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Abstract 

In order to be convincing and natural, interactive graphics applica- 
tions must correctly synchronize user motion with rendered graph- 
ics and sound output. We present a solution to the synchronization 
problem that is based on optimal estimation methods and fixed- 
lag dataflow techniques. A method for discovering and correcting 
prediction errors using a generalized likelihood approach is also 
presented. And finally, MusicWorld, a simulated environment em- 
ploying these ideas is described. 

CR Categories and Subject Descriptors : I.3.6 [Computer 
Graphics]: Methodology and Techniques - Inferaction Techniques; 
D.2.2 [Software Engineering]: Tools and Techniques - User Inter- 
faces 

Additional Keywords: Real-time graphics, artificial reality, in- 
teractive graphics, Kalman filtering, device synchronization. 

1 Introduction 
In order to be convincing and natural, interactive graphics applica- 
tions must correctly synchronizeusermotion with rendered graphics 
and sound output. The exact synchronization of user motion and 
rendering is critical: lags greater than 100 msec in the rendering of 
hand motion can cause users to restrict themselves to slow, careful 
movements while discrepancies between headmotion and rendering 
can cause motion sickness [3; 51. In systems that generate sound, 
small delays in sound output can confuse even practiced users. 
This paper proposes a suite of methods for accurately predicting 
sensor position in order to more closely synchronize processes in 
distributed virtual environments. 

Problems in synchronization of user motion, rendering, and 
sound arise from three basic causes. The first cause is noise in 
the sensor measurements. The second cause is the length of the 
processing pipeline, that is, the delay introduced by the sensing de- 
vice, the CPU time required to calculate the proper response, and 
the time spent rendering output images or generating appropriate 
sounds. The third cause is unexpected interruptions such as net- 
work contention or operating system activity. Because of these 
factors, using the raw output of position sensors leads to noticeable 
lags and other discrepancies in output synchronization. 
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Unfortunately, most interactive systems either use raw sensor 
positions, or they make an ad-hoc attempt to compensate for the 
fixed delays and noise. A typical method for compensation averages 
current sensor measurements with previous measurements to obtain 
a smoothed estimate of position. The smoothed measurements are 
then differenced for a crude estimate of the user’s instantaneous 
velocity. Finally, the smoothed position and instantaneous velocity 
estimates are combined to extrapolate the user’s position at some 
fixed interval in the future. 

Problems with this approach arise when the user either moves 
quickly, so that averaging sensor measurements produces a poor 
estimate of position, or when the user changes velocity, so that 
the predicted position overshoots or undershoots the user’s actual 
position. As a consequence, users are forced to make only slow, 
deliberate motions in order to maintain the illusion of reality. 

We present a solution to these problems based on the ability to 
more accurately predict future user positions using an optimal linear 
estimator and on the use of fixed-lag dataflow techniques that are 
well-known in hardware and operating system design. The ability 
to accurately predict future positions eases the need to shorten the 
processing pipeline because a fixed amount of “lead time” can be 
allotted to each output process. For example, the positions fed to 
the rendering process can reflect sensor measurements one frame 
ahead of time so that when the image is rendered and displayed, 
the effect of synchrony is achieved. Consequently, unpredictable 
systemand network interruptions are invisible to the user as long as 
they are shorter than the allotted lead time. 

2 Optimal Estimation of Position and 
Vef ocity 

At the core of our technique is the optimal linear estimation of fu- 
ture user position. To accomplish this it is necessary to consider the 
dynamic properties of the user’s motion and of the data measure- 
ments. The Kalman filter [4] is the standard technique for obtaining 
optimal linear estimates of the state vectors of dynamic models and 
for predicting the state vectors at some later time. Outputs from the 
Kalman filter are the maximum likelihood estimates for Gaussian 
noises, and are the optimal (weighted) least-squares estimates for 
non-Gaussian noises [ 21. 

In our particular application we have found that it is initially 
sufficient to treat only the translational components (the Z, y, and z 
coordinates)output by the Polhemus sensor, and to assume indepen- 
dent observation and acceleration noise. In this section, therefore, 
we will develop a Kalman filter that estimates the position and ve- 
locity of a Polhemus sensor for this simple noise model. Rotations 
will be addressed in the following section. 
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2.1 The Kalman Filter 
Let us define a dynamic process 

Xk+l = f(Xk, At) + t(t) (1) 

where the function f models the dynamic evolution of state vector 
Xk at time k. and let us define an observation process 

yk = h(Xk, At) + q(t) (2) 

where the sensor observations Y are a function h of the state vector 
and time. Both < and v are white noise processes having known 
spectral density matrices. 

In our case the state vector xk consists of the true position, 
velocity, and acceleration of the Polhemus sensor in each of the 2, 
y, and z coordinates, and the observation vector Yk consists of the 
Polhemus position readings for the x, y, and z coordinates. The 
function f will describe the dynamics of the user’s movements in 
terms of the state vector, Le. how the future position in z is related 
to current position, velocity, and acceleration in x, y, and z. The 
observation function h describes the Polhemus measurements in 
terms of the state vector, i.e., how the next Polhemus measurement 
is related to current position, velocity, and acceleration in x, y, and 
2. 

Using Kalman’s result, we can then obtain the optimal linear A 
estimate xk Of the State VeCtOr xk by use Of the fOnOWiIIg KuZman 
filter: 

jt, = x; + Kk(Yk - h(X;, t)) (3) 
provided that the Kalman gain matrix &. is chosen correctly [4]. 
At each time step k, the filter algorithm uses a state prediction Xi, 
an error covariance matrix prediction Pi, and a sensor measure- 
ment Yk to determine an optimal linear state estimate Xi;k, error 
covariance matrix estimate i)k, and predictions Xi+,, Pi+, for 
the next time step. 

The prediction of the state vector Xl+, at the next time step is _ 
obtained by combining the optimal state estimate Xk and Equation 
1: 

x;+l = A;, + f (a,, At)At (4) 
In our graphics application this prediction equation is also used 
with larger times steps, to predict the user’s future position. This 
prediction allows us to maintain synchrony with the user by giving 
us the lead time needed to complete rendering, sound generation, 
and so forth. 

2.1.1 Calculating The Kalrnan Gain Factor 
The Kalman gain matrix Kk minimizes the error covariance 

matrix Pk of the error ek = XI; - Xk, and is given by 

Kk = P;Hk*(&P;Hk= - a)-’ (5) 

where R = E[q(t)~~(t)~] is the n x n observation noise spectral 
density matrix, and the matrix Hk is the local linear approximation 
to the observation function h, 

[Hk]ij = ahi/axj (6) 

evaluated at X = Xi. 
Assuming that the noise characteristics are constant, then the 

optimizing error covariance matrix Pk is obtained by solving the 
Riccati equation 

o=P* k = FkP; + P;F: - P;H;R-l&P; + & (7) 

where & = E[t(t)t(t)*] is th e n x n spectral density matrix of the 
system excitation noise [, and Fk is the local linear approximation 
to the state evolution function f, 

[Fk]ij = 6’fi/aZj (8) 

evaluated at X = Xk. 
More generally, the optimizing error covariance matrix will vary 

with time, and must also be estimated. The estimate covariance is 
given by 

pk = (I - Kk&)P; (9) 

From this the predicted errorcovariance matrix can be obtained 

p;+, = *k@k*; + 8 

where *k is known as the state transition matrix 

@k = (I + F&t) (11) 

2.2 Estimation of Displacement and Velocity 

In our graphics application we use the Kalman filter described above 
for the estimation of the displacements P,, Py, and P,. the veloc- 
ities Vz, V,, and V., and the accelerations A,, A,, and A, of 
Polhemus sensors. The state vector X of our dynamic system is 
therefore (P,, V,, AZ, Pv, V,, A,, P,, V,, Az)T, and the state evo- 
lution function is 

f(X,At) = 
1 vd.w 1 

(12) 

The observation vector Y will be the positions Y = 
(P& PL, P:)T that are the output of the Polhemus sensor. Given 
a state vector X we predict the measurement using simple second 
order equations of motion: 

h(X,At) = 

1 

P, + &At + A& 
P,+V,Ad+A& 

I 
(13) 

P,+VzAt+A& 

Calculating the partial derivatives of Equations 6 and 8 we obtain 

F= 

and 

H= 

0 1 k 
0 i 

0 
0 1 

0 
9 
1 
0 

0 1 & 
0 f 

0 

1 At $ 

1 At $ 

1 At $ 

(14) 

1 (15) 
Finally, given the state vector Xk at time k we can predict the 

Polhemus measurements at time k + At by 

Y k+At = h(Xk, At) (16) 

and the predicted state vector at time k + At is given by 

jt k+At = x; f f@k&)At (17) 
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Figure 1: Output of a Polhemus sensor and the Kalman filter prediction of that output for a lead time of 1/3Oth of a second. 

2.2.1 The Noise Model 
We have experimentally developed a noise model for user mo- 

tions. Although our noise model is not verifiably optimal, we find 
the results to be quite sufficient for a wide variety of head and hand 
tracking applications. The system excitation noise model c is de- 
signed to compensate for large velocity and acceleration changes; 
we have found 

[(t)T = [ 1 20 63 1 20 63 1 20 63 ] (18) 

(where & = t(2)t(t)T) provides a good model. In other words, 
we expect and allow for positions to have a standard deviation of 
lmm, velocities 20mmlsec and accelerations 63mmlsec’. The 
observation noise is expected to be much lower than the system 
excitation noise. The spectral density matrix for observation noise 
is ?Z. = ~(t)rj(t)~; we have found that 

%w = [ .25 .25 .25 ] (‘9) 

provides a good model for the Polhemus sensor. 

2.3 Experimental Results and Comparison 

Figure 1 shows the raw output of a Polhemus sensor attached to a 
drumstick playing a musical flourish, together with the output of 
our Kalman filter predicting the Polhemus’s position 1/30th of a 
second in the future. 

As can be seen, the prediction is generally quite accurate At 
points of high acceleration a certain amount of overshoot occurs; 
such problems are intrinsic to any prediction method but can be 
minimized with more complex models of the sensor noise and the 
dynamics of the user’s movements. 

Figure 2 shows a higher-resolution version of the same Polhemus 
signal with the Kahnan filteroutput overlayed. Predictions for l/30, 
l/15, and l/10 of a second in the future are shown. For compari- 
son, Figure 3 shows the performance of the prediction made from 
simple smoothed local position and velocity, as described in the in- 
troduction. Again,predictions for l/30,1/15, and l/lOofasecond 
in the future are shown. As can be seen, the Kalman filter provides 
a more reliable predictor of future user position than the commonly 
used method of simple smoothing plus velocity prediction. 

3 Rotations 

With the Polhemus sensor, the above scheme can be directly ex- 
tended to filter and predict Euler angles as well as translations. 
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Figure 2: Output of Kahnan filter for various lead times 
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Figure 3: Output of commonly used velocity prediction method. 
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However with some sensors it is only possible to read out instant- 
by-instant incremenrul rofufions. In this case the absolute rotational 
state must be calculated by integration of these incremental rota- 
tions, and the Kalman filter formulation must altered as follows [I]. 
See also [6]. 

Let p be the incremental rotation vector, and denote the rotational 
velocity and acceleration by r9 and (Y. The rotational acceleration 
vector (Y is the derivative of 19 which is, in turn, the derivative of 
p, but only when two of the components p are exactly zero (in 
some frame to which both p and 29 are referenced). For sufficiently 
small rotations about at least two axes, t9 is approximately the time 
derivative of p. 

For 3D tracking one cannot generally assume small absolute mta- 
tions, so an additional representation of rotation, the unit quatemion 

6 and its rotation submahix R, is employed. Let 

/ qo \ i= ;; , I I (20) 
\ 43 / 

be the unit quatemion. Unit quatemions can be used to describe the 
rotation of a vector v through an angle 4 about an axis fi, where ii 
is a unit vector. The unit quatemion associated with such a rotation 
has scalarpart 

and vector oart 
qo = sin (b/2) (21) 

I Pl 
( ) QZ = iicos (4+/2) . 

43 
(22) 

Note that every quatemion defined this way is a unit quatemion. 

By convention 4 is used to designate the rotation between the 
global and local coordinate frames. The definition is such that the 
orthonormal matrix 

R = (23) 

1 

q; + 9.: - 4 - 9; 2 (QIPZ - qoq3) 267143 + qoq2) 

2hq2+!7043) &-d+d--d 2 (q2!73 - w71) 

2 k 43 - qoq2) 2 (Q293 + w?l) 92 - cl: - 422 + !7:. 1 
transforms vectors expressed in the local coordinate frame to the 
corresponding vectors in the global coordinate frame according to 

Vglobal = Rwoco~. (24) 
In dealing with incremental rotations, the model typically as- 

sumes that accelerations are an unknown “noise” input to the system, 
and that the time intervals are small so that the accelerations at one 
time step are close to those at the previous time step. The remain- 
ing states result from integrating the accelerations, with corrupting 
noise in the integration process. 

The assumption that accelerations and velocities can be integrated 
to obtain the global rotational state is valid only when pk is close 
to zero and pk+, remains small. The latter condition is guaranteed 
with a sufficiently small time step (or sufficiently small rotational 
velocities). The condition pk = 0 is established at each time step by 
defining p to be a correction to a nominal (absolute) rotation, which 

is maintained externally using a unit quatemion i that is updated at 
each time step. 

4 Unpredictable Events 
We have tested our Kalman filter synchronization approach using 
a simulated musical environment (described below) in which we 
track a drumstick and simulate the sounds of virtual drums. For 
smooth motions, the drumstick position is accurately predicted, so 
that sound, sight, and motion are accurately synchronized, and the 
user experiences a strong sense of reality. 

The main difliculties that arise with this approach derive from 
unexpected large accelerations, which produce overshoots and sim- 
ilar errors. It is important to note, however, that overshoots are 
not a problem as long the ldrumstick is far from the drum. In these 
cases the overshoots simply exaggerate the user’s motion, and the 
perception of synchrony persists. In fact, such overshoots seem 
generally to enhance, not degrade, the user’s impression of reality. 

The problem occurs when the predicted motion overshoots the 
true motion when the drumstick is near the drumhead, thus causing 
a false collision. In this case the system generates a sound when in 
fact no sound should occur. Such errors detract noticeably fmm the 
illusion of reality. 

4.1 Correcting Prediction Errors 

How can we preserve the impression of reality in the case of an 
overshoot causing an incorrect response? In the case of simple 
responses like sound generation, the answer is easy. When we 
detect that the user has changed direction unexpectedly - that is, 
that an overshoot has occurred - then we simply send an emergency 
message aborting the sound generation pmcess. As long as we can 
detect that an overshoot has occurred before the sound is “released,” 
there will be no error. 

This solution can be implemented quite generally, but it depends 
critically upon two things. The first is that we must be able to very 
quickly substitute the correct response for the incorrect response. 
The second is that we must be able to accurately detect that an 
overshoot has occurred. 

In the case of sound generation due to an overshoot, it is easy to 
substitute the correct response for the incorrect, because the correct 
response is to do nothing. More generally, however, when we de- 
tect that our motion prediction was in error we may have to perform 
some quite complicated alternative response. To maintain synchro- 
nization, therefore, we must be able to detect possible trouble spots 
beforehand, and begin to compute all of the alternative responses 
sufficiently far ahead of time that they will be available at the critical 
instant. 

The strategy, therefore, is to predict user motion just as before, 
but that at critical junctures to compute several alternative responses 
rather than a single response. When the instant arrives that a re- 
sponse is called for, we can then choose among the available re- 
sponses. 

4.2 Detecting Prediction Errors 

Given that we have computed alternative responses ahead of time, 
and that we can detect that a prediction error has occurred, then we 
can make the correct response. But how are we to detect which of 
(possibly many) alternative responses are to be executed? 

The key insight to solving this detection problem is that if we 
have the correct dynamic model then we will always have an optimal 
linear estimate of the drumstick position, and there should be nothing 
much better that we can to do. The problem, then, is that in some 
cases our model of the event’s dynamics does not match the true 
dynamics. For instance, we normally expect accelerations to be 
small and uncorrelated with position. However in some cases (for 
instance, when sharply changing the pace of a piece of music) a 
drummer will apply large accelerations that are exactly correlated 
with position. 

The solution is to have several models of the drummer’s dynam- 
ics running in parallel, one for each alternative response. Then at 
each instant we can observe the drumstick position and velocity, 
decide which model applies, and then make our response based on 
that model. This is known as tie mulriple modelor generalized like- 
lihood approach, and produces a generalized maximum likelihood 
estimate of the current and future values of the state variables [lo]. 
Moreover, the cost of the Kalman filter calculations is sufficiently 
small to make the approach quite practical. 



Figure 4: MusicWorld’s drum kit. 

Intuitively, this solution breaks the drummer’s overall behavior 
down into several “prototypical” behaviors. For instance, we might 
have dynamic models corresponding to a relaxed drummer, a very 
“tight” drummer, and so forth. We then classify the drummer’s 
behavior by determining which model best fits the drummer’s ob- 
served behavior. 

Mathematically, this is accomplished by setting up one Kahnan 
filter for the dynamics of each model: 

a;) = x*(i) k + K!‘)(Yk - h(‘)(X;“‘, t)) (25) 

where the superscript (;) denotes the jth Kalman filter. The mea- 
surement innovations process for the jth model (and associated 
Kalman filter) is then 

fiki) = yk - h(‘) (X$‘), t) (26) 

The measurementinnovationsprocess is zero-mean with covariance 
IL. 

The jth measurement innovations process is, intuitively, the part 
of the observation data that is unexplained by the ith model. The 
model that explains the largest portion of the observations is, of 
course, the most model likely to be correct. Thus at each time step 
calculate the probability Pci) of the mdimensional observations 
Yk given the ith model’s dynamics, 

- ;l-$%--ll$)) (27) 

and choose the model with the largestprobability. This model is then 
used to estimate the current value of the state variables, to predict 
their future values, and to choose among alternative responses. 

#en optimizing predictions of measurements At in the future, 
equation 26 must be modified slightly to test the predictive accuracy 
of state estimates from At in the past. 

l--l’) = yk _ h(i) 
k (Xf’il, + f’i’(%;lAt, At)At, t)) (28) 

by substituting equation 17. 

\ Position Data / 

Figure 5: Communications used for control and filtering of Polhe- 
mus sensor. 
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Figure 6: Communications and lead times for MusicWorld pro- 
cesses. 
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5 MusicWorld 

Our solution is demonstrated in a musical virtual reality, an ap- 
plication requiring synchronization of user, physical simulation, 
rendering, and computer-generated sound. This system is called 
MusicWorld, and allows users to play a virtual set of drums, bells, 
or strings with two drumsticks controlled by Polhemus sensors. As 
the user moves a physical drumstick the corresponding rendered 
drumstick tracks accordingly. The instant the rendered drumstick 
strikes a drum surface a sound generator produces the appropriate 
sound for that drum. The visualappearanceof MusicWorld is shown 
in Figure 4, and a higher quality rendition is included in the color 
section of these proceedings. 

Figure 5 shows the processes and communication paths used to 
filter and query each Polhemus sensor. Since we cannot insure that 
the application control process will query the Polhemus devices on 
a regular basis, and since we do not want the above Kalman loop to 
enter into the processing pipeline, we spawn two small processes to 
constantly query and filter the actual device. The application control 
process then, at any time, has the opportunity to make a fast query to 
the filter process for the most up to date, filtered, polhemus position. 
Using shared-memory between these two processes makes the final 
queries fully optimal. 

MusicWorld is built on top of the ThingWorld system [7; 81, 
which has one process to handle the problems of real-time physical 
simulation and contact detection and a second process to handle 
rendering. Sound generation is handled by a third process on a sep- 
arate host, running CSound [9]. Figure 6 shows the communication 
network for MusicWorld, and the lead times employed. 

The application control process queries the Kahnan filter process 
for the predicted positions of each drumstick at l/15 and l/30 of 
a second. Two different predictions are used, one for each output 
device. The l/15 of a second predictions are used for sound and 
are sent to ThingWorld to detect stick collisions with drums and 
other sound generating objects. When future collisions are detected, 
sound commands destined for 1 / 15 of a second in the future are sent 
to CSound. Regardless of collisions and sounds, the scene is always 
rendered using the positions predicted at l/30 of a second in the 
future, corresponding to the Exed lag in our rendering pipeline. In 
general, it would be more optimal to constantly check and update 
the lead times actually needed for each output process, to insure 
that dynamic changes ln network speeds, or in the complexity of the 
scene (rendering speeds) do not destroy the effects of synchrony. 

6 Summary 

The unavoidable processing delays in computer systems mean that 
synchronization of graphics and sound with user motion requires 
prediction of the user’s future position. We have shown how to con- 
struct the optimal linear filter for estimating future user position, and 
demonstrated that it gives better performance than the commonly 
used technique of position smoothing plus velocity prediction. The 
ability to produce accurate predictions can be used to minimize un- 
expected delays by using them in a system of multiple asynchronous 
processes with known, Exed lead times. Finally, we have shown that 
the combination of optimal filtering and careful construction of sys- 
tem communications canresultin a well-synchronized, multi-modal 
virtual environment. 
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