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Abstract

Mobile input technologies can be bulky, obtrusive, or dif-
ficult to use while performing other tasks. In this paper, we
present Hambone, a lightweight, unobtrusive system that af-
fords quick access, subtlety, and multitasking capabilities
for gesture-based mobile device interaction. Hambone uses
two small piezoelectric sensors placed on either the wrist or
ankle. When a user moves his hands or feet, the sounds gen-
erated by the movement travel to Hambone via bone con-
duction. Hambone then transmits the signals digitally to a
mobile device or computer. The signals are recognized us-
ing hidden Markov models (HMMs) and are mapped to a set
of commands controlling an application. In this paper, we
present the hardware and software implementation of Ham-
bone, a preliminary evaluation, and a discussion of future
opportunities in bio-acoustic gesture-based interfaces.

1. Introduction

The mobile computing community envisions compu-
tation available anywhere and anytime. Despite the
widespread availability of mobile devices, interacting with
them can be challenging. For example, devices are often
stored in pockets or bags, which causes an interaction de-
lay. From a usability perspective, this delay between the
desire to interact with a device and the actual interaction
can be prohibitive [10].

To exacerbate the issue, buttons on mobile devices are
small and their user interfaces are frequently impoverished.
For example, small keypads require users to devote cogni-
tive and visual attention to the device itself. The amount of
required attention for the interface can limit the user’s abil-
ity to perform other simultaneous tasks, such as driving an
automobile.

Voice controlled commands are an alternative, but may
not be the best option in noisy or otherwise inappropriate
situations (e.g. when a radio is playing). Mobile input tech-

Figure 1. Hambone Prototype

nologies external to the device itself can be bulky or ob-
trusive. Many presently-available data gloves and chording
keyboards can be larger than the devices they are control-
ling or may evoke stares from bystanders. Data gloves are
expensive, too fragile for everyday use, and may prevent
users from using their hands for other purposes.

In response to these issues, we present Hambone, which
is a lightweight, unobtrusive system that provides gesture-
based input to mobile devices. It affords quick access and
the capability to interact with a mobile device while en-
gaged in other physical activities. To use Hambone, a user
places two small piezoelectric sensors on either the wrist or
ankle. When the user moves his hands or feet, the sounds
generated by the movement travel to the sensors via bone
conduction. Hambone then transmits the signals wirelessly
to a mobile device or computer. The gesture-based signals
are classified using hidden Markov models (HMMs), and
the recognized gestures are then mapped to a set of com-
mands to control an application. The Hambone prototype
hardware, shown in Figure 1, fits in an iPod Nano case;
however, we envision that future versions of the hardware
would be embedded into a wristwatch or piece of jewelry.

In the following sections, we discuss related work, our
approach, hardware and software implementations of Ham-
bone, a preliminary evaluation, and future opportunities in



bio-acoustic gesture-based interfaces.

2. Related Work

Amento et al pioneered the Hambone approach, in that
they used the acoustics of hand gestures captured by piezo-
electric sensors to conceive a gesture-based input device [1].
However, their system had a number of shortcomings: in-
cluding an extremely limited gesture set in the sample appli-
cation (tap and double-tap), analyzed one sensor location,
and made no mention of real-time operation. We extend the
work of Amento et al by addressing these shortcomings.
Specifically, we provide quantitative results for a number of
complex gestures, for both one sensor (as in Amento) and
for two sensors, showing that the latter leads to better ges-
ture recognition accuracies. We also perform a qualitative
evaluation wherein several users use Hambone in real-time
to control realistic applications. Finally, the device func-
tions wirelessly in a small form-factor, lending itself to true
ubiquitous, wearable operation.

To understand Hambone’s place in the mobile input
space, we classify such devices into a few “typical” cate-
gories:

Accelerometer-Based: Use telemetry data from ac-
celerometers to classify gestures [5]

Glove-Based: Use embedded strain gauges to measure
finger orientation [11]

Buttons and Keypads: Including mini-qwerty keypads
common on mobile phones [3], as well as mobile chord-
ing keypads, which are one-hand portable keyboards that
provide fairly high data rates [7]. Devices with a few but-
tons (eg some GPS receivers) can also be classified in this
category, though their input rates are typically lower.

Touch and Stylus: Use a touchscreen to recognize pen-
stroke gestures [14]

Vision: Use a camera to process signals from the envi-
ronment. Examples would include the WristCam [9, 12]

Voice: Use audio speech recognition to provide input to
the system [6, 8]

Buxton provides three criteria for partitioning mobile in-
put devices: physical, cognitive, and social [2]. Here phys-
ical refers to easy sensory coupling. A “good” physical de-
vice is easy to use for prolonged periods of time. Most in-
put devices meet this criteria, though glove-based systems
are not suited to repetitive, prolonged use. Cognitive refers
to the amount of active attention and learning required to
use the device. Keypads, stylus, and touch-based devices
require additional sensor modes (vision) in order to operate
and thus have a high cognitive load.

Finally, social refers to how others perceive an individ-
ual’s use of the device. Because of common public use,
many mobile input devices are socially acceptable, though
a few are not. Vision-based systems require cameras, which

Figure 2. How mobile devices fit into Bux-
ton’s (top) and Lee’s (bottom) frameworks

may raise privacy concerns. Voice-based systems depend on
circumstances; while voice may be acceptable while walk-
ing through the park, it may not be while sitting in classes
or during movie screenings. Using Buxton’s criteria, we
conservatively grouped the mobile input device categories
as shown in Figure 2.

Lee provides a complementary structure that looks at
input bandwidth (how much information can be conveyed
per second), access time (the time to retrieve the device
and begin interaction), and multitasking (ability to per-
form other activities while providing input) [4]. Keypads
and voice-based devices tend to provide high relative input
bandwidths. Gesture-based devices, however, tend to have
lower bandwidths. Access time is quite large for touch-
based devices, whereas gesture devices are usually persis-
tent, making their access times low to non-existent. Multi-
tasking is largely related to cognitive and physical require-
ments. Touch-based devices tend to require more cognitive
and physical resources, making them weaker in this respect.
Voice is good for multitasking in cross-modal situations
(walking and talking), but may not be good in common-
mode situations (talking to a friend while trying to dictate).
Again, we conservatively group the categories in Figure 2.

For both partitioning criteria, we have included Ham-
bone in the diagrams. Hambone under Buxton’s three mir-
rors is social (subtle), cognitive (does not divert much atten-
tion), and physical (uses easy-to-do movements, does not
have buttons that are tiny and difficult to press). Based on
Lee’s criteria, Hambone is best suited for applications re-
quiring low bandwidth, low access time, and multitasking



capabilities.
Note that accelerometer-based systems share Hambone’s

partitioning. While accelerometers are well-suited to gross
motion gestures, Hambone is designed to work with fine,
subtle gestures via mechanical vibrations.

3. Apparatus

Hambone’s hardware includes two piezoelectric sensors,
a custom printed circuit board (PCB) for analog signal con-
ditioning, a PCB containing a microcontroller with Blue-
tooth transceiver, and a lithium-ion mobile phone battery.
The current Hambone prototype fits in an iPod Nano carry-
ing case, and the two sensors are coupled to the skin using
surgical tape and an elastic band. We envision, however,
that future iterations of Hambone will rely on hardware em-
bedded in a wristwatch or piece of jewelry.

To “listen” to the sound of gestures being made, we
used two piezoelectric sensors (SDSystems PU-2). These
sensors are extremely sensitive to mechanical vibrations
while simultaneously disregarding external audio signals.
This characteristic allows the sensors to measure vibrational
bone-conducted signals while being immune from external
noise.

Due to high output impedance, piezoelectric sensors re-
quire amplification prior to digitization. To amplify the sig-
nals, we constructed a custom analog signal conditioning
PCB with a Texas Instruments INA155 instrumentation am-
plifier for each sensor. Figures 3 and 4 show the schematic
and PCB layout.

To transfer data from the Hambone hardware to the de-
vice being controlled, we use Bluesense1, a microcontroller
with a Bluetooth transceiver. Bluesense retrieves 10-bit
samples at 100 Hz from five analog channels. Three chan-
nels interface to accelerometers mounted orthogonally in an
X–Y–Z configuration and two channels contain the ampli-
fied piezoelectric sensor signals from the other PCB. We do
not use the accelerometers for gesture detection, but they
could be used in future versions of Hambone to detect gross
body movements in addition to the subtle gestures detected
via bone conduction.

The power consumption of the entire device is 246 milli-
Watts (63 mA at 3.9V). Most of the power consumption is
due to the Bluetooth transceiver and unused accelerometers,
as only 14 milli-Watts (3.5 mA at 3.9V) is due to the sen-
sors and amplifiers. Almost all of the sensor and amplifier
power is attributed to the quiescent current draw of the am-
plifiers, which is greater than 3.4 mA. Since the sensors are
piezoelectric, they are essentially self-powering. This is an
advantage since they can be incorporated into future devices
with minimal power budget.

1Additional information about Bluesense is available at
http://www.gvu.gatech.edu/ccg/resources/btacc

Figure 3. Hardware Schematic

Figure 4. PCB Layout

4. Data Collection & Model Training

We developed an application in Python to support ges-
ture data collection and hidden Markov model training. For
each gesture, the application prompts the user to perform it.
The system waits until energy in the input signal rises above
an arbitrary threshold and then records the sensor signals
for a two second interval. Once recording completes, the
system asks the user whether it should retain the particular
sample. After the application collects twenty samples for
a particular gesture, it repeats the same data collection pro-
cess with the next gesture. After collecting data for all of the
gestures, the application generates a hidden Markov gesture
model via the Georgia Tech Gesture Toolkit (GT2k) [13].

We performed training on a PC, but the application can
be ported to a number of mobile devices. Note that if the
mobile device cannot, for some reason, support the training
application, the user can complete gesture training using a
PC and then transfer the generated model to the mobile de-
vice.

5. Real-Time Recognition

The continuous live recognition software component is
intended for installation on the device being controlled,
though for prototyping we used Bluetooth to transmit sen-
sor data to a PC for recognition. The software is imple-



mented in Python and leverages the recognition capabilities
of HTK2. During the live recognition, the software continu-
ously gathers sensor data from the hardware. When energy
in the input signal rises above a threshold, the live recog-
nition software records the sensor signals for a two second
interval. The threshold filters out low-level noise and trig-
gers gesture recognition.

Once the two second sample is recorded, it is sent to
HTK for recognition. Using the gesture model produced by
the training application and the new gesture sample, HTK
performs Viterbi decoding and returns the best-fitting ges-
ture according to the trained models. The recognition soft-
ware then issues a command corresponding to the gesture
to the mobile device.

Note that the two second recording interval results in an
approximate two second lag between gesture initiation and
command issuance. This recording lag is inherent in the
HTK recognition suite, as the entire gesture must be re-
ceived before classification. For this implementation, two
seconds was chosen since all of our gestures fit within this
time interval. While the recording duration is variable, it is
ultimately dependent on the gesture durations. As is shown
in Section 10, the two second lag is acceptable for certain
applications.

6. Sensor Placement

During body movement, sounds are generated inside the
body. When using Hambone, the sounds travel via bone
conduction from the point of interest (for example, the fin-
gertips) to the location of the piezoelectric sensors. The vi-
bration signals are coupled from the bone, through the skin,
and to the piezoelectric material. Since bone is stiff, the
audio signals travel with less attenuation through bone than
soft tissues. For this reason, the piezoelectric sensors should
be placed in locations that minimize soft tissues between the
sensors and the bones. In addition, there should be little skin
movement at the sensor mounting location (e.g. the jaw has
skin close to bone but the skin doesn’t stay with the bone
when it moves).

We experimented with a variety of sensor placements,
including on the shoulder, jaw, elbow, knee, and forearm.
Two locations seem particularly well suited for Hambone
operation. The first location is on the ulnar and radial sty-
loids (protruding wrist ”bumps”), which is the same lo-
cation that Amento used [1]. The second location is on
the lateral and medial malleoli (protruding ankle ”bumps”).
Both of these locations have bones close to the skin, and af-
ford gestures useful for device control. Note that unlike the
bone-conduction interface created by Amento [1], we have

2Due to speed concerns, we avoid using GT2k for gesture recogni-
tion and make direct, low-level calls to HTK, which is the hidden Markov
model toolkit underlying GT2k.

two sensors (e.g. there is one sensor for each protruding
“bump”) for better monitoring.

When deciding on a sensor placement, the number of
gestures required for a particular device/application should
also be considered. For example, if Hambone is placed on
the elbow, its gesture space is limited to extending or con-
tracting the forearm. If Hambone is placed on the wrist,
however, the number of available gestures expands dramat-
ically, because this placement allows for detection of subtle
finger gestures.

7. Gesture Selection

We defined two sets of gestures for our sample appli-
cations and preliminary evaluation. To select the gestures,
we observed and compared analog waveforms from a num-
ber of body movements on an oscilloscope. Although the
potential gesture space is large, we found through exper-
imentation that some gestures look too similar to be dis-
tinguished accurately. Through this process of testing, we
selected a set of three wrist gestures and four foot gestures,
shown in Figure 5. Rather than choosing the most com-
fortable or subtle gestures, we aimed to have gestures that
involved a variety of movements including moving fingers
in the air and rubbing or tapping fingers together. The foot
gestures included movements such as toe flicks to the left
and right, as well as toe and heel raises.

In the course of our system development and evaluation,
we found that user gesture preferences are highly subjec-
tive. An uncomfortable or physically difficult gesture for
one person may be a favorite for another person. For exam-
ple, one participant in the evaluation (described in sections
9 and 10) had previously broken his left ankle and experi-
enced physical discomfort when performing the “rotate an-
kle right” gesture.

Additionally, we (the authors) found variations in our
own abilities to complete particular gestures, as well as vari-
ations in which gestures we preferred. For example, some
people may have difficulty tapping fingers on a table top
one-by-one from pinky to index finger and vice versa. This
gesture, however, is preferred by one of the authors. Given
differences in the preferences and physical abilities of indi-
viduals, it may be best to have users select their own ges-
tures. A challenge of using this approach, though, is that
users may choose a set of gestures that are either difficult to
distinguish from other control gestures or are too similar to
“common” movements.

8. Avoiding False Positives

During real-time operation, Hambone classifies a gesture
every time the signal energy exceeds a given threshold, thus
triggering recognition.



Figure 5. Gesture descriptions, start and end positions, and sample waveforms



Table 1. Averaged Wrist Confusion Matrix
With One Sensor

MS FLIA TIRB % correct
MS 14 1 3 78%

FLIA 4 13 1 72%
TIRB 1 0 17 94%

Overall correctness: 81%

This means extraneous “noise” signals from non-gesture
movements will be incorrectly interpreted by the HMM as
a known gesture, thus producing a false positive.

We first attempted to prevent unintentional triggering by
using the built-in accelerometers of the Bluesense board.
With the accelerometer-based method, the HMM would
only be triggered when the energy exceeded a given thresh-
old and the accelerometers were in a pre-defined position.
However, this technique restricted the range of motion dur-
ing gesture performance.

We found that instead of trying to prevent unintentional
triggering, a better approach was to add a dummy “noise”
gesture for the HMM. To provide noise data, users trained
the noise gesture by performing a set of random movements.
During real-time operation, non-gesture movements were
classified as “noise,” thus greatly reducing the number of
false positives while allowing full range of motion.

9. Evaluation

We performed a preliminary evaluation of the wrist and
ankle based interface with three adults. This evaluation ex-
amined system accuracy and user independence. The par-
ticipants wore Hambone with two sensors, first on the right
wrist (with no wristwatches or adornments) and then on the
left ankle (with socks and shoes covering the sensors). Each
participant provided twenty samples for each of three wrist
and four ankle gestures (shown in Figure 5), as well as sixty
“noise” gestures for real-time operation. These samples
were used for off-line training and evaluation. Two users
went on to perform a qualitative evaluation, controlling two
realistic applications.

10. Results

For quantitative results, we performed user-dependent
cross-validation for all three users. Tables 1 and 2 show
confusion matrices for the wrist and ankle data when only
one sensor’s data was utilized, as in Amento et al [1]. Ta-
bles 3 and 4 show confusion matrices, again for the wrist
and ankle data, but this time with two sensors enabled. The
two-sensor case shows marked improvement. For the av-
eraged confusion matrices, separately for each participant,

Table 2. Averaged Ankle Confusion Matrix
With One Sensor

HU FU RL RR % correct
HU 15 3 0 0 83%
FU 1 17 0 0 94%
RL 3 1 14 0 78%
RR 0 3 2 13 72%

Overall correctness: 82%

Table 3. Averaged Wrist Confusion Matrix
With Two Sensors

MS FLIA TIRB % correct
MS 18 0 0 100%

FLIA 0 18 0 100%
TIRB 0 0 18 100%

Overall correctness: 100%

two-thirds of the data trains the HMM. The remaining one-
third from each participant cross-validates the model. The
cross-validation data from each separate user was then av-
eraged into the confusion matrices shown. In the confusion
matrix, each row represents a gesture. The corresponding
column represents how the previously withheld data (the
one-third not used for training) was classified by the HMM.
The matrix also shows accuracy for each gesture.

The confusion matrices in Tables 5 and 6 show the cross-
validation results of training across users for both the wrist
and ankle. In this case, two-thirds of all the participant data
trains the HMM model. The remaining one-third of the data
cross-validates the model.

For an initial qualitative analysis, one participant used
Hambone with two sensors on the right wrist to control a
PowerPoint presentation in a realistic setting (that is, stand-
ing, speaking, using expressive gestures, and moving). The
gestures were mapped as follows: flick to blank the screen,
multi-finger snap to advance to the next slide, and thumb in-
dex rub backward to go to the previous slide. In this partic-
ular instance, accuracy was approximately 90%. Of the in-
accurate classifications, some were classified as noise, flick
was confused with other abrupt movements, and there was
also some minimal confusion among the valid gestures.

Another participant used Hambone with two sensors on
the left ankle to control a puzzle video game called Profes-
sor Fizzwizzle3. In this game, players navigate a character
either up, down, left, or right. We selected four foot gestures
with the following mappings: foot up to move up, heel up
to move down, rotate right to move right, and rotate left to
move left. After completing the training, the user controlled
the video game with foot gestures while sitting in a chair.

3Professor Fizzwizzle is a video game developed by Grubby Games.



Table 4. Averaged Ankle Confusion Matrix
With Two Sensors

HU FU RL RR % correct
HU 18 0 0 0 100%
FU 0 18 0 0 100%
RL 0 0 16 2 89%
RR 0 0 1 17 94%

Overall correctness: 96%

Table 5. Wrist Training Across Users
MS FLIA TIRB % correct

MS 7 10 1 39%
FLIA 0 18 0 100%
TIRB 9 0 9 50%

Overall correctness: 63%

During game play, this person intentionally performed sev-
eral random foot and leg movements. For this application,
approximately 5% of the gestures were misclassified. Most
of the errors were a result of classifying a valid gesture as
noise, while valid gestures were rarely misclassified.

11. Discussion

The recognition accuracy showed substantial improve-
ments when two sensors were used instead of just one; the
improvement was on the order of 15–to–20%. With two
sensors, both the initial qualitative analysis and the user-
dependent analysis showed promising results. In the quali-
tative analysis, accuracy ranged from 90-95%. In the user-
dependent analysis, the accuracy was about 95% for both
the ankle and the wrist. Training across users, however,
produced mixed results. While FLIA and RR gestures (see
Figure 5) were easily recognized, the others had difficulty.
These results suggest that Hambone is a user-dependent
system.

12. Possible Applications

Hambone seems best suited for applications requiring
low bandwidth, low access time, and multitasking capabili-
ties. Hambone is appropriate for applications requiring 2–4
way navigation (e.g. up, down, forward, back), such as MP3
players, DVD players, or games in which an avatar is moved
across a screen.

It could also be useful for applications that require either
a subtle gesture or multitasking capabilities. For example,
a person could use Hambone to advance PowerPoint slides.
By using Hambone, this person would be able to advance
through slides subtly—without interrupting the flow of the
presentation.

Table 6. Ankle Training Across Users
HU FU RL RR % correct

HU 14 2 0 2 78%
FU 6 11 0 1 61%
RL 6 5 7 0 39%
RR 0 0 0 18 100%

Overall correctness: 69%

Hambone could also be used for interfacing to devices
with impoverished user interfaces. For example, some mo-
bile devices have small buttons. The access time to get to
these buttons is slow, and people need fine motor control to
be able to push them. Another example is that tiny (or even
implantable) devices may not have a direct user interface of
any variety and would need alternatives to traditional user
interfaces to receive input.

Finally, because Hambone appears to be user dependent,
authentication applications may be possible.

13. Future Work

When a user performs a gesture with the current imple-
mentation of Hambone, there is approximately two seconds
of lag from the initiation of the gesture until the final com-
mand is issued. HTK requires a full gesture waveform (not
a gesture in progress) to be submitted for recognition, so
the command cannot be issued until the two second ges-
ture recording window closes. In order to reduce the lag
time, we plan to revise the software to allow variable length
recording windows based on energy thresholds. By reduc-
ing lag time, Hambone can be used for a number of new
applications such as an “any-surface” chording keyboard
or electronic musical instrument. We plan to prototype a
number of applications based on this expanded functional-
ity. Additionally, we are interested in creating an extension
to Hambone that would allow for two-handed input.

Further, since Hambone relies on vibrations, it may be
useful for “hands-full” situations, such as holding a box or
other large item with both hands. Finally, since Hambone’s
sensors can be placed on a variety of areas of the body, it
may have applications for people who are disabled as an al-
ternative interface for interacting with off-the-shelf mobile
devices.

Techniques for selecting appropriate gesture sets require
additional study. For example, to find a set of gestures that
do not conflict with common movements, a user may wear
Hambone in a data gather mode for a period of time to ob-
tain a set of baseline data. The data could then be used to
help users choose a gesture set that does not conflict with
common movements.

When training the system to recognize more than 3–
4 gestures, the HMM training sessions become extremely



tedious. One opportunity for future work is examining
ways to make gesture training systems more tolerable (e.g.
through games).

We anecdotally found that small variations in sensor
placement caused large variations in signal characteristics.
Thus, repeatable sensor placement is critical for effective
inter-session training and recognition. This challenge may
be addressed through careful interface design. For example,
if Hambone were implemented as a watch, it could be de-
signed with forcing functions ensuring that it only fits in an
appropriate position. If these constraints were not possible
to design into the watch, users could instead be advised to
always wear the watch so that some physical marker (e.g.
the watch face) is always in the same position. This chal-
lenge will be crucial for our future work on Hambone.

There are also opportunities to study issues such as phys-
ical comfort, both for the wearable and for the gestures due
to physical differences in individuals. In our work, we did
not control for variations in bone structure, body fat dis-
tribution, dexterity, or any other physically differentiating
characteristic. Future research into bone conduction-based
interfaces should investigate whether these variations are
significant.

14. Conclusions

In this paper, we have demonstrated that “listening” to
the sound of body movements is a viable approach to mo-
bile device interaction. Our system based on this technique,
Hambone, provides the capability to quickly access and in-
teract with mobile devices. Hambone allows for real-time
gesture recognition, allows for a diverse set of gestures, and
includes a noise gesture to reduce false positives. Our pre-
liminary evaluation suggests that the system is most likely
user dependent.
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