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Abstract

The paper deals with the design of a sound recognition
system focused on an ultra low power hardware implemen-
tation in a button like miniature form factor. We present the
results of the first design phase focused on selection and
experimental evaluation of sound classes and algorithms
suitable for low power realization. We also present the
VHDL model of the hardware showing that our method can
be implemented with minimal resources. Our approach is
based on spectrum analysis to distinguish between a sub-
set of sound sources with a clear audio signature. It also
uses intensity analysis from microphones placed at different
locations to correlate the sounds with user activity.

1. Introduction

After vision, sound is the second most important source
of information for human beings. The amount of informa-
tion contained in a sound signal is best illustrated by the
fact that blind people can often get around using audio in-
formation alone, in many cases developing a near perfect
understanding of the situation. In addition, sound has the
advantage of manageable data rates and much smaller pro-
cessing complexity than image recognition.

Related Work To date, the potential of wearable context
recognition based on sound has been studied in some detail
by two research groups: Auditory scene analysis focused on
detecting distinct auditory events and classifying them has
been done by MIT’s Media Lab [4, 5]. The Audio Research
Group at Tampere University, Finland, works on auditory
scene recognition, which focuses on recognizing the context
or environment, instead of analyzing discrete sound events
[13]. In addition, the classification of sound types has been
investigated in the context of hearing aid improvements [2].

Paper Contributions and Organization The sound
recognition work presented in this paper is part of our ongo-
ing research on using arrays of simple, ultra low power sen-
sor nodes distributed over the user’s body for context recog-

nition. Our final objective is the design of the SoundButton:
an ultra low power, miniaturized sound recognition device
that could be integrated into the user’s clothing, watch or
other accessory and could operate for weeks on a small bat-
tery or even from energy extracted from the environment.

In this paper, we report the results of the first phase of the
sound button design. As our focus is on low power, we be-
gin with the selection of sounds and algorithms that provide
information not accessible with other sensors while allow-
ing reliable recognition with minimum computational re-
sources. This includes a novel method for detecting sounds
caused by the user’s hand through intensity analysis of sig-
nals from SoundButton devices placed on different loca-
tions of the body. We then present the results of a exper-
imental analysis based on realistic scenarios to verify our
recognition method and to optimize our algorithms for the
best tradeoff between recognition accuracy and computa-
tional complexity. Finally, we describe the VHDL design
of the corresponding recognition hardware showing that our
method can be implemented with minimal resources.

2. Design Considerations

The SoundButton is meant to be part of a wearable con-
text recognition system illustrated in Fig. 1. A number of
miniaturized sensor nodes are invisibly integrated into the
users outfit, where they can best extract the relevant infor-
mation (e.g. motion sensors on different limbs, external
light sensors on the shoulders, etc.) [8, 11]. The sensors
provide context information wirelessly to a central wearable
computing node which is also responsible for sensor con-
figuration and control. Ideally, the sensor nodes should be
fully autonomous operating for months or years on a minia-
ture battery or even better extracting the energy from the
environment. Therefore, the power consumption is a cen-
tral topic in our work. This has two implications. First the
sensor nodes may need to perform certain amount of local
processing, to minimize the amount of data that needs to
be transmitted (wireless transmission is much more energy
consuming than computation). This is particularly impor-
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Figure 1. Kitchenette scenario: Dots indicate
sensors (SoundButtons with arrows), num-
bered circles indicate household appliances

tant for sound sensors due to the high sampling rate. Sec-
ondly, for the individual sensors the simplicity of the pro-
cessing algorithms running on the sensor nodes needs to be
given priority over the accuracy and generalization capabil-
ity.

Initial Constraints Regarding the second implication, we
constrain ourselves to sounds and algorithms that don’t re-
quire continuous operation of the sounds sensors and can be
used with a low duty cycle (approx. 5%). The relevance and
limitations of this approach will be discussed in section 3.3.

The sounds we are concentrating on are dominant, quasi
stationary in a known environment.

By dominant, we mean that the sound in question is the
loudest sound source received by the system. Thus the
recognition does not have to deal with separating the rel-
evant signal from background noise.

Stationary refers to the temporal evolution and implies
that the sound is essentially constant over time. This means
that, except for windowing effects, the spectrum of the
sound is identical in all time slots regardless of their position
and length. Sound classification is thus reduced to pattern
matching of the spectrum acquired from an arbitrary sample
window. Neither signal segmentation nor time series analy-
sis of the different phases of a sound (such as the phonemes
of a spoken word) are required.

We speak of quasi stationary sounds because most rele-
vant sounds have negligible initial and terminal phases and
have a fairly long (at least about a second) main phase that
can be described as an essentially stationary sound with

added noise. The departure from strictly stationary sounds
means that instead of having exactly identical spectra, dif-
ferent time windows from the same signal will have similar,
but slightly varying spectral signatures.

Finally, by known environment, we mean that other
sources of information are used to constrain the number of
sounds that we have to discriminate in any given situation.

3. Algorithms
3.1. Sound Classification

The task of sound recognition can be divided into 3 sub-
problems: (1) feature generation, (2) dimensionality reduc-
tion through feature selection and (3) the actual classifica-
tion. For each phase, we compared different algorithms
to attain an optimal tradeoff between recognition rate and
computational complexity.

Features Targeting sounds that remain stationary for a
time period in the range of at least one second means that
we do not have to perform a continuous acquisition. In-
stead, short frames or time windows tw can be periodi-
cally recorded and analyzed to reduce the duty cycle and
power consumption of the system. As with all parame-
ters, the optimal value for tw was determined empirically
(see section 4.1). To make the system more robust to noise
and varying distance between microphone and the sound
source, the samples were normalized. The first set of fea-
tures consists of the magnitude of half of the FFT compo-
nents |F [0]| . . . |F [N

2 − 1]|, retrieved from a N -point Fast
Fourier Transformation (FFT). The second set of features
consists of features which have been used by other groups
for specific, complex recognition problems, in particular,
speech recognition [9, 10, 13]. In the time domain the fol-
lowing 3 features were calculated: zero crossing rate, fluc-
tuation of amplitude and 90%-10% width of amplitude his-
togram distribution. The remaining 5 features were applied
in the frequency domain: frequency centroid, bandwidth,
spectral roll-off point, fluctuation of amplitude-spectra and
band energy ratio in 4 logarithmically divided subbands. As
a third set 6 cepstral coefficients (CEP) were added to the
set of 8 audio features.

Feature Selection Three different feature selection meth-
ods were investigated: Linear Discriminant Analysis
(LDA), Principal Component Analysis (PCA) [6] and a
correlation matrix which allows to discard all correlated
features and to keep only non-correlated features. Addi-
tionally, we also investigated the possibility to classify the
features directly, without reducing the dimensionality first.
Since we only need to recognize a limited number of sounds
per location, the LDA is applicable in our case. Therefore,
in the ‘training phase’ a transformation matrix can be cal-
culated with the class-dependent transformation form of the
LDA [1].
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Classification Two different classifiers were evaluated to
classify the features that were selected in the previous step:
A k-nearest neighbor (k-nn) classifier (with k from 1 to 10)
and a nearest class center classifier were used. In the latter
case, the mean values of each class are used as a class cen-
ter. A test point is assigned to the class associated with the
minimum Euclidean distance to the class center.

Combining Features, Feature Selection and Classifiers
Tab. 1 gives an overview of the 13 different combinations of
features and feature selectors we used to determine the op-
timal recognition method. All 13 combinations were classi-
fied using both the nearest class center classifier and the k-
nn classifier. Fig. 2 and Fig. 4 give some examples of the re-
sulting recognition rates. The 13 pairs of bars correspond to
the 13 different combinations, the brighter bars indicate the
results of the nearest class center classifier while the darker
bars indicate the maximum of the k-nn classification result
(for k from 1 to 10).

Table 1. Features and feature selectors
No. Feature Feature selector

1 FFT LDA
2 FFT PCA
3 FFT keep all

4 8 audio features LDA
5 8 audio features PCA
6 8 audio features keep all
7 8 audio features keep uncorrelated
8 8 audio features keep uncorrelated + LDA

9 8 audio features + 6 CEP LDA
10 8 audio features + 6 CEP PCA
11 8 audio features + 6 CEP keep all
12 8 audio features + 6 CEP keep uncorrelated
13 8 audio features + 6 CEP keep uncorrelated + LDA

3.2. Intensity Analysis with two Microphones

In general, two microphones 1 and 2 placed at different
locations on the body will have different distances to the
sound source. Thus the signal intensities I1 and I2 will be
different. Interestingly, since the intensity of a sound signal
is inversely proportional to the square of the distance from
its source, the ratio of the two intensities I1/I2 depends on
the absolute distance of the source from the user. Assuming
that the sound source is located at a distance d1 from the
first microphone and d1 + δ from the second, the ratio of
the intensities is proportional to

I1

I2
∝ (d1 + δ)2

d2
1

=
d2
1 + 2d1δ + δ2

d2
1

= 1 +
2δ

d1
+

δ2

d2
1

For sound sources located far from both microphones (and
thus from the user), d1 will be much larger then δ (since δ

can not be larger than the distance between the body loca-
tions on which the microphones are placed). As a conse-
quence, the quotient will be close to 1. On the other hand,
if the source is very close to the first microphone we have
in general d1 < δ and with it I1/I2 � 1.

Thus putting the first microphone on the wrist and the
second one on the chest, we can use a large quotient as a
sign that the sound was generated close to the user’s hand.
Often this means that the sound was caused by something
that the user did with his hand. In terms of computing com-
plexity, the calculation of the intensity is free since its com-
putation (sum of the squares of all samples) is included in
the normalization of the audio samples (section 3.1): The
relation between the RMS (Root Mean Square), which is
used to normalize the N samples of the time window tw,
and the intensity I is given by RMS =

√
I/N .

3.3. Relevance

Restricting the analysis to a few dominant and quasi
stationary sounds at a time and relying on few millisec-
onds samples each second might seem too strict to be use-
ful. However, an analysis of a number of scenarios such
as Household Monitoring, Assembly and Maintenance, Of-
fice Assistance and Outdoor Guidance has shown that many
events occurring in the environment are accompanied by a
loud sound that is clearly distinguishable from the back-
ground. In addition, the majority of such sounds fall within
our definition of quasi stationary (see Tab. 2).

In most cases, other sensors (GPS, inertial navigation,
network location) can restrict the users whereabouts to a
room or a particular outdoor location. We have found that
in most locations there are just a few (between 5 and 10) fre-
quently occurring, relevant sounds. Thus focusing on small
groups of sounds is legitimate.

Since we assume the SoundButton to have limited mem-
ory it is able to store the transformation matrices and clas-
sifier parameters for at most a few sound groups at a
time. Fortunately in most everyday situations people tend
to spend considerable amount of time at limited set of lo-
cations. When at work one would move predominantly be-
tween a few offices, the lab, and the cafeteria. Thus it is
possible to organize relevant sound groups into sets, with
each set corresponding to a certain higher level location and
being relevant during a different part of the day. As a con-
sequence at any given time the SoundButton contains only
the parameters for the currently relevant sound group set.
Whenever there is a change in high level location the cor-
responding set is downloaded from the central computer.
Since in general such a change in high level location will
happen only a few times a day, it is not relevant for the
overall power consumption.

Interestingly, if we desist from a low power design and
start to sample continuously, the intensity analysis with two
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microphones helps us to identify even very short sounds
that were caused by the user (e.g. opening and closing of
a drawer, banging of a door). In [12] we have shown, that
with this method and just using FFT, LDA and a simple
classifier a high recognition rate of the user’s activity can be
achieved. Fig. 2 shows that averaging features over several
consecutive frames (in this case twenty 53ms frames) helps
to improve recognition for ‘difficult’ classes. The sounds
were taken from [7] and contained a street, a restaurant, a
lecture scene and a conversation.
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Figure 2. Recognition rates, frame averaging

4. Experiments

To evaluate our approach and to determine the optimal
combination of features, feature selectors and classifiers we
have performed an experimental analysis on a selected set
of sounds. The sounds were chosen to represent typical set-
tings for Household, Maintenance, Office, and Outdoor sce-
narios as shown in Tab. 2.

For each scenario several 10 to 30 seconds long sam-
ples of 5 (4 for the outdoor scenario) relevant sounds were
recorded with 16 bit resolution and 48kHz sampling fre-
quency using a Sony microphone (type ECM-T145). Since
the user was standing in front of the appliance, the distance
from the sound source and the microphone is in the range
of 10-50cm for indoor scenarios.

Table 2. Sounds recorded for experiments
Sound group Sounds

Kitchenette microwave, coffee grinder, coffee maker,
(Household) hot water nozzle, water from water tap
Office printer, copy machine, telephone,

typing on keyboard, ventilator
Workshop sawing, drilling, hammering,
(Maintenance) grinding, filing
Outdoor inside tram and bus, passing cars,

raindrops on umbrella

4.1. Recognition Experiments with one Microphone

Parameter Optimization The sound samples were used
to determine how the three parameters crucial for low power
consumption; length of the sampling window tw, sampling
rate fs and resolution can be reduced without incurring an
unacceptable penalty on the recognition rate. tw was var-
ied between 10ms and 110ms, the sampling frequency fs

was changed between 1kHz and 10kHz by resampling the
48 kHz recording. After resampling, samples were con-
verted to 8 bit resolution.
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Figure 3. Recognition rate of outdoor sounds
as function of fs and tw

An investigation of a selection of combinations from
Tab. 1 (see Fig. 3 for two examples) revealed that a sam-
pling rate around 5kHz still gives a good recognition rate.
For later experiments we used fs = 4.8kHz and 256 sam-
ples, which results in tw = 53.3ms. In terms of resolution,
it was found that there was hardly any difference in recog-
nition rates between the 16 and the 8 bit signals.

Recognition Rates Fig. 4 shows the recognition rates of
all sound groups using the extracted parameters. To further
validate our approach all 19 sounds were classified together.

From Fig. 4 it can be concluded that a simple recogni-
tion method with just FFT components as features, an LDA
matrix transformation for dimensionality reduction and an
nearest class center classifier (first bar on the left) gives
sufficient high recognition rates. Moreover, since some of
the other features are not well adapted to our problem, this
method results in some of the highest recognition rates. In
terms of complexity, this algorithm is one of the best for a
low power implementation.

4.2. Experiments with two Microphones

To evaluate the feasibility of using intensity differences
between two microphones, the workshop and kitchenette
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Figure 5. Sound intensity summed over a 51.2 ms sliding window for three different sounds
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Figure 4. Recognition rates

sounds were recorded using two mono microphones: one
worn on the wrist and the other on the chest.

The two scenarios were selected because they are repre-
sentative of two slightly different situations: (1) the user di-
rectly causing a sound through a certain motion of his hand
(by using a tool e.g. sawing), and (2) the user being next
to the appliance he is operating, possibly having his hand
on the switch activating/deactivating it (e.g. switching on
the coffee grinder). In all cases, the signal intensity was
summed over a sliding 51.2 ms window.

Except for filing, it has been found that in the workshop
sounds the sound intensity of the wrist microphone is more
than twice the intensity of the chest microphone. As an ex-
ample, a plot of the sliding window intensity for the sound
caused by smoothing a surface with sand paper is shown in
the leftmost part of Fig. 5. Since the user’s hand is directly
on the source of the sound the intensity difference is large.

In the filing example (Fig. 5 middle), the intensity anal-
ysis doesn’t work well (although a trend can be seen) for
two reasons: first, the user’s hand shielded the sound to the
wrist microphone and second, the user was bent over the
workbench bringing the chest microphone within the same
distance to the sound as the wrist microphone.

For the coffee grinder in the kitchenette, it has been
found that the intensity on the wrist microphone is up to two
times larger when the hand was on the switch, becoming
equal as soon as the hand was removed and falling on both
microphones as the user was moving away (Fig. 5 right).

5. SoundButton Hardware
As a first step towards the implementation of the Sound-

Button, we have implemented the digital signal processing
part in VHDL code. This provides a first estimate of the
system complexity and can be used as a basis for power
consumption estimation. At a later stage, the VHDL code
will be used to implement an application specific integrated
circuit (ASIC). The outline of the system is shown in Figure
6. The components outside the box (transceiver and on chip
MEMS microphone [14]) will be integrated with the ASIC
in a high density electronic package.

All data paths of the ASIC are 16 bit and ALUs
(arithmetic-logic units) use floating point arithmetic. The
VHDL model was simulated using ModelSim and func-
tional units were synthesized using Synopsys. In the fol-
lowing we give a brief description of the functional units:

The input audio stream is sampled at 5 kHz with a 8 bit
A/D converter. A successive approximation A/D converter
is chosen because of its low power consumption and aver-
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Figure 6. Diagram of the SoundButton includ-
ing functional units of the ASIC

age hardware complexity. Since we found out that the same
recognition rate can be achieved with 8 bit or 16 bit audio
signals we preferred a less power consuming 8 bit A/D con-
verter over a 16 bit version, even though the rest of the data
paths are 16 bit. The sampled audio signals are stored in
memory. For signal normalization the RMS of all the sam-
ples in the time window is computed and then each sample
is divided by the RMS. The normalized samples are writ-
ten back to memory. The first stage of the RMS calculation
also provides the signal intensity (see section 3.2). The FFT
unit reads the normalized audio samples from memory and
performs a 256-point FFT. The FFT core uses a bit parallel
radix 2 butterfly [3]. Magnitudes are computed only for
the first half of the FFT outputs (128 out of 256). Real and
imaginary parts of each output are squared, added and then
its square root is computed. Then the 128 element magni-
tude vector is multiplied with the transformation matrix
(128x4) to generate the feature vector. In the classification
stage, the feature vector is used to calculate the Euclidean
minimum distances to the class centers. The memory is a
10kByte SRAM (Static RAM) which holds the transforma-
tion and class center matrices.

6. Conclusion
We have shown that simple algorithms optimized for low

power implementation can be used to derive important con-
text information from the sound signal. This includes the
recognition of different sound classes as well as the use of
distributed microphones to correlate sounds with user hand
activity. The paper has also demonstrated how power con-
sumption considerations can be included in the entire de-
sign process of a recognition system, starting with scenario
analysis, through algorithm selection to hardware design.

Initial studies based on our VHDL design and literature
values for the power consumption of wireless transmission
systems indicate that a device that can perform signal acqui-
sition, preprocessing, feature extraction, classification and
wireless result transmission with an expected power con-

sumption of less then 100µW is feasible.
Exact estimation of the power consumption through gate

level simulations is the next step in our work to be followed
by putting the VHDL design into hardware and perform ex-
perimental measurements.
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A. Atrash, and T. Starner. Recognizing workshop activity
using body worn microphones and accelerometers. In sub-
mitted to ICCV2003: 9th Int’l Conf. on Computer Vision,
Oct. 2003.

[13] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and
T. Sorsa. Computational auditory scene recognition. In
IEEE Int’l Conf. on Acoustics, Speech, and Signal Process-
ing, volume 2, pages 1941–1944, May 2002.

[14] P. Rombach, M. Mullenborn, U. Klein, and K. Rasmussen.
The first low voltage, low noise differential silicon micro-
phone, technology development and measurement results. In
14th IEEE Int’l Conf. on Micro Electro Mechanical Systems,
pages 42–45, 2001.

Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC’03) 
1530-0811/03 $ 17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


