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Abstract

Modern wearable computer designs package work-
station level performance in systems small enough to
be worn as clothing. These machines enable technology
to be brought where it is needed the most for the handi-
capped: everyday mobile environments. This paper de-
scribes a research effort to make a wearable computer
that can recognize (with the possible goal of translat-
ing) sentence level American Sign Language (ASL)
using only a baseball cap mounted camera for input.
Current accuracy exceeds 97% per word on a 40 word
lexicon.
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1 Introduction

While there are many different types of gestures,
the most structured sets belong to the sign languages.
In sign language, where each gesture already has as-
signed meaning, strong rules of context and grammar
may be applied to make recognition tractable.

To date, most work on sign language recognition
has employed expensive “datagloves” which tether the
user to a stationary machine [1] or computer vision
systems limited to a calibrated area [2]. In addi-
tion, these systems have mostly concentrated on finger
spelling, in which the user signs each word with finger
and hand positions corresponding to the letters of the
alphabet [3]. However, most signing does not involve
finger spelling, but instead uses gestures which rep-
resent whole words, allowing signed conversations to
proceed at or above the pace of spoken conversation.

In this paper, we describe an extensible system
which uses one color camera pointed down from

the brim of a baseball cap to track the wearer’s
hands in real time and interpret American Sign Lan-
guage (ASL) using Hidden Markov Models (HMM’s).
The computation environment is being prototyped
on a SGI Indy; however, the target platform is a
self-contained 586 wearable computer with DSP co-
processor. The eventual goal is a system that can
translate the wearer’s sign language into spoken En-
glish. The hand tracking stage of the system does not
attempt a fine description of hand shape; studies of
human sign readers have shown that such detailed in-
formation is not necessary for humans to interpret sign
language [4, 5]. Instead, the tracking process produces
only a coarse description of hand shape, orientation,
and trajectory. The hands are tracked by their color:
in the first experiment via solidly colored gloves and
in the second, via their natural skin tone. In both
cases the resultant shape, orientation, and trajectory
information is input to a HMM for recognition of the
signed words.

Hidden Markov models have intrinsic properties
which make them very attractive for sign language
recognition. Explicit segmentation on the word level
is not necessary for either training or recognition [6].
Language and context models can be applied on sev-
eral different levels, and much related development of
this technology has already been done by the speech
recognition community [7]. Consequently, sign lan-
guage recognition seems an ideal machine vision ap-
plication of HMM technology, offering the benefits
of problem scalability, well defined meanings, a pre-
determined language model, a large base of users, and
immediate applications for a recognizer.

American Sign Language (ASL) is the language
of choice for most deaf people in the United States.
ASL’s grammar allows more flexibility in word or-
der than English and sometimes uses redundancy for
emphasis. Another variant, Signing Exact English
(SEE), has more in common with spoken English but
is not in widespread use in America. ASL uses approx-



imately 6000 gestures for common words and commu-
nicates obscure words or proper nouns through finger
spelling.

Conversants in ASL may describe a person, place,
or thing and then point to a place in space to store
that object temporarily for later reference [5]. For the
purposes of this experiment, this aspect of ASL will be
ignored. Furthermore, in ASL the eyebrows are raised
for a question, relaxed for a statement, and furrowed
for a directive. While we have also built systems that
track facial features [8], this source of information will
not be used to aid recognition in the task addressed
here.

While the scope of this work is not to create a user
independent, full lexicon system for recognizing ASL,
the system should be extensible toward this goal. An-
other goal is real-time recognition which allows eas-
ier experimentation, demonstrates the possibility of
a commercial product in the future, and simplifies
archiving of test data. “Continuous” sign language
recognition of full sentences is necessary to demon-
strate the feasibility of recognizing complicated series
of gestures. Of course, a low error rate is also a high
priority. For this recognition system, sentences of the

Table 1: ASL Test Lexicon

part of speech vocabulary
pronoun I, you, he, we, you(pl), they
verb want, like, lose, dontwant, dontlike,

love, pack, hit, loan
noun box, car, book, table, paper, pants,

bicycle, bottle, can, wristwatch,
umbrella, coat, pencil, shoes, food,
magazine, fish, mouse, pill, bowl

adjective red, brown, black, gray, yellow

form “personal pronoun, verb, noun, adjective, (the
same) personal pronoun” are to be recognized. This
sentence structure emphasizes the need for a distinct
grammar for ASL recognition and allows a large vari-
ety of meaningful sentences to be generated randomly
using words from each class. Table 1 shows the words
chosen for each class. Six personal pronouns, nine
verbs, twenty nouns, and five adjectives are included
making a total lexicon of forty words. The words were
chosen by paging through Humphries et al. [9] and se-
lecting those which would generate coherent sentences
when chosen randomly for each part of speech.

2 Machine Sign Language Recognition

Attempts at machine sign language recognition
have begun to appear in the literature over the past
five years. However, these systems have generally con-
centrated on isolated signs, immobile systems, and
small training and test sets. Research in the area can
be divided into image based systems and instrumented
glove systems.

Tamura and Kawasaki demonstrate an early im-
age processing system which recognizes 20 Japanese
signs based on matching cheremes [10]. Charayaphan
and Marble [11] demonstrate a feature set that dis-
tinguishes between the 31 isolated ASL signs in their
training set (which also acts as the test set). More re-
cently, Cui and Weng [12] have shown an image-based
system with 96% accuracy on 28 isolated gestures.

Takahashi and Kishino [1] discuss a user depen-
dent Dataglove-based system that recognizes 34 of
the 46 Japanese kana alphabet gestures, isolated in
time, using a joint angle and hand orientation cod-
ing technique. Murakami and Taguchi [13] describe a
similar Dataglove system using recurrent neural net-
works. However, in this experiment a 42 static-pose
finger alphabet is used, and the system achieves up
to 98% recognition for trainers of the system and
77% for users not in the training set. This study
also demonstrates a separate 10 word gesture lex-
icon with user dependent accuracies up to 96% in
constrained situations. With minimal training, the
glove system discussed by Lee and Xu [14] can rec-
ognize 14 isolated finger signs using a HMM repre-
sentation. Messing et. al. [15] have shown a neural
net based glove system that recognizes isolated finger-
spelling with 96.5% accuracy after 30 training sam-
ples. Kadous [16] describes an inexpensive glove-based
system using instance-based learning which can rec-
ognize 95 discrete Auslan (Australian Sign Language)
signs with 80% accuracy. However, the most encour-
aging work with glove-based recognizers comes from
Liang and Ouhyoung’s recent treatment of Taiwanese
Sign language [17]. This HHM-based system recog-
nizes 51 postures, 8 orientations, and 8 motion primi-
tives. When combined, these constituents form a lexi-
con of 250 words which can be continuously recognized
in real-time with 90.5% accuracy.

3 Use of Hidden Markov Models in
Gesture Recognition

While the continuous speech recognition commu-
nity adopted HMM’s many years ago, these techniques



are just now accepted by the vision community. An
early effort by Yamato et al. [18] uses discrete HMM’s
to recognize image sequences of six different tennis
strokes among three subjects. This experiment is sig-
nificant because it uses a 25x25 pixel quantized sub-
sampled camera image as a feature vector. Even with
such low-level information, the model can learn the
set of motions and recognize them with respectable
accuracy. Darrell and Pentland [19] use dynamic time
warping, a technique similar to HMM’s, to match the
interpolated responses of several learned image tem-
plates. Schlenzig et al. [20] use hidden Markov models
to recognize “hello,” “good-bye,” and “rotate.” While
Baum-Welch re-estimation was not implemented, this
study shows the continuous gesture recognition capa-
bilities of HMM’s by recognizing gesture sequences.
Closer to the task of this paper, Wilson and Bobick
[21] explore incorporating multiple representations in
HMM frameworks, and Campbell et. al. [22] use a
HMM-based gesture system to recognize 18 T’ai Chi
gestures with 98% accuracy.

4 Tracking Hands in Video

Previous systems have shown that, given some con-
straints, relatively detailed models of the hands can be
recovered from video images [3, 23]. However, many
of these constraints conflict with recognizing ASL in a
natural context, either by requiring simple, unchang-
ing backgrounds (unlike clothing); not allowing occlu-
sion; requiring carefully labelled gloves; or being diffi-
cult to run in real time.

In this project we have tried two methods of hand
tracking: one, using solidly-colored cloth gloves (thus
simplifing the color segmentation problem), and two,
tracking the hands directly without aid of gloves or
markings. Figure 1 shows the cap camera mount, and
Figure 2 shows the view from the camera’s perspective
in the no-gloves case.

In both cases color NTSC composite video is cap-
tured and analyzed at 320 by 243 pixel resolution
on a Silicon Graphics 200MHz Indy workstation at
10 frames per second. When simulating the self-
contained wearable computer under development, a
wireless transmission system is used to send real-time
video to the SGI for processing [24].

In the first method, the subject wears distinctly
colored cloth gloves on each hand (a pink glove for
the right hand and a blue glove for the left). To find
each hand initially, the algorithm scans the image until
it finds a pixel of the appropriate color. Given this
pixel as a seed, the region is grown by checking the

eight nearest neighbors for the appropriate color. Each
pixel checked is considered part of the hand. This, in
effect, performs a simple morphological dilation upon
the resultant image that helps to prevent edge and
lighting aberrations. The centroid is calculated as a
by-product of the growing step and is stored as the
seed for the next frame. Given the resultant bitmap
and centroid, second moment analysis is performed as
described in the following section.

Figure 1: The baseball cap mounted recognition cam-
era.

Figure 2: View from the tracking camera.

In the second method, the hands were tracked based
on skin tone. We have found that all human hands
have approximately the same hue and saturation, and
vary primarily in their brightness. Using this informa-
tion we can build an a priori model of skin color and
use this model to track the hands much as was done
in the gloved case. Since the hands have the same
skin tone, “left” and “right” are simply assigned to
whichever hand is currently leftmost and rightmost.
Processing proceeds normally except for simple rules
to handle hand and nose ambiguity described in the
next section.

5 Feature Extraction and Hand Ambi-
guity

Psychophysical studies of human sign readers have
shown that detailed information about hand shape is
not necessary for humans to interpret sign language



[4, 5]. Consequently, we began by considering only
very simple hand shape features, and evolved a more
complete feature set as testing progressed [6].

Since finger spelling is not allowed and there are few
ambiguities in the test vocabulary based on individual
finger motion, a relatively coarse tracking system may
be used. Based on previous work, it was assumed that
a system could be designed to separate the hands from
the rest of the scene. Traditional vision algorithms
could then be applied to the binarized result. Aside
from the position of the hands, some concept of the
shape of the hand and the angle of the hand relative
to horizontal seems necessary. Thus, an eight element
feature vector consisting of each hand’s x and y posi-
tion, angle of axis of least inertia, and eccentricity of
bounding ellipse was chosen. The eccentricity of the
bounding ellipse was found by determining the ratio
of the square roots of the eigenvalues that correspond
to the matrix (

a b/2
b/2 c

)

where a, b, and c are defined as

a =
∫ ∫

I′
(x′)2dx′dy′

b =
∫ ∫

I′
x′y′dx′dy′

c =
∫ ∫

I′
(y′)2dx′dy′

(x′ and y′ are the x and y coordinates normalized to
the centroid) The axis of least inertia is then deter-
mined by the major axis of the bounding ellipse, which
corresponds to the primary eigenvector of the matrix
[25]. Note that this leaves a 180 degree ambiguity in
the angle of the ellipses. To address this problem, the
angles were only allowed to range from -90 to +90
degrees.

When tracking skin tones, the above analysis helps
to model situations of hand ambiguity implicitly.
When a hand occludes either the other hand or the
nose, color tracking alone can not resolve the ambi-
guity. Since the nose remains in the same area of
the frame, its position can be determined and dis-
counted. However, the hands move rapidly and oc-
clude each other often. When occlusion occurs, the
hands appear to the above system as a single blob
of larger than normal mass with significantly different
moments than either of the two hands in the previous
frame. In this implementation, each of the two hands
is assigned the moment and position information of
the single blob whenever occlusion occurs. While not

as informative as tracking each hand separately, this
method still retains a surprising amount of discrimi-
nating information. The occlusion event is implicitly
modeled, and the combined position and moment in-
formation are retained. This method, combined with
the time context provided by hidden Markov models,
is sufficient to distinguish between many different signs
where hand occlusion occurs.

6 Training an HMM network

While a substantial body of literature exists on
HMM technology [26, 7, 27, 28], this section briefly
outlines a traditional discussion of the algorithms. Af-
ter outlining the fundamental theory in training and
testing a discrete HMM, the result is then generalized
to the continuous density case used in the experiments
and contextual issues are discussed. For broader dis-
cussion of the topic, [7, 29] are recommended.

A time domain process demonstrates a Markov
property if the conditional probability density of the
current event, given all present and past events, de-
pends only on the jth most recent events. If the
current event depends solely on the most recent past
event, then the process is a first order Markov process.
While the order of words in American Sign Language
is not truly a first order Markov process, it is a useful
assumption when considering the positions and orien-
tations of the hands of the signer through time.

The initial topology for an HMM can be determined
by estimating how many different states are involved
in specifying a sign. Fine tuning this topology can be
performed empirically. While different topologies can
be specified for each sign, a four state HMM with one
skip transition was determined to be sufficient for this
task (Figure 3).

Figure 3: The four state HMM used for recognition.

There are three key problems in HMM use: evalua-
tion, estimation, and decoding. The evaluation prob-
lem is that given an observation sequence and a model,
what is the probability that the observed sequence was
generated by the model (Pr(O|λ)) (notational style
from [7])? If this can be evaluated for all competing
models for an observation sequence, then the model
with the highest probability can be chosen for recog-
nition.



Pr(O|λ) can be calculated several ways. The naive
way is to sum the probability over all the possible state
sequences in a model for the observation sequence:

Pr(O|λ) =
∑
allS

T∏
t=1

ast−1st
bst

(Ot)

However, this method is exponential in time, so the
more efficient forward-backward algorithm is used in
practice. The following algorithm defines the forward
variable α and uses it to generate Pr(O|λ) (π are the
initial state probabilities, a are the state transition
probabilities, and b are the output probabilites).

• α1(i) = πibi(O1), for all states i (if iεSI , πi = 1
nI

;
otherwise πi = 0)

• Calculating α() along the time axis, for t =
2, ..., T , and all states j, compute

αt(j) = [
∑

i

αt−1(i)aij ]bj(Ot)

• Final probability is given by

Pr(O|λ) =
∑
iεSF

αT (i)

The first step initializes the forward variable with
the initial probability for all states, while the second
step inductively steps the forward variable through
time. The final step gives the desired result Pr(O|λ),
and it can be shown by constructing a lattice of states
and transitions through time that the computation is
only order O(N2T ). The backward algorithm, using a
process similar to the above, can also be used to com-
pute Pr(O|λ) and defines the convenience variable β.

The estimation problem concerns how to adjust λ
to maximize Pr(O|λ) given an observation sequence
O. Given an initial model, which can have flat prob-
abilities, the forward-backward algorithm allows us to
evaluate this probability. All that remains is to find a
method to improve the initial model. Unfortunately,
an analytical solution is not known, but an iterative
technique can be employed.

Using the actual evidence from the training data,
a new estimate for the respective output probability
can be assigned:

b̄j(k) =

∑
tεOt=vk

γt(j)∑T
t=1 γt(j)

where γt(i) is defined as the posterior probability of
being in state i at time t given the observation se-
quence and the model. Similarly, the evidence can be

used to develop a new estimate of the probability of
a state transition (āij) and initial state probabilities
(π̄i).

Thus all the components of model (λ) can be re-
estimated. Since either the forward or backward al-
gorithm can be used to evaluate Pr(O|λ̄) versus the
previous estimation, the above technique can be used
iteratively to converge the model to some limit. While
the technique described only handles a single observa-
tion sequence, it is easy to extend to a set of obser-
vation sequences. A more formal discussion can be
found in [26, 7, 28].

While the estimation and evaluation processes de-
scribed above are sufficient for the development of an
HMM system, the Viterbi algorithm provides a quick
means of evaluating a set of HMM’s in practice as
well as providing a solution for the decoding prob-
lem. In decoding, the goal is to recover the state se-
quence given an observation sequence. The Viterbi al-
gorithm can be viewed as a special form of the forward-
backward algorithm where only the maximum path at
each time step is taken instead of all paths. This op-
timization reduces computational load and allows the
recovery of the most likely state sequence. The steps
to the Viterbi are

• Initialization. For all states i, δ1(i) = πibi(O1);
ψi(i) = 0

• Recursion. From t = 2 to T and for all
states j, δt(j) = Maxi[δt−1(i)aij ]bj(Ot); ψt(j) =
argmaxi[δt−1(i)aij ]

• Termination. P = MaxsεSF
[δT (s)]; sT =

argmaxsεSF
[δT (s)]

• Recovering the state sequence. From t = T −1 to
1, st = ψt+1(st+1)

In many HMM system implementations, the
Viterbi algorithm is used for evaluation at recogni-
tion time. Note that since Viterbi only guarantees the
maximum of Pr(O, S|λ) over all state sequences S (as
a result of the first order Markov assumption) instead
of the sum over all possible state sequences, the resul-
tant scores are only an approximation. However, [27]
shows that this is often sufficient.

So far the discussion has assumed some method of
quantization of feature vectors into classes. However,
instead of using vector quantization, the actual prob-
ability densities for the features may be used. Baum-
Welch, Viterbi, and the forward-backward algorithms
can be modified to handle a variety of characteristic
densities [30]. In this context, however, the densities



will be assumed to be Gaussian. Specifically,

bj(Ot) =
1√

(2π)n|σj |
e

1
2 (Ot−µj)

′σ−1
j

(Ot−µj)

Initial estimations of µ and σ may be calculated by
dividing the evidence evenly among the states of the
model and calculating the mean and variance in the
normal way. Whereas flat densities were used for the
initialization step before, the evidence is used here.
Now all that is needed is a way to provide new esti-
mates for the output probability. We wish to weight
the influence of a particular observation for each state
based on the likelihood of that observation occurring
in that state. Adapting the solution from the discrete
case yields

µ̄j =
∑T

t=1 γt(j)Ot∑T
t=1 γt(j)

and

σ̄j =
∑T

t=1 γt(j)(Ot − µ̄j)(Ot − µ̄j)t∑T
t=1 γt(j)

For convenience, µj is used to calculate σ̄j instead
of the re-estimated µ̄j . While this is not strictly
proper, the values are approximately equal in contigu-
ous iterations [7] and seem not to make an empirical
difference [28]. Since only one stream of data is being
used and only one mixture (Gaussian density) is being
assumed, the algorithms above can proceed normally,
incorporating these changes for the continuous density
case.

When using HMM’s to recognize strings of data
such as continuous speech, cursive handwriting, or
ASL sentences, several methods can be used to bring
context to bear in training and recognition. A sim-
ple context modeling method is embedded training.
Initial training of the models might rely on manual
segmentation. In this case, manual segmentation was
avoided by evenly dividing the evidence among the
models. Viterbi alignment then refines this approxi-
mation by automaticaly comparing signs in the train-
ing data to each other and readjusting boundaries un-
til a mimimum variance is reached. Embedded train-
ing goes on step further and trains the models in situ
allowing model boundaries to shift through a proba-
bilistic entry into the initial states of each model [28].
Again, the process is automated. In this manner, a
more realistic model can be made of the onset and
offset of a particular sign in a natural context.

Generally, a sign can be affected by both the sign
in front of it and the sign behind it. For phonemes in
speech, this is called “co-articulation.” While this can
confuse systems trying to recognize isolated signs, the

context information can be used to aid recognition.
For example, if two signs are often seen together, rec-
ognizing the two signs as one group may be beneficial.
Such groupings of 2 or 3 units together for recogni-
tion has been shown to halve error rates in speech and
handwriting recognition [6].

A final use of context is on the inter-word (when
recognizing single character signs) or phrase level
(when recognizing word signs). Statistical grammars
relating the probability of the co-occurrence of two
or more words can be used to weight the recognition
process. In handwriting, where the units are letters,
words, and sentences, a statistical grammar can quar-
ter error rates [6]. In the absence of enough data to
form a statistical grammar, rule-based grammars can
effectively reduce error rates.

7 Experimentation

Since we could not exactly recreate the signing con-
ditions between the first and second experiments, di-
rect comparison of the gloved and no-glove experi-
ments is impossible. However, a sense of the increase
in error due to removal of the gloves can be obtained
since the same vocabulary and sentences were used in
both experiments.

7.1 Experiment 1: Gloved-hand tracking

The glove-based handtracking system described
earlier worked well. In general, a 10 frame/sec rate
was maintained within a tolerance of a few millisec-
onds. However, frames were deleted where tracking of
one or both hands was lost. Thus, a constant data
rate was not guaranteed. This hand tracking process
produced an 16 element feature vector (each hand’s x
and y position, delta change in x and y, area, angle
of axis of least inertia - or first eigenvector, length of
this eigenvector, and eccentricity of bounding ellipse)
that was used for subsequent modeling and recogni-
tion. Initial estimates for the means and variances

Table 2: Word accuracy of glove-based system

experiment training set independent
test set

grammar 99.4% (99.4%) 97.6% (98%)
no 96.7% (98%) 94.6% (97%)

grammar (D=2, S=39, (D=1, S=14,
I=42, N=2500) I=12, N=500)



of the output probabilities were provided by itera-
tively using Viterbi alignment on the training data
(after initially dividing the evidence equally amoung
the words in the sentence) and then recomputing the
means and variances by pooling the vectors in each
segment. Entropic’s Hidden Markov Model ToolKit
(HTK) is used as a basis for this step and all other
HMM modeling and training tasks. The results from
the initial alignment program are fed into a Baum-
Welch re-estimator, whose estimates are, in turn, re-
fined in embedded training which ignores any initial
segmentation. For recognition, HTK’s Viterbi recog-
nizer is used both with and without a strong grammar
based on the known form of the sentences. Contexts
are not used, since a similar effect could be achieved
with the strong grammar given this data set. Recog-
nition occurs five times faster than real time.

Word recognition accuracy results are shown in Ta-
ble 2; the percentage of words correctly recognized
is shown in parentheses next to the accuracy rates.
When testing on training, all 500 sentences were used
for both the test and train sets. For the fair test, the
sentences were divided into a set of 400 training sen-
tences and a set of 100 independent test sentences.
The 100 test sentences were not used for any portion
of the training. Given the strong grammar (pronoun,
verb, noun, adjective, pronoun), insertion and deletion
errors were not possible since the number and class of
words allowed is known. Thus, all errors are vocabu-
lary substitutions when the grammar is used (accuracy
is equivalent to percent correct). However, without
the grammar, the recognizer is allowed to match the
observation vectors with any number of the 40 vocab-
ulary words in any order. Thus, deletion (D), insertion
(I), and substitution (S) errors are possible. The ab-
solute number of errors of each type are listed in Table
2. The accuracy measure is calculated by subtracting
the number of insertion errors from the number of cor-
rect labels and dividing by the total number of signs.
Note that, since all errors are accounted against the
accuracy rate, it is possible to get large negative ac-
curacies (and corresponding error rates of over 100%).
Most insertion errors correspond to signs with repeti-
tive motion.

7.2 Analysis

The 2.4% error rate of the independent test set
shows that the HMM topologies are sound and that
the models generalize well. The 5.4% error rate (based
on accuracy) of the “no grammar” experiment better
indicates where problems may occur when extending
the system. Without the grammar, signs with repeti-

tive or long gestures were often inserted twice for each
actual occurrence. In fact, insertions caused almost as
many errors as substitutions. Thus, the sign “shoes”
might be recognized as “shoes shoes,” which is a vi-
able hypothesis without a language model. However,
a practical solution to this problem is the use of con-
text training and a statistical grammar instead of the
rule-based grammar.

Using context modeling as described above may sig-
nificantly improve recognition accuracy in a more gen-
eral implementation. While a rule-based grammar ex-
plicitly constrains the word order, statistical context
modeling would have a similar effect while generalizing
to allow different sentence structures. In the speech
community, such modeling occurs at the “triphone”
level, where groups of three phonemes are recognized
as one unit. The equivalent in ASL would be to rec-
ognize “trisines” (groups of three signs) corresponding
to three words, or three letters in the case of finger
spelling. Unfortunately, such context models require
significant additional training.

In speech recognition, statistics are gathered on
word co-occurence to create “bigram” and “trigram”
grammars which can be used to weight the liklihood of
a word. In ASL, this might be applied on the phrase
level. For example, the random sentence construction
used in the experiments allowed “they like pill yellow
they,” which would probably not occur in natural, ev-
eryday conversation. As such, context modeling would
tend to suppress this sentence in recognition, perhaps
preferring “they like food yellow they,” except when
the evidence is particularly strong for the previous hy-
pothesis.

Unlike our previous study [2] with desk mounted
camera, there was little confusion between the signs
“pack,” “car,” and “gray.” These signs have very sim-
ilar motions and are generally distinguished by finger
position. The cap-mounted camera seems to have re-
duced the ambiguity of these signs.

7.3 Experiment 2: Natural skin tracking

The natural hand color tracking method also main-
tained a 10 frame per second rate at 320x240 pixel
resolution on a 200MHz SGI Indy. The word accu-
racy results are summarized in Table 3; the percentage
of words correctly recognized is shown in parentheses
next to the accuracy rates.

7.4 Analysis

A higher error rate was expected for the glove-
less system, and indeed, this was the case for less



Table 3: Word accuracy of natural skin system

experiment training set independent
test set

grammar 99.3% (99%) 97.8% (98%)
no 93.1% (99%) 91.2% (98%)

grammar (D=5, S=30, (D=1, S=8,
I=138, N=2500) I=35, N=500)

constrained “no grammar” runs. However, the error
rates for the strong grammar cases are almost iden-
tical. This result was unexpected since, in previous
experiments with desktop mounted camera systems
[2], gloveless experiments had significantly lower ac-
curacies. The reason for this difference may be in the
amount of ambiguity caused by the user’s face in the
previous experiments’ hand tracking whereas, with the
cap mounted system, this was not an issue.

The high accuracy rates and types of errors (re-
peated words) indicate that more complex versions of
the experiment can now be addressed. From previous
experience, context modeling or statistical grammars
could significantly reduce the remaining error in the
gloveless no grammar case.

8 Discussion and Conclusion

We have shown an unencumbered, vision-based
method of recognizing American Sign Language
(ASL). Through use of hidden Markov models, low er-
ror rates were achieved on both the training set and an
independent test set without invoking complex models
of the hands.

However, the cap camera mount is probably inap-
propriate for natural sign. Facial gestures and head
motions are common in conversational sign and would
cause confounding motion to the hand tracking. In-
stead a necklace may provide a better mount for de-
termining motion relative to the body. Another pos-
siblity is to place reference points on the body in view
of the cap camera. By watching the motion of these
reference points, compensation for head motion might
be performed on the hand tracking data and the head
motion itself might be used as another feature.

Another challenge is porting the recognition soft-
ware to the self-contained wearable computer plat-
form. The Adjeco ANDI-FG PC/104 digitizer board
with 56001 DSP was chosen to perform hand tracking
as a parallel process to the main CPU. The tracking

information is then to be passed to a Jump 133Mhz
586 CPU module running HTK in Linux. While this
CPU appears to be fast enough to perform recognition
in real time, it might not be fast enough to synthesize
spoken English in parallel (BT’s “Laureate” will be
used for synthesizing speech). If this proves to be a
problem, newly developed 166Mhz Pentium PC/104
boards will replace the current CPU module in the
system. The size of the current prototype computer
is 5.5” x 5.5” x 2.75” and is carried with its 2 “D”
sized lithium batteries in a shoulder satchel. In order
to further reduce the obtrusiveness of the system, the
project is switching to cameras with a cross-sectional
area of 7mm. These cameras are almost unnoticeable
when integrated into the cap. The control unit for the
camera is the size of a small purse but fits easily in the
shoulder satchel. More recently, as part of the Oct. 15,
1997 wearables fashion show at the MIT Media Lab-
oratory, students from Bunka in Tokyo and Domus in
Milan demonstrated potential designs for the system
that may be socially acceptable to consumers.

With a larger training set and context modeling,
lower error rates are expected and generalization to a
freer, user independent ASL recognition system should
be attainable. To progress toward this goal, the fol-
lowing improvements seem most important:

• Measure hand position relative to a fixed point
on the body.

• Add finger and palm tracking information. This
may be as simple as counting how many fingers
are visible along the contour of the hand and
whether the palm is facing up or down.

• Collect appropriate domain or task-oriented data
and perform context modeling both on the trisine
level as well as the grammar/phrase level.

• Integrate explicit head tracking and facial ges-
tures into the feature set.

• Collect experimental databases of native sign us-
ing the apparatus.

• Estimate 3D information based on the motion
and aspect of the hands relative to the body.

These improvements do not address the user in-
dependence issue. Just as in speech, making a sys-
tem which can understand different subjects with their
own variations of the language involves collecting data
from many subjects. Until such a system is tried, it
is hard to estimate the number of subjects and the
amount of data that would comprise a suitable train-
ing database. Independent recognition often places



new requirements on the feature set as well. While
the modifications mentioned above may be initially
sufficient, the development process is highly empiri-
cal.

So far, finger spelling has been ignored. However,
incorporating finger spelling into the recognition sys-
tem is a very interesting problem. Of course, changing
the feature vector to address finger information is vital
to the problem, but adjusting the context modeling is
also of importance. With finger spelling, a closer par-
allel can be made to speech recognition. Trisine con-
text occurs at the sub-word level while grammar mod-
eling occurs at the word level. However, this is at odds
with context across word signs. Can trisine context be
used across finger spelling and signing? Is it beneficial
to switch to a separate mode for finger spelling recog-
nition? Can natural language techniques be applied,
and if so, can they also be used to address the spatial
positioning issues in ASL? The answers to these ques-
tions may be key to creating an unconstrained sign
language recognition system.
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