
Device Synchronization Using an Optimal Linear Filter

Martin Friedmann, Thad Stamer and Alex Pentland t

Abstract

In order to be convincing and natural, interactive graphics applica-
tions must correctly synchronize user motion with rendered graph-
ics and sound output. We present a solution to the synchronization
problem that is based on optimal estimation methods and fixed-
lag dataflow techniques. A method for discovering and correcting
prediction errors using a generalized likelihood approach is also
presented. And finally, MusicWorld, a simulated environment em-
ploying these ideas is described.

CR Categories and Subject Descriptors : I.3.6 [Computer
Graphics]: Methodology and Techniques - Inferaction Techniques;
D.2.2 [Software Engineering]: Tools and Techniques - User Inter-
faces

Additional Keywords: Real-time graphics, artificial reality, in-
teractive graphics, Kalman filtering, device synchronization.

1 Introduction
In order to be convincing and natural, interactive graphics applica-
tions must correctly synchronizeusermotion with rendered graphics
and sound output. The exact synchronization of user motion and
rendering is critical: lags greater than 100 msec in the rendering of
hand motion can cause users to restrict themselves to slow, careful
movements while discrepancies between headmotion and rendering
can cause motion sickness [3; 51. In systems that generate sound,
small delays in sound output can confuse even practiced users.
This paper proposes a suite of methods for accurately predicting
sensor position in order to more closely synchronize processes in
distributed virtual environments.

Problems in synchronization of user motion, rendering, and
sound arise from three basic causes. The first cause is noise in
the sensor measurements. The second cause is the length of the
processing pipeline, that is, the delay introduced by the sensing de-
vice, the CPU time required to calculate the proper response, and
the time spent rendering output images or generating appropriate
sounds. The third cause is unexpected interruptions such as net-
work contention or operating system activity. Because of these
factors, using the raw output of position sensors leads to noticeable
lags and other discrepancies in output synchronization.

+ Vision and Modeling Group, The Media Laboratory,
MassachusettsInstitute of Technology, Cambridge, MA 02139.
{ martin,testarne.sandy} @media-lab.media.mit.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
e 1992 ACM 0-89791-471-6/92/0003/0057...$1.50

Unfortunately, most interactive systems either use raw sensor
positions, or they make an ad-hoc attempt to compensate for the
fixed delays and noise. A typical method for compensation averages
current sensor measurements with previous measurements to obtain
a smoothed estimate of position. The smoothed measurements are
then differenced for a crude estimate of the user’s instantaneous
velocity. Finally, the smoothed position and instantaneous velocity
estimates are combined to extrapolate the user’s position at some
fixed interval in the future.

Problems with this approach arise when the user either moves
quickly, so that averaging sensor measurements produces a poor
estimate of position, or when the user changes velocity, so that
the predicted position overshoots or undershoots the user’s actual
position. As a consequence, users are forced to make only slow,
deliberate motions in order to maintain the illusion of reality.

We present a solution to these problems based on the ability to
more accurately predict future user positions using an optimal linear
estimator and on the use of fixed-lag dataflow techniques that are
well-known in hardware and operating system design. The ability
to accurately predict future positions eases the need to shorten the
processing pipeline because a fixed amount of “lead time” can be
allotted to each output process. For example, the positions fed to
the rendering process can reflect sensor measurements one frame
ahead of time so that when the image is rendered and displayed,
the effect of synchrony is achieved. Consequently, unpredictable
systemand network interruptions are invisible to the user as long as
they are shorter than the allotted lead time.

2 Optimal Estimation of Position and
Vef ocity

At the core of our technique is the optimal linear estimation of fu-
ture user position. To accomplish this it is necessary to consider the
dynamic properties of the user’s motion and of the data measure-
ments. The Kalman filter [4] is the standard technique for obtaining
optimal linear estimates of the state vectors of dynamic models and
for predicting the state vectors at some later time. Outputs from the
Kalman filter are the maximum likelihood estimates for Gaussian
noises, and are the optimal (weighted) least-squares estimates for
non-Gaussian noises [21.

In our particular application we have found that it is initially
sufficient to treat only the translational components (the Z, y, and z
coordinates)output by the Polhemus sensor, and to assume indepen-
dent observation and acceleration noise. In this section, therefore,
we will develop a Kalman filter that estimates the position and ve-
locity of a Polhemus sensor for this simple noise model. Rotations
will be addressed in the following section.

57

2.1 The Kalman Filter
Let us define a dynamic process

Xk+l = f(Xk, At) + t(t) (1)

where the function f models the dynamic evolution of state vector
Xk at time k. and let us define an observation process

yk = h(Xk, At) + q(t) (2)

where the sensor observations Y are a function h of the state vector
and time. Both < and v are white noise processes having known
spectral density matrices.

In our case the state vector xk consists of the true position,
velocity, and acceleration of the Polhemus sensor in each of the 2,
y, and z coordinates, and the observation vector Yk consists of the
Polhemus position readings for the x, y, and z coordinates. The
function f will describe the dynamics of the user’s movements in
terms of the state vector, Le. how the future position in z is related
to current position, velocity, and acceleration in x, y, and z. The
observation function h describes the Polhemus measurements in
terms of the state vector, i.e., how the next Polhemus measurement
is related to current position, velocity, and acceleration in x, y, and
2.

Using Kalman’s result, we can then obtain the optimal linear A
estimate xk Of the State VeCtOr xk by use Of the fOnOWiIIg KuZman
filter:

jt, = x; + Kk(Yk - h(X;, t)) (3)
provided that the Kalman gain matrix &. is chosen correctly [4].
At each time step k, the filter algorithm uses a state prediction Xi,
an error covariance matrix prediction Pi, and a sensor measure-
ment Yk to determine an optimal linear state estimate Xi;k, error
covariance matrix estimate i)k, and predictions Xi+,, Pi+, for
the next time step.

The prediction of the state vector Xl+, at the next time step is _
obtained by combining the optimal state estimate Xk and Equation
1:

x;+l = A;, + f (a,, At)At (4)
In our graphics application this prediction equation is also used
with larger times steps, to predict the user’s future position. This
prediction allows us to maintain synchrony with the user by giving
us the lead time needed to complete rendering, sound generation,
and so forth.

2.1.1 Calculating The Kalrnan Gain Factor
The Kalman gain matrix Kk minimizes the error covariance

matrix Pk of the error ek = XI; - Xk, and is given by

Kk = P;Hk*(&P;Hk= - a)-’ (5)

where R = E[q(t)~~(t)~] is the n x n observation noise spectral
density matrix, and the matrix Hk is the local linear approximation
to the observation function h,

[Hk]ij = ahi/axj (6)

evaluated at X = Xi.
Assuming that the noise characteristics are constant, then the

optimizing error covariance matrix Pk is obtained by solving the
Riccati equation

o=P* k = FkP; + P;F: - P;H;R-l&P; + & (7)

where & = E[t(t)t(t)*] is th e n x n spectral density matrix of the
system excitation noise [, and Fk is the local linear approximation
to the state evolution function f,

[Fk]ij = 6’fi/aZj (8)

evaluated at X = Xk.
More generally, the optimizing error covariance matrix will vary

with time, and must also be estimated. The estimate covariance is
given by

pk = (I - Kk&)P; (9)

From this the predicted errorcovariance matrix can be obtained

p;+, = *k@k*; + 8

where *k is known as the state transition matrix

@k = (I + F&t) (11)

2.2 Estimation of Displacement and Velocity

In our graphics application we use the Kalman filter described above
for the estimation of the displacements P,, Py, and P,. the veloc-
ities Vz, V,, and V., and the accelerations A,, A,, and A, of
Polhemus sensors. The state vector X of our dynamic system is
therefore (P,, V,, AZ, Pv, V,, A,, P,, V,, Az)T, and the state evo-
lution function is

f(X,At) =
1 vd.w 1

(12)

The observation vector Y will be the positions Y =
(P& PL, P:)T that are the output of the Polhemus sensor. Given
a state vector X we predict the measurement using simple second
order equations of motion:

h(X,At) =

1

P, + &At + A&
P,+V,Ad+A&

I
(13)

P,+VzAt+A&

Calculating the partial derivatives of Equations 6 and 8 we obtain

F=

and

H=

0 1 k
0 i

0
0 1

0
9
1
0

0 1 &
0 f

0

1 At $

1 At $

1 At $

(14)

1 (15)
Finally, given the state vector Xk at time k we can predict the

Polhemus measurements at time k + At by

Y k+At = h(Xk, At) (16)

and the predicted state vector at time k + At is given by

jt k+At = x; f f@k&)At (17)

58

Height (mm)

-polhemus signal
25o-------- .03 second look ahead

200-h ; ‘I

Time (seconds)

Figure 1: Output of a Polhemus sensor and the Kalman filter prediction of that output for a lead time of 1/3Oth of a second.

2.2.1 The Noise Model
We have experimentally developed a noise model for user mo-

tions. Although our noise model is not verifiably optimal, we find
the results to be quite sufficient for a wide variety of head and hand
tracking applications. The system excitation noise model c is de-
signed to compensate for large velocity and acceleration changes;
we have found

[(t)T = [1 20 63 1 20 63 1 20 63] (18)

(where & = t(2)t(t)T) provides a good model. In other words,
we expect and allow for positions to have a standard deviation of
lmm, velocities 20mmlsec and accelerations 63mmlsec’. The
observation noise is expected to be much lower than the system
excitation noise. The spectral density matrix for observation noise
is ?Z. = ~(t)rj(t)~; we have found that

%w = [.25 .25 .25] (‘9)

provides a good model for the Polhemus sensor.

2.3 Experimental Results and Comparison

Figure 1 shows the raw output of a Polhemus sensor attached to a
drumstick playing a musical flourish, together with the output of
our Kalman filter predicting the Polhemus’s position 1/30th of a
second in the future.

As can be seen, the prediction is generally quite accurate At
points of high acceleration a certain amount of overshoot occurs;
such problems are intrinsic to any prediction method but can be
minimized with more complex models of the sensor noise and the
dynamics of the user’s movements.

Figure 2 shows a higher-resolution version of the same Polhemus
signal with the Kahnan filteroutput overlayed. Predictions for l/30,
l/15, and l/10 of a second in the future are shown. For compari-
son, Figure 3 shows the performance of the prediction made from
simple smoothed local position and velocity, as described in the in-
troduction. Again,predictions for l/30,1/15, and l/lOofasecond
in the future are shown. As can be seen, the Kalman filter provides
a more reliable predictor of future user position than the commonly
used method of simple smoothing plus velocity prediction.

3 Rotations

With the Polhemus sensor, the above scheme can be directly ex-
tended to filter and predict Euler angles as well as translations.

Height (mm)
250 -

t
polhemus signal

_____________ . 03 second

I -------.06 second
200 -------.09 second

look ahead
look ahead
look ahead ,-

,

-501 Tir&*\seconds)

Figure 2: Output of Kahnan filter for various lead times

Height (mm)
250.. - polhemus signal

------------. .03 second look ahead
-------.06 second look ahead

200.' -.-.-.-.09 second look ahead ,f,
I, \\

4.6 4.8 q,;--;45.2 5.4 5.6 5.8
-50.. ,b'/

\/' Tim& (seconds)

Figure 3: Output of commonly used velocity prediction method.

59

However with some sensors it is only possible to read out instant-
by-instant incremenrul rofufions. In this case the absolute rotational
state must be calculated by integration of these incremental rota-
tions, and the Kalman filter formulation must altered as follows [I].
See also [6].

Let p be the incremental rotation vector, and denote the rotational
velocity and acceleration by r9 and (Y. The rotational acceleration
vector (Y is the derivative of 19 which is, in turn, the derivative of
p, but only when two of the components p are exactly zero (in
some frame to which both p and 29 are referenced). For sufficiently
small rotations about at least two axes, t9 is approximately the time
derivative of p.

For 3D tracking one cannot generally assume small absolute mta-
tions, so an additional representation of rotation, the unit quatemion

6 and its rotation submahix R, is employed. Let

/ qo \ i= ;; , I I (20)
\ 43 /

be the unit quatemion. Unit quatemions can be used to describe the
rotation of a vector v through an angle 4 about an axis fi, where ii
is a unit vector. The unit quatemion associated with such a rotation
has scalarpart

and vector oart
qo = sin (b/2) (21)

I Pl
() QZ = iicos (4+/2) .

43
(22)

Note that every quatemion defined this way is a unit quatemion.

By convention 4 is used to designate the rotation between the
global and local coordinate frames. The definition is such that the
orthonormal matrix

R = (23)

1

q; + 9.: - 4 - 9; 2 (QIPZ - qoq3) 267143 + qoq2)

2hq2+!7043) &-d+d--d 2 (q2!73 - w71)

2 k 43 - qoq2) 2 (Q293 + w?l) 92 - cl: - 422 + !7:. 1
transforms vectors expressed in the local coordinate frame to the
corresponding vectors in the global coordinate frame according to

Vglobal = Rwoco~. (24)
In dealing with incremental rotations, the model typically as-

sumes that accelerations are an unknown “noise” input to the system,
and that the time intervals are small so that the accelerations at one
time step are close to those at the previous time step. The remain-
ing states result from integrating the accelerations, with corrupting
noise in the integration process.

The assumption that accelerations and velocities can be integrated
to obtain the global rotational state is valid only when pk is close
to zero and pk+, remains small. The latter condition is guaranteed
with a sufficiently small time step (or sufficiently small rotational
velocities). The condition pk = 0 is established at each time step by
defining p to be a correction to a nominal (absolute) rotation, which

is maintained externally using a unit quatemion i that is updated at
each time step.

4 Unpredictable Events
We have tested our Kalman filter synchronization approach using
a simulated musical environment (described below) in which we
track a drumstick and simulate the sounds of virtual drums. For
smooth motions, the drumstick position is accurately predicted, so
that sound, sight, and motion are accurately synchronized, and the
user experiences a strong sense of reality.

The main difliculties that arise with this approach derive from
unexpected large accelerations, which produce overshoots and sim-
ilar errors. It is important to note, however, that overshoots are
not a problem as long the ldrumstick is far from the drum. In these
cases the overshoots simply exaggerate the user’s motion, and the
perception of synchrony persists. In fact, such overshoots seem
generally to enhance, not degrade, the user’s impression of reality.

The problem occurs when the predicted motion overshoots the
true motion when the drumstick is near the drumhead, thus causing
a false collision. In this case the system generates a sound when in
fact no sound should occur. Such errors detract noticeably fmm the
illusion of reality.

4.1 Correcting Prediction Errors

How can we preserve the impression of reality in the case of an
overshoot causing an incorrect response? In the case of simple
responses like sound generation, the answer is easy. When we
detect that the user has changed direction unexpectedly - that is,
that an overshoot has occurred - then we simply send an emergency
message aborting the sound generation pmcess. As long as we can
detect that an overshoot has occurred before the sound is “released,”
there will be no error.

This solution can be implemented quite generally, but it depends
critically upon two things. The first is that we must be able to very
quickly substitute the correct response for the incorrect response.
The second is that we must be able to accurately detect that an
overshoot has occurred.

In the case of sound generation due to an overshoot, it is easy to
substitute the correct response for the incorrect, because the correct
response is to do nothing. More generally, however, when we de-
tect that our motion prediction was in error we may have to perform
some quite complicated alternative response. To maintain synchro-
nization, therefore, we must be able to detect possible trouble spots
beforehand, and begin to compute all of the alternative responses
sufficiently far ahead of time that they will be available at the critical
instant.

The strategy, therefore, is to predict user motion just as before,
but that at critical junctures to compute several alternative responses
rather than a single response. When the instant arrives that a re-
sponse is called for, we can then choose among the available re-
sponses.

4.2 Detecting Prediction Errors

Given that we have computed alternative responses ahead of time,
and that we can detect that a prediction error has occurred, then we
can make the correct response. But how are we to detect which of
(possibly many) alternative responses are to be executed?

The key insight to solving this detection problem is that if we
have the correct dynamic model then we will always have an optimal
linear estimate of the drumstick position, and there should be nothing
much better that we can to do. The problem, then, is that in some
cases our model of the event’s dynamics does not match the true
dynamics. For instance, we normally expect accelerations to be
small and uncorrelated with position. However in some cases (for
instance, when sharply changing the pace of a piece of music) a
drummer will apply large accelerations that are exactly correlated
with position.

The solution is to have several models of the drummer’s dynam-
ics running in parallel, one for each alternative response. Then at
each instant we can observe the drumstick position and velocity,
decide which model applies, and then make our response based on
that model. This is known as tie mulriple modelor generalized like-
lihood approach, and produces a generalized maximum likelihood
estimate of the current and future values of the state variables [lo].
Moreover, the cost of the Kalman filter calculations is sufficiently
small to make the approach quite practical.

Figure 4: MusicWorld’s drum kit.

Intuitively, this solution breaks the drummer’s overall behavior
down into several “prototypical” behaviors. For instance, we might
have dynamic models corresponding to a relaxed drummer, a very
“tight” drummer, and so forth. We then classify the drummer’s
behavior by determining which model best fits the drummer’s ob-
served behavior.

Mathematically, this is accomplished by setting up one Kahnan
filter for the dynamics of each model:

a;) = x*(i) k + K!‘)(Yk - h(‘)(X;“‘, t)) (25)

where the superscript (;) denotes the jth Kalman filter. The mea-
surement innovations process for the jth model (and associated
Kalman filter) is then

fiki) = yk - h(‘) (X$‘), t) (26)

The measurementinnovationsprocess is zero-mean with covariance
IL.

The jth measurement innovations process is, intuitively, the part
of the observation data that is unexplained by the ith model. The
model that explains the largest portion of the observations is, of
course, the most model likely to be correct. Thus at each time step
calculate the probability Pci) of the mdimensional observations
Yk given the ith model’s dynamics,

- ;l-$%--ll$)) (27)

and choose the model with the largestprobability. This model is then
used to estimate the current value of the state variables, to predict
their future values, and to choose among alternative responses.

#en optimizing predictions of measurements At in the future,
equation 26 must be modified slightly to test the predictive accuracy
of state estimates from At in the past.

l--l’) = yk _ h(i)
k (Xf’il, + f’i’(%;lAt, At)At, t)) (28)

by substituting equation 17.

\ Position Data /

Figure 5: Communications used for control and filtering of Polhe-
mus sensor.

Rendering Commands
With l/30 Second

Rendering

Lead Time
f

PIWCCSS

l/30 Sec. Delay

Lead Time

Figure 6: Communications and lead times for MusicWorld pro-
cesses.

61

5 MusicWorld

Our solution is demonstrated in a musical virtual reality, an ap-
plication requiring synchronization of user, physical simulation,
rendering, and computer-generated sound. This system is called
MusicWorld, and allows users to play a virtual set of drums, bells,
or strings with two drumsticks controlled by Polhemus sensors. As
the user moves a physical drumstick the corresponding rendered
drumstick tracks accordingly. The instant the rendered drumstick
strikes a drum surface a sound generator produces the appropriate
sound for that drum. The visualappearanceof MusicWorld is shown
in Figure 4, and a higher quality rendition is included in the color
section of these proceedings.

Figure 5 shows the processes and communication paths used to
filter and query each Polhemus sensor. Since we cannot insure that
the application control process will query the Polhemus devices on
a regular basis, and since we do not want the above Kalman loop to
enter into the processing pipeline, we spawn two small processes to
constantly query and filter the actual device. The application control
process then, at any time, has the opportunity to make a fast query to
the filter process for the most up to date, filtered, polhemus position.
Using shared-memory between these two processes makes the final
queries fully optimal.

MusicWorld is built on top of the ThingWorld system [7; 81,
which has one process to handle the problems of real-time physical
simulation and contact detection and a second process to handle
rendering. Sound generation is handled by a third process on a sep-
arate host, running CSound [9]. Figure 6 shows the communication
network for MusicWorld, and the lead times employed.

The application control process queries the Kahnan filter process
for the predicted positions of each drumstick at l/15 and l/30 of
a second. Two different predictions are used, one for each output
device. The l/15 of a second predictions are used for sound and
are sent to ThingWorld to detect stick collisions with drums and
other sound generating objects. When future collisions are detected,
sound commands destined for 1 / 15 of a second in the future are sent
to CSound. Regardless of collisions and sounds, the scene is always
rendered using the positions predicted at l/30 of a second in the
future, corresponding to the Exed lag in our rendering pipeline. In
general, it would be more optimal to constantly check and update
the lead times actually needed for each output process, to insure
that dynamic changes ln network speeds, or in the complexity of the
scene (rendering speeds) do not destroy the effects of synchrony.

6 Summary

The unavoidable processing delays in computer systems mean that
synchronization of graphics and sound with user motion requires
prediction of the user’s future position. We have shown how to con-
struct the optimal linear filter for estimating future user position, and
demonstrated that it gives better performance than the commonly
used technique of position smoothing plus velocity prediction. The
ability to produce accurate predictions can be used to minimize un-
expected delays by using them in a system of multiple asynchronous
processes with known, Exed lead times. Finally, we have shown that
the combination of optimal filtering and careful construction of sys-
tem communications canresultin a well-synchronized, multi-modal
virtual environment.

7 Acknowledgements

This research was made possible by AR0 Grant No. DAALO3-87-
K-0005. Fist thanks go to the ACM for this publication. Thanks are
due to Barry Vercoe and Mike Hawley for their help with CSOUND.
Thanks! Special mention to Ali Azarbayejani, our newest member.
And last but not least, shouts go out to the rest of the real-time pro-
gramming posse: It-fan Essa, Bradley Horowitz and Stan Sclaroff.

References

VI

PI

131

141

VI

WI

[71

P31

[91

Azarbayejani, Ali. Model-Based Ksion Navigation for a Free-
Flying Robot. Masters Thesis, M.I.T. Dept. of Aero. and Astm.
(1991).

Friedland, Bernard. Control System Design. McGraw-Hill,
(1986).

Held, Richard. Correlation and decor-relation between visual
displays and motor output. In Motion sickness, visual displays,
and armored vehicle design, @p. 64-75). Aberdeen Proving
Ground, Maryland: Ballistic Research Laboratory. (1990).

Kalman, R. E. & Bucy, R. S. New results in linear filtering
and prediction theory. In Transaction ASME (Journal of basic
engineering), 83D, 95-108. (1961).

Oman, Charles M. Motion sickness: a synthesis and evaluation
of the sensory conflict theory. In Canadian Journal of Physiol-
ogy and Pharmacology, 68.264-303. (1990).

Liang, Jiandong. Shaw, Chris & Green, Mark. On temporal-
spatial realism in the virtual reality environment. In Proceed-
ings of the ACM Symposium on User Interface Somare and
Technology, pp. 19-25, Hilton Head SC. (1991).

Pentland, Alex & Williams, John. Good vibrations: Modal
dynamics for graphics and animation. In Computer Graphics
23,4, pp. 215-222. (1989).

Pentland. A., Friedmann, M., Horowitz, B., Sclaroff, S. &
Starner, T. The ThingWorld modeling system. In E.F. Depret-
tere, (Ed.). Algorithms and parallel VLSI architectures, Ams-
terdam : Elsevier. (1990).

Vercoe, Barry & Ellis, Dan. Real-time CSOUND: Software
synthesis with sensing and control. In ICMC Glasgow 1990
Proceedings, pp. 209-2 11. (1990).

[lo] Willsky, Alan S.. Detection of Abrupt Changes in Dynamic
Systems. In M. Basseville and A. Benveniste, (Ed.). Detection
of Abrupt Changes in Signals and Dynamical Systems, Lecture
Notes in Control and Information Sciences, No. 77, pp. 27-49,
Springer-Verlag. (1986).

62

Proceedings
1992 Symposium on Interactive 3D Graphics

Cambridge, Massachusetts
29 March - 1 April 1992

Program Co-Chairs

Marc Levoy Edwin E. Catmull
Stanford University Pixar

Symposium Chair

David Zeltzer
MIT Media Laboratory

Sponsored by the following organizations:

Office of Naval Research
National Science Foundation

USA Ballistic Research Laboratory
Hewlett-Packard
Silicon Graphics

Sun Microsystems
MIT Media Laboratory

In Cooperation with ACM SIGGRAPH

222

