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Abstract

We introduce a novel system for recognizing patterns of
eye blinks for use in assistive technology interfaces and se-
curity systems. First, we present a blink-based interface for
controlling devices. Well known songs are used as the ca-
dence for the blinked patterns. Our system distinguishes be-
tween ten similar patterns with 99.0% accuracy. Second, we
present a method for identifying individual people based on
the characteristics of how they perform a specific pattern
(their “blinkprint”). This technique could be used in con-
junction with face recognition for security systems. We are
able to distinguish between nine individuals with 82.02%
accuracy based solely on how they blink the same pattern.

1.. Introduction

A small population of people possess myopathies (mus-
cular diseases or injuries) that inhibit their voluntary mus-
cle movement, or in less extreme cases, limit their motor
skills. For example, 30,000 people in the United States are
afflicted with Amyotrophic Lateral Sclerosis (ALS, or Lou
Gehrig’s disease) [3]. In the United States two percent of
brainstem stroke victims (2,500 people per year) survive
paralyzed in the locked-in state [4]. Patients in this condi-
tion, known as Locked-in Syndrome, suffer from complete
paralysis of all voluntary muscles except for those that con-
trol eye movement. People suffering from such crippling
diseases still possess the cognitive abilities for communi-
cation and other functions, but they lack a method for inter-
acting with the people and environment surrounding them.

Eyegaze tracking devices such as EagleEyes [10] can
provide a practical method of communication for some
individuals; however, eye tracking is not suitable for all
members of this population. People with stroke related
myopathies often have eye control problems. Nystagmus
(jerky, involuntary eye movement) and disconjugate ocu-
lar movement (the inability to move the eyes as a pair) can
be problematic for eyegaze systems and can result in track-

ing failure [12]. However, such conditions do not hinder
a person’s ability to blink. Research suggests that blink-
ing patterns, such as variations of Morse code, can be an
effective form of communication for a certain population
of the disabled community [7]. However, there are draw-
backs to Morse code based systems. On average, learning
Morse code requires 20 to 30 hours of training. In addi-
tion to the training time, communication with Morse code
is cognitively demanding for a novice [2]. While rates of
thirty words per minute [7] can be achieved through me-
chanical devices for experienced telegraphers, it is not clear
what communication rates can be achieved through blink-
ing for the disabled population.

In this paper we present two applications: an interface
for universal access, “BlinkI”, and one for restricted access,
“Prescott.” BlinkI can be used as the basis of an assistive
system for people with severe disabilities, allowing blink
patterns to be used in communication or to control devices
in the environment. Prescott, on the other hand, uses the
pattern of blinks to identify the individual performing the
pattern, rather than the pattern itself. Both applications are
based on the idea of using songs as a cadence for the blink-
ing. Songs based on the functionality of the device may be
easier to associate as an interface command. For example,
the opening rhythm of “Frosty the Snowman” could be used
to lower the setting of a thermostat.

Using songs as the basis of blinked commands allows
for more information to be encoded: not only does the blink
itself provide information (i.e., number of blinks per se-
quence), but its temporal relation with other blinks in the
pattern (i.e., the rhythm) also encodes information. The in-
terval between the blinks can be used to distinguish between
sequences with the same number of blinks (see Figure 1).

This method of encoding can only be practical if it is ex-
pressive enough to span a large number of sequences. We
believe that, due to effects of rythm and syncopation, bit
rates of up to 8 bps, or 480 bits per minute, can be acheived
through blinking songs. The ultimate goal of our system
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Frosty the Snowman    (turns the temperature down)

The Heat is On                   (turns the temperature up)

Blink sequences to change a thermostat setting

= No Blink= Blink

Figure 1. Two song based blink sequences, each with
5 blinks, for controlling a thermostat. While each se-
quence has the same number of blinks, the temporal
relationship allows the two patterns to be distinguish-
able.

is to provide a signifiant fraction of normal converstaional
rates, at 126–172 words per minute, or about 3,780 bits per
minute (assuming 5 bits/character). Meanwhile, it suffices
that we have the capability to provide more bandwidth than
single switch communication devices. Such devices provide
the minimum rate tolerable for interactive conversation at
three to nine words per minute [8], or about 270 bits per
minute.

The remainder of the paper is arranged as follows: first,
we will address the hardware requirements, algorithms used
and metrics for evaluation; second, we will discuss in detail
experiments and results involving blink pattern recognition
using BlinkI; third, we will present work involving the is-
sues and techniques concerning Prescott as well as prelim-
inary results; last we present an overall discussion, related
work, and our conclusions.

2.. Blink Detection

In order to explore the feasibility of recognizing dis-
tinct song–based blinked patterns, we constructed a proto-
type video capture system. While more precise methods of
blink detection exist, such as using electromyography to de-
tect electrical signals sent from the muscles that control eye
blinks, we decided to build a cost–effective system that did
not require augmentation of the user. The minimal hardware
required by our system is a low resolution camera, a stan-
dard computer (PentiumIII 600MHz with 256MB RAM),
and a method to ensure approximate head alignment of the
user.

For our initial experiments, we collected blinking data
from ten different users. The participants were required to
situate themselves in front of a camera and a video moni-
tor. They then had to align themselves in such a way that the
video image of their face matched a template affixed to the
video monitor. Once aligned, the participant blinked several

repetitions of the desired pattern. The video was recorded
and later post–processed to ensure that no frames of data
were lost. Data was collected from all individuals in three
separate locations over the course of two months.

When blinking song–based sequences, patterns of
rhythm are indicated only by the duration of time that the
eye remains open between blinks, rather than how long the
eye is kept closed. This allows users to blink rhythms us-
ing a natural blink. Therefore, during a blink, the eyelid is
always in motion. We use the well–known technique of op-
tical flow [13] to detect frames of video where this mo-
tion occurs. Using optical flow helps to provide robustness
by producing features that remain somewhat consis-
tent across varying environments.

Optical flow represents the movement of a pixel as a
velocity vector expressing the magnitude (ρ) and direc-
tion of change (θ) from a previous frame. Although some
head movement is inevitable, the motion of blinking will be
much more rapid in comparison. This fact allows us to fil-
ter out pixels with low velocities, and keep only those as-
sociated with blinking. The mean velocity of the pixels for
each frame is calculated and used to determine whether that
frame was part of a blink or not. Once data for an entire pat-
tern is collected, the number of blinks, spaces, and the du-
ration of each is calculated.

By having our users align their faces to a template placed
on the monitor, we can calculate optical flow for only a
small portion of the video (a 64x64 pixel region over the
left eye). Using the template allows optical flow calcula-
tion to remain practical; however this may not be required:
Betke et. al. showed that the motion of the eyelids is suffi-
cient for detection of the eyes’ location in video [5].

3.. Blinked Pattern Classification

A sequence of blinks is identified by the temporally or-
dered collection of interval lengths between blinks. This en-
codes the number of blinks and the duration (in frames of
video) of the length between the blinks. For example, the
7–blink sequence for “The Star Spangled Banner” would be
represented by the string “6,4,12,10,12,32”. Because there
are six elements in the string we can infer that there are
seven blinks in this pattern (see Table 1). Inspection of the
relative sizes of the intervals demonstrates that the first two
blinks in the sequence occured rapidly compared to the rest
of the sequence which was more evenly spaced.

After a sequence is detected, it is encoded according
to the process described above. An observed sequence of
blinks is classified by using a nearest neighbor classification
scheme. Because of temporal variations, the sequences can-
not be compared directly. For example, just because a string
has seven elements it does not mean the string represents
“The Star Spangled Banner”. Not only must the number of
elements match, but the elements of the string must also



encode the same relative duration of two quick blinks fol-
lowed by five longer blinks. A direct comparison would also
have difficulty dealing with missing or extraneous blinks
that might occur in the sequence as a result of either sys-
tem error, user error, or both. If performed quickly enough,
two blinks can often appear as one blink to the segmenta-
tion algorithm.

Dynamic time warping (DTW) [9] allows two temporal
sequences to be compared and can be used as a metric for
nearest neighbor classification. DTW provides a measure of
similarity between two sequences that factors in both the
length of the sequence and the temporal relation of the el-
ements in the sequence. In order for a match to score well,
it must have the same number of blinks and the same rela-
tive duration of space between each blink in the sequence.
DTW is also flexible enough to cope with missing or ex-
traneous blinks included into the sequence. Assuming that
the relative timing is intact until the extraneous blink oc-
curs, the score will only be slightly effected. The correct se-
quence plus or minus a blink should still match better than
other sequences in the database.

The performance measure for the system is based on the
accuracy of recognition. Our metric for accuracy reflects
that recognition is performed in isolation and only incorpo-
rates substitution errors (mistaking one class for another).
If we let S represent substitution errors and N represent the
total number of samples, then the measurement of accuracy
is defined to be: Accuracy = N−S

N
.

4.. BlinkI Experiment: Blinked Sequence
Recognition

We performed an experiment to determine if the
BlinkI system could accurately distinguish between dis-
tinct blinked patterns. A single individual blinked a total
of ten distinct patterns based on cadences of the open-
ing rhythm for the songs listed in Table 1. These songs
were chosen because of their simplistic rhythms, rel-
ative lengths, similarity to each other, and popular-
ity. Most of the patterns are very similar in the number
of blinks. The participant performed twenty to forty rep-
etitions of each song. A total of 303 examples were
collected. Using leave–out–one validation (all possi-
ble combinations of the 303 samples with one test sample
and 302 training samples), the system correctly classi-
fies 300 of the 303 examples. This is an overall accuracy of
99.0%. Table 1 shows the performance accuracy of the sys-
tem.

We intentionally selected songs that were similar in or-
der to test the robustness of the classification scheme. The
songs were either similar in duration, rhythm, number of
blinks, or some combination of the three. For example, the
pattern based on “This Old Man” was confused for the pat-
tern based on “God Save the Queen.” These patterns are

Class Song Title Total Blinks Accuracy
1 Star Spangled Banner 7 97.6%
2 God Save the Queen 11 100.0%
3 Happy Birthday 13 100.0%
4 This Old Man 14 97.4%
5 When Johnny Comes Marching Home 14 97.1%
6 Three Blind Mice 15 100.0%
7 Twinkle Twinkle Little Star 15 100.0%
8 America the Beautiful 15 100.0%
9 My Country Tis of Thee 17 100.0%

10 When the Saints Go Marching In 17 100.0%
Overall 99.0%

Table 1. Each blink corresponds to a note of the
song. The accuracy column denotes the results of
leave–one–out validation over 303 examples, where
300 examples were correctly classified.

0 50 100 150
0

50

100

150

200

250

Number of Frames

M
ag

ni
tu

td
e 

of
 P

ix
el

 V
el

oc
ity

0 50 100 150
0

50

100

150

200

250

Number of Frames

M
ag

ni
tu

td
e 

of
 P

ix
el

 V
el

oc
ity

Figure 2. Visualization of data for the patterns of
“This Old Man” (left) and “God Save the Queen”
(right). Both patterns have similar rhythm and dura-
tion.

similar in both duration and rhythm (see Figure 2). In real-
ity the patterns differ in length by three blinks; however, if
the system accidently detects an extra blink or omits a blink,
the sequences can become practically identical.

In practice, we can use user feedback to help choose dis-
tinguishable patterns. When a locked–in individual enrolls a
new data pattern into the system, the system can use DTW
to determine the similarity of the new pattern to patterns
existing in the current database. If the pattern matches too
closely with existing patterns the system can recommend
that the user enroll a different pattern. This process will help
the system to remain more robust by avoiding potential er-
rors in classification.

5.. Prescott: Person Recognition using
Blinkprints

We have demonstrated the capability to recognize dis-
tinct blinked codes. We will now motivate how a similar
system can be used to augment security interfaces to help
restrict unauthorized access.

Imagine a secure area located in a major airport. To en-
sure that only authorized personnel have access to the area,
a numerical keypad controls the locking mechanism on the
door. To unlock the door the correct code must be entered



on the keypad. Because access is based solely on entering
the correct number, an unauthorized person can foil the sys-
tem by observing the correct code and then entering it. Bio-
metrics may be added to the system to improve security; for
example, a camera can be placed in front of the door and ac-
cess can be controlled based on face recognition and enter-
ing the correct personal identification number (PIN). How-
ever, this system is flawed: the face recognition system can
be fooled by placing a photograph of an authorized person
in front of the camera.

To address this issue, one might replace the numeric key-
pad with a system that requires the person to blink a spe-
cific pattern. This system could utilize the hardware already
in place for face recognition. Several benefits could be in-
troduced by such an augmentation. First, replacement of the
keypad would allow hands–free entry through the door. Sec-
ond, the rapid movement of the eyes during a blink can
be used to localize the position of the head in the video
[5], which can be beneficial to the face recognition por-
tion of the system. The blinking can also reduce the prob-
ability of someone deceiving the face recognition by plac-
ing a photograph in front of the camera because the face is
now required to have a dynamic component. Third, a per-
sonal blink pattern may be more difficult for a third party to
observe because simply looking over the shoulder will not
work; an observer must be watching the user from a posi-
tion similar to the camera’s. Since the user will be facing the
camera to perform his blinks, he will be more likely to no-
tice a person trying to observe his code. Fourth, a PIN based
on a song may be easier for the user to remember.

However, this system may still be vunerable if a PIN is
compromised. Someone might be able to foil the system by
crafting a mask from a photograph of an authorized person.
The person could remove the eyes from the photograph and
blink the code while covering his face with the photograph.
In this fashion both the face recognition and the blink pat-
tern recognition can be foiled. However, it is possible that
the way in which a subject blinks a pattern may provide in-
formation about the subject’s true identity, providing a bio-
metric check against the PIN.

Using the same prototype system from previous sections,
we investigated if the intrinsic properties of how a per-
son blinks a specific pattern, their “blinkprint”—a “blink-
ing fingerprint”— can be used to perform identification. In
this case, recognition would depend on more than just the
pattern itself; it could also be dependent on the time be-
ween blinks, how long the eye is held closed at each blink,
or other physical characteristics the eye undergoes while
blinking. Figure 3 shows the difference between two users
blinking the same pattern. The next section will discuss an
experiment exploring this possibility.
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Figure 3. A visual representation of the same 9–blink
pattern, “— — — . . — — . .” lasting 4.2 seconds per-
formed by two different people.

6.. Experiment: Person Recognition

For this experiment we wanted to determine if it is pos-
sible to recognize people based on the intrinsic properties
of how they blink a fixed pattern. Nine participants, some
with glasses, blinked the same pattern “— — — . . — — .
.” where ‘—’ and ‘.’ represent long and short durations be-
tween blinks respectively. A total of 500 examples were col-
lected between all participants. Each person provided a min-
imum of 30 examples.

The system could attempt to identify a user solely based
on the length of time it takes a person to blink the sequence.
However, while this method may work for very small data
sets, it will not scale to larger populations. In fact, com-
parison of sequence times would be insufficient for iden-
tification in our nine participant sample set. For example,
two of the participants, on average, perform the sequence
in 4.2 seconds with standard deviations of 0.31 seconds and
0.41 seconds respectively (see Figure 3). Classification was
first attempted using our DTW based prototype; however,
using the sequence of intervals between the blinks proved
insufficient to represent the intrinsic properties of an indi-
vidual’s blink. We hypothesize that the forgiving nature of
DTW generalizes the characteristics of the data required to
distinguish between individuals.

For this more complex recognition task we explored the
use of hidden Markov models (HMMs). HMMs provide a
more robust method of modeling and recognizing tempo-
ral sequences [14]. We postulate that individual characteris-
tics of blinking will be encoded in the output probabilities
of the HMMs. Instead of segmenting the sequence into clus-
ters of blinks and spaces, the overall pixel velocity features
per frame are represented as a two element vector (ρ, θ) and
input into the HMMs.

Our first HMM was designed with one emitting state per
blink, for a total of nine emitting states. This model pro-
vided poor classification. Experiments were run systemati-
cally reducing the number of states, using the Georgia Tech
Gesture Toolkit [15]. A three-state HMM (with only one
emitting state) provided 68.88% accuracy for discrimina-



tion between individuals. The single emitting state of this
model represents the observation data as a Gaussian and en-
codes the length of the sequence in the transition probabil-
ity involving the non–emitting initial and final states. This
topology suggests that a Gaussian model of the pixel veloc-
ity features may be sufficient for representing the data.

We represent each frame of a blinked sequence by the
average change in pixel velocity and direction over the eye
for that frame: (ρ, θ). For each example i, the sequence of
all frames is represented as a three–dimensional Gaussian
Gi : (ρ̄, θ̄, S), where ρ̄ and θ̄ represent the average angle
and velocity values for the frames of a sequence, and S is
the total number of frames in the sequence.

The discrimination power of this representation was in-
vestigated using six different experiments: k–nearest neigh-
bor using Euclidean distance, Mahalanobis distance, and
probabalistic measure; nearest class centroid using Eu-
clidean distance and Mahalanobis distance; and most likely
centroid. The results from all experiments were aver-
aged over a total of 100 iterations of cross–validation. For
each iteration, two thirds of the examples from each class
were used as training points.

For the k–nearest neighbor experiments, each test se-
quence j is modeled as a three–dimensional Gaussian Gj ,
as described above. Its classification is then determined by
the most frequent class, or person, of the k “closest” train-
ing examples Gi. For these experiments k was chosen to be
10. The closeness of a point is determined by either a dis-
tance metric or a measure of how well a test point is repre-
sented by a Gaussian model of each training example. We
used the Euclidean and Mahalanobis distances between the
means for the former, and the maximum likelihood for the
latter.

For the nearest class centroid experiments, we modeled
all of the training examples Gi for a class ω as a single
Gaussian Gω . The classification of the test sequence j is
determined either by finding the Gω whose mean is clos-
est to the mean of Gj as measured by the Euclidean or Ma-
halanobis distance, or by evaluating the probability of each
Gω given Gj and picking the most likely class.

Experiments using the nearest class centroid with a max-
imum likelihood metric (the likelihood of a test sequence
being represented by the class model) provided the most
discrimination with an accuracy of 82.02%. While this
level of accuracy is not currently high enough to utilize
blinkprints as a stand–alone biometric, these results encour-
age its use as a component in multimodal biometric sys-
tems. For example, blinkprints could be used to boost the
accuracy of face recognition by helping to verify the re-
sults. As shown in Table 2, when the correct result is as-
sumed to be one of the top three most likely candidates, ac-
curacy increases to 95.57%.

Experiment N=1 N=2 N=3
Nearest Centroid, Euclidean 71.60 72.90 76.16
Nearest Centroid, Mahalanobis 76.74 77.84 79.05
Most Likely Centroid 82.02 83.14 84.24
k–Nearest Neighbor, Euclidean 77.10 91.22 95.57
k–Nearest Neighbor, Mahalanobis 75.53 89.09 94.40
k–Most Likely Neighbors 78.75 89.85 93.61
HMM 3-state 68.88 82.00 92.80

Table 2. Average results from 100 iterations of 7 dif-
ferent experiments. Columns indicate results when the
correct classification is within the top N–best classifi-
cations.

7.. Related Work

Several systems have been developed for communica-
tion based on tracking eye gaze [1]. The Eyegaze System
was studied to determine the feasibility of eye tracking as a
means of communication for people afflicted with Locked-
in syndrome [6]. Seventy–five percent of the participants
were able to perform a subset of the activities supported
by the system including typing, controlling environmental
devices, voice synthesizing, telephone usage, and playing
games.

Grauman et al [11] constructed an assistive technology
system based on correlation that accurately tracks the eyes
and measures the duration of eye blinks continuously in real
time (27 to 29 fps). The correlation between the image and
templates of open and closed eyes distinguishes between
natural “short” eye blinks and voluntary “long” eye blinks
allowing the use of deliberate blinks to trigger a mouse
click. Their system required no special training and can con-
tinually detect blinks in a desk environment setting with an
accuracy of 96.5%. The system can correctly classify de-
tected blinks as natural or voluntary blinks 93% of the time.

Currently our system only performs isolated recognition.
We would like to incorporate both the eye gaze tracking and
the template matching method described above into our sys-
tem to help aid with continuous recognition.

8.. Discussion and Future Work

We have shown that both systems discussed above can
perform reasonably well in isolation; however, if these sys-
tems are to be used in a non–laboratory environment the
issue of continuous recognition must be addressed. During
experimentation participants pressed a key to notify the sys-
tem when to start and stop recognition. While this type of
system can be implemented for security applications, it is
impractical for applications involving assistive technology
interfaces because individuals interacting with the system
will most likely be limited to blinking. Use of a specific de-



liberate blink or eye gaze gesture could be used as a mecha-
nism for notifying the system when to begin the recognition
process.

The practicality and usability of blink sequences will be
influenced by the blinking capabilities of the individual. We
would like to conduct studies to determine the limits of
blinking as a form of communication. Research is needed to
determine how rapidly a person is capable of blinking, the
consistency with which a person can blink, and how long a
person can blink before becoming fatigued.

Another issue to be addressed is the scalability of the sys-
tem. Our experiments show encouraging results for a lim-
ited number of subjects and samples. More experimenta-
tion is required to determine how well these methods will
perform as the number of users or patterns to identify in-
creases.

We have demonstrated a system where a classification
scheme based on DTW can be used to identify a spe-
cific blinked pattern. Once the specific pattern is identified,
Gaussian models over the data can be used to determine
which individual is performing the pattern. Currently these
models ignore important factors such as the shape of the
eye. We are interested in exploring more complex models
that would take this information into account.

Currently the system shows improvement when the top
3 choices are examined. This may be because there is con-
fusion between two classes that could be resolved with a
less general representation. Instead of Gaussian models,
blinkprints may be better represented by non-parametric
models that could allow for greater discrimination.

9.. Conclusion

We have demonstrated two applications that utilize pat-
terned blink recognition. The first application is a blink–
based interface for controlling devices that uses songs as
the cadence for the blinked patterns. It is designed to fa-
cilitate universal access for people with disabilities so se-
vere that they only retain control of their eyes. Our sys-
tem distinguishes between ten similar patterns with 99.0%
accuracy using classification techniques based on dynamic
time warping. Our second application presents a method
for identifying individual people based on the intrinsic
characteristics of how they blink a specific pattern (their
blinkprint). This system can be used to help aid the accuracy
of facial recognition systems and other security based inter-
faces. We were able to distinguish between nine individu-
als blinking the exact same pattern with 82.02% accuracy.
Both prototype systems have provided encouraging prelim-
inary results and will be further developed in the future.
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