For audio classification, the raw 44.1kHz signal is down-
sampled to 2kHz before a 100ms sliding window is used to
compute FFT coefficients at 25ms increments. Linear dis-
criminant analysis (LDA) is used to reduce the dimension-
ality of the resulting FFT coefficients. Finally, classification
is achieved by projecting each test point into the LDA space
and finding the nearest class centroid using the L2-norm.

Hidden Markov models (HMMs) were used to classify
each segment according to the observed accelerometer data.
First the data is transformed into a feature vector consist-
ing of the number of peaks within the segment considering
all three axes, the mean amplitude of these peaks, and the
raw x-axis data. A HMM was trained for each class using a
mixture of Gaussian distributions for each observation node.
The number of nodes and number of mixture elements in
each model was manually specified for each class. Finally,
a classification decision is made by selecting the class cor-
responding to the model with the highest likelihood for the
test data.

After both the audio and accelerometer-based classifica-
tion process, the results are fused using a simple heuristic.
Whenever the two modalities yield the same classification,
this class is accepted. If the classifiers disagree, however,
the segment is labeled as not belonging to any class.

Figure 3 depicts some of the accelerometer data, the
synchronized audio intensity difference signal, and the seg-
ment labels from our first experiment. In this domain, sub-
jects equipped with the PadNET sensors used tools typical
for a wood workshop. Five subjects followed a twenty-one
step assembly script which involved nine activities: ham-
mering, sawing, filling, drilling, sanding, grinding, tighten-
ing a screw, tightening a vise, and opening a drawer. The
system correctly labeled each frame 70%, 66.1%, and 60.5%
of the time for the user dependent, user adapted, and user
independent cases, respectively. While such results may ap-



Fig. 3. Labeled audio signal from wood workshop experi-
ment

pear low, note that this is a raw, frame–level metric. Evalu-
ating the system at the action–level based on which frames
represented “serious” errors like misrecognizing an activ-
ity, inserting an activity where there was none, or failing to
recognize an activity was much more promising, yielding
8.2%, 8.6%, and 12.7% error rates for the three conditions.
One of the most encouraging results is that the system could
use the sound features to avoid insertion errors – as little as
0.6% of the frames in the difficult user independent case
(for more results, see [10]). Such low false positive rates
inspired us to investigate a system that could automatically
discover the classes of activity that a user performs.

Thus, we are currently developing methods of learning
primitive actions without prior models or labeled training
data. Building on PERUSE, an unsupervised algorithm that
analyzes time series to find recurring patterns [11], we are
designing a system for discovering primitive actions by an-
alyzing accelerometer data. Our method relies on the sta-
tistical similarity between occurrences of a particular action
and the relative dissimilarity between different actions.

The problem of discovery in time series data is particu-
larly difficult relative to isolated and continuous recognition
because neither the location of each occurrence nor a model
of each class is known. Thus, both the location and model
parameters must be simultaneously estimated from the data
using only the expected pattern length as guidance. To ad-
dress this problem, our system first slides a fixed–length
window across the time series to generate a set of poten-
tial occurrences. Then, for each occurrence, a 10 state left–
right HMM is initialized using the segmental k-means algo-
rithm and then adapted via Baum-Welch reestimation [12].
During this process, the covariance matrix of each Gaussian
observation distribution is held fixed at kI, where k is set
proportional to the total data variance for the corresponding
dimension. After initialization, the HMM is used to find the

Fig. 4. Pattern discovery results on the exercise dataset. The
top row of labels are ground truth, while the bottom row was
automatically discovered. The segment labeled “W” is the
only major error.

n best matches in the dataset, where n is a parameter of the
system. The matches are located by using Viterbi alignment
to build a trellis for each sequence and then scanning the
last row (corresponding to the last state of the HMM) for
a maximum. This procedure is repeated for each possible
starting position, but since the length of the trellis is con-
strained to be proportional to the expected pattern length,
the complexity only grows linearly with the data.

Finally, each potential occurrence is scored by the sum
of the data log–likelihoods of its n best matches, and the
best occurrence is selected. Importantly, the log–likelihood
is normalized by the length of the matching sequence, yield-
ing the average likelihood per frame. The n occurrences are
then removed from the time series, and the algorithm iter-
ates to find the next pattern.

Figure 4 shows results of discovered patterns in a weight
lifting domain. A 3–axis accelerometer mounted on the
wrist recorded data at 100Hz while the subject performed
several repetitions of six kinds of dumbbell exercises in-
cluding a shoulder press, tricep extension, and bicep curl.
Eight sequences, each roughly one minute long, were an-
alyzed after each sensor reading was transformed by x′ =
sign(x) · ln(|x| + 1). The system successfully discovered
all six actions in the dataset, though several discovered pat-
terns refered to the same action. Of the occurrences labeled,
68% corresponded to manually labeled ground truth. While
preliminary, these results suggest the feasibility of activity
discovery using on-body sensing.

5. FUTURE WORK: REPRESENTING AND
LEARNING BEHAVIORAL SCRIPTS

We wish to progress from the ability to recognize an indi-
vidual’s activities from continuous data, to discovering in-
dividual actions, to learning higher level behavioral scripts.
Such scripts can supply background information to aid fu-
ture data interpretation and allow prediction of future events



and event sequences based on current observations [13, 6].
For example, consider a typical daily occurrence of a pro-
fessor entering her office. In general, it is difficult to de-
scribe the exact steps that she may take or to specify a prob-
ability distribution over a range of possible actions before
observing the idiosyncrasies of the particular professor. She
may unlock her office door, hang her jacket, and then grab a
cup of coffee in the office kitchen. She could also check her
email, skim the front page of the day’s newspaper, or rush
off to a class that she teaches each morning.

As described, our system could potentially discover re-
curring actions such as unlocking a door, unfolding a news-
paper, sitting down at a desk, or hanging a jacket. The next
goal then, is to extend this ability by learning temporal,
causal, and statistical relationships between such actions.
In isolation, the ability to discover and subsequently recog-
nize an action only provides the ability to annotate a behav-
ior. When coupled with behavioral scripts, however, such
a system gains the ability to make predictions about future
events, thereby enabling proactive aid, better planning, and
more sophisticated models of normal behavior that can be
used to enhance recognition rates [14].

Several representations for higher level scripts are possi-
ble. Due to the uncertainty inherent in human actions and in
the accuracy of the recognition system, probabilistic models
are likely to prove more useful than logical representations.
Past research has looked at the use of bigrams and trigrams
as an effective yet computationally inexpensive represen-
tation [6], while others have turned to more sophisticated
models such as stochastic grammars, which provide greater
representational power but are more computational expen-
sive and more difficult to accurately learn [14, 15]. Both
static and dynamic Bayesian networks represent other vi-
able models for which a variety of powerful learning and
inference algorithms have been developed [16].

6. CONCLUSIONS

We have discussed research–in–progress for discovering be-
havioral scripts using body–worn microphones and accelerom-
eters. Preliminary results show that activity discovery is
possible using such sensors, but that much research is needed
to improve the accuracy and efficiency of the discovery pro-
cess.
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