
Toward an Evolvable Model of Development for Autonomous
Agent Synthesis

Frank Dellaert1 and Randall D. Beer1,2

Department of Computer Engineering and Science1

Department of Biology2
Case Western Reserve University

Cleveland, OH 44106
Email: dellaert@alpha.ces.cwru.edu, beer@alpha.ces.cwru.edu

Abstract

We are interested in the synthesis of autonomous agents
using evolutionary techniques. Most work in this area
utilizes a direct mapping from genotypic space to pheno-
typic space. In order to address some of the limitations
of this approach, we present a simplified yet biologically
defensible model of the developmental process. The
design issues that arise when formulating this model at
the molecular, cellular and organismal level are dis-
cussed, and for each of these issues we describe how
they were resolved in our implementation. We present
and analyze some of the morphologies that can be
explored using this model, specifically one that has
agent-like properties. In addition, we demonstrate that
this developmental model can be evolved.

1. Introduction

Our long term goal is the co-evolution of bodies and control
systems for complete autonomous agents. The design of
autonomous agents is a complex task that typically involves
a great deal of time and effort when done by hand. Both the
physical implementation of robotic agents as well as their
control architectures present increasingly difficult design
challenges as the complexity of the system at hand
increases. A number of people (Beer and Gallagher 1992;
Harvey, Husbands and Cliff 1993) have argued it might be
advantageous to use evolutionary methods.

However, most of the current attempts at solving the
design problem using genetic algorithms employ some form
of a ‘direct mapping’ between genotype and phenotype.
Here, typically there is a one-to-one correspondence
between some substring on the genome and an associated
parameter or feature in the final design. Examples can be
found in (Beer et al. 1992; Lewis, Fagg and Solidium 1992;
Harvey et al. 1993). In addition, in the majority of these
cases the authors try to optimize a fixed number of parame-
ters in some chosen architecture that a priori determines
which designs are possible.

One can identify a number of problems with this direct
mapping: (1) The designs to be explored are essentially lim-
ited by the chosen architecture, because of the fixed dimen-
sionality. (2) One of the most obvious problems is one of

scaling: while evolving small networks works quite well, the
approach scales badly for larger networks. (3) In many cases
it is desirable that the final design exhibits bilateral symme-
try, which is hard to come by using a direct mapping
approach.

In contrast, there is no direct mapping between genotype
and phenotype in biology. Rather, plant and animal mor-
phologies are the result of a growth process that is directed
by the genome. We believe that there are intrinsic properties
to this developmental process that, when used in conjunction
with genetic algorithms, may enable it to address some of
the difficulties with the direct mapping approach: (1) When
interpreted not as a direct encoding but as a set of
developmental rules, a genetic description can lead to much
more complex morphologies than those achievable with
direct mapping. (2) There is some hope that a developmental
process can reduce the scaling problems as well, as it essen-
tially builds upon previous discoveries in an incremental
fashion. (3) Symmetry comes for free in a developmental
model.

Apart from promising to address some problems, there
are some additional advantages to using a developmental
model in its own right: (1) Development naturally provides a
way to sample a spectrum of genetic operators, ranging
from local hill-climbing operations to long jumps beyond
the correlation length of the genetic search space (Kauffman
and Levin 1987). (2) With a developmental model, mor-
phologies and behavioral control mechanisms can gra-
ciously co-evolve to obtain optimal performance.

This paper describes our first step toward a simplified
but biologically defensible model of development that is ef-
ficient enough to be used in conjunction with a genetic
algorithm. This preliminary model enables us to explore
body patterns and relative placement of essential compo-
nents. After discussing related work is Section 2, in Section
3 we will highlight some of the design issues and tradeoffs
that come up when modeling development in general along
with the way we have resolved these issues in our particular
model. In Section 4 we show the results that can be expected
from it and how the model behaves when used in conjunc-
tion with genetic algorithms. In Section 5 we analyze the
developmental sequence of a simple agent, using that as an
example to show the detailed workings of the model.

Finally, in the Section 6 we will discuss it’s strengths and
weaknesses, along with directions for future work.

2. Related Work

There is already a body of work wherein the authors both
understand and appreciate the importance of incorporating a
developmental process into the picture. (Wilson 1989) dis-
cusses a general representional framework to set the stage
for simulations of development. A number of people have
implemented some models, and they can be roughly catego-
rized into two groups:

Much work involves some kind of growth-model coding
for evolving neural networks: (Kitano 1990) and (Gruau and
Whitley 1993) use grammatical encoding to develop artifi-
cial neural networks. (Harp, Samad and Guha 1989) try to
evolve the “gross anatomy” and general operating parame-
ters of a network by encoding areas and projections onto
them into the genome. (Nolfi and Parisi 1991) uses an
abstraction of axon growth to evolve connectivity architec-
tures. Most of these models do not aspire to be biologically
defensible, however. Also, they have not been applied as
such in the area of autonomous agents.

In contrast, a number of other authors have looked at
more biologically inspired models of developmental proces-
ses: some work is based on the grammar based approach
first developed by Lyndenmayer, such as (deBoer, Fracchia
and Prusinkiewicz 1992). For instance, (Mjolsness, Sharp
and Reinitz 1991) use grammatical rules to account for
morphological change, coupled to a dynamical neural
network to model the internal regulatory dynamics of the
cell. (Fleischer and Barr 1994) have a hard-coded model for
gene-expression that they combine with a cell simulation
program. Many other biologically realistic models of differ-
ent developmental processes are found in the theoretical
biology literature. However, to our knowledge, none of
these more complex models in the second category have as
yet been used in conjunction with genetic algorithms.

It is the combination of a biologically defensible model
of development with evolutionary methods that we would
like to apply to the design of autonomous agents, something
that at this point in time has not yet been addressed in the
existing literature.

3. Model

In this section we will first give an overview of the principal
components of our model. Then, in the subsequent sub-sec-
tions, we will raise some of the issues that came up when
modeling each of these components. For every issue that we
discuss, we will present the way we resolved it when im-
plementing the model, together with a more detailed
description of the actual implementation.

3.1. Overview

The developmental process unfolds simultaneously at three
different levels, each of which will need to have a counter-
part in our model: at the level of the organism, of the cell
and at the bio-molecular level. At the topmost level, a single
zygote develops into a multicellular organism by a complex
epigenetic process: eventually, groups of cells will literally
stick together and co-ordinate their actions to form tissues
and organs that make up the entire organism. This happens
because at the cellular level, individual cells unfold a
sequence of determination and differentiation events that
enable them to take up their specific role in the developing
embryo. Ultimately responsible for this unfolding sequence,
however, is the genetic information contained within each
cell, which brings us down to the level of molecular biology.
Although each cell has the same copy of the genome, differ-
ent genes are expressed in different cells, which in turn leads
to their difference in behavior. Thus, this pattern of differen-
tial gene expression lies at the heart of the developmental
process.

This genetic regulatory network will be the first princi-
pal component of our model. We believe that, for our pur-
poses, the essence of the unfolding pattern of differential
gene expression at the genome-level is best captured by
modeling a network of interacting genetic elements. Each
element would correspond to the existence of a gene product
or the expression of some gene. The total state of the net-
work at a given time can then accordingly be viewed as the
pattern of gene expression of a given cell at that time:
because the state evolves over time this then corresponds to
the unfolding of a developmental program in each cell.

The second component consists of a very simple cellular
simulator to model development at the cellular level.
Eventually, every action directed by the genome should first
have a consequence at the level of the cell, if it wants to
have an effect on development. It follows that we will need
to construct a model for how a cell behaves and the way the
genome can influence this behavior. One way to do this
could be to build a complex, three dimensional model of
how biological cells actually work. However, our primary
interest is not to mimic the actual biological developmental
process, but to extract from it the essential beneficial prop-
erties. That is why we have opted for a simple, two-dimen-
sional cellular simulation.

Finally, the last aspect of the model will cover all
phenomena at the organismal level. During development
cells interact continuously: in biological development, cells
communicate by touch as well by chemical signals (Walbot
and Holder 1987, page 4). This intracellular communication
is extremely important, as it can change the pattern of gene
expression in the participating cells. Thus, we will have to
take this into account in our model. Another issue that trans-
cends the cellular level is that of external influences, such as
how symmetry is somehow broken at the very first stages of

development. These aspects will be modeled at the level of
the organism.

While implementing these components, we were con-
fronted at each step along the way by the trade off between
simplicity and biological defensibility, as ultimately the
model was to be used in conjunction with the genetic algo-
rithm. Typically, when you want to evolve autonomous
agents you use populations of hundreds of individual organ-
isms in parallel. With our developmental model, each of
these would consist of from a hundred to a thousand cells,
and in each cell a genetic regulatory network would be
active. It is obvious that with such numbers you want to
keep the model as simple as possible to keep the computa-
tional demands feasible. Although many aspects of biologi-
cal development are important and even crucial for biologi-
cal life forms, we feel that some of them can be left out in a
simplified model without invalidating the results we get.

3.2. Genetic Regulatory Network

As we will model the patterns of gene expression in each
cell as the state of a regulatory network, we will have to
address each aspect of these networks, i.e. the nature of the
elements and the way they interact.

The interactions between the genetic elements

The major issue here is at what level of detail one wishes to
simulate the genetic elements and their interactions. In the
biological cell there are a number of strategies for the regu-
lation of gene expression: essentially each step of the path-
way between the coding sequence on the DNA and it’s final
gene product presents an opportunity to regulate the expres-
sion of that particular gene (Alberts et al. 1991, page 551-
556). Do we want to make a distinction between transcrip-
tional control and RNA degradation control and incorporate
them as different building blocks in our model ? Chances
are that doing so will yield some insight into the detailed
workings of these processes, but it will also pose an enor-
mous computational problem to simulate.

In our model we will assume the existence of one type of
abstract genetic element and one way in which these
elements can influence each other. Although the genetic
elements in a biological cell include not only DNA
sequences but also regulatory proteins, cell-surface receptors
and a whole lot more, we will assume there is only one type.
This assumption does also imply that we will model only
one way of interaction between these elements, because
most of the time the differences between different regulation
strategies in the cell come down to differences in the type of
players involved. Of course, if you decide on this course of
action, you have to make the assumption that the essence of
development is not to be found in the details of all the dif-
ferent regulatory mechanisms, but rather the interaction of
mutually influencing elements.

The nature of the genetic elements

The genetic elements can be modeled by anything ranging
from simple binary to complex quantitative models. One of
the choices that must be made is between continuous and
discrete state variables, and between continuous or discrete
time models. In the literature this choice has been made in a
number of ways, resulting in models that use essentially
simple binary elements (Kauffman 1969; Jackson, Johnson
and Nash 1986), models with multi-level logic (Thieffry and
Thomas 1993), dynamical neural networks (Mjolsness et al.
1991) and fully quantitative models.

We have chosen to model the genetic elements as binary
elements. Although the more complex approaches are
certainly useful, a binary model is especially attractive from
a computational viewpoint: their simplicity will allow us to
simulate a large number of them in a reasonable time. As
explained before, this is a necessity when we will use the
model in conjunction with genetic algorithms. In addition,
simplifying genetic elements to binary variables can be
defended on a deeper ground: a lot of phenomena that occur
during embryology and the life span of a cell have an on/off
quality or have some mechanism of self-amplification. For
example, biochemical pathways linking cell-surface recep-
tors to the DNA have lots of amplification steps built in
(Walbot et al. 1987, page 321), ensuring that their response
is on/off like. Kauffman (1993) presents additional argu-
ments why the major features of many continuous dynami-
cal systems can be captured by a Boolean idealization.

We will model the genetic regulatory networks by Boolean
networks

Given all these considerations, we decided to model the
genetic regulatory network by a Boolean network, as first
pioneered in this context by (Kauffman 1969) and extended
by (Jackson et al. 1986) to systems of multiple, communi-
cating networks. This model is both readily understood,
efficiently implemented and easily analyzed (Wuensche
1994), in contrast with the more complex continuous time
dynamical networks as used by (Mjolsness et al. 1991). The
latter work is more focused on parameter identification of
actual biological processes however, in which case this
more complicated approach makes sense.

A Boolean network is much like a cellular automaton,
but where in the latter the neighborhood of a node is fixed
and consists of neighboring cells, there is no such restriction
in the former. The basic elements are the N nodes, each with
its own associated K-node neighborhood and updating rule.
Each node can assume a state of 1 or 0, according to the
state of its K inputs at the time it was updated. It is easy to
see that there are (N K)N possible wiring configurations.
Fig.1 illustrates one possible instance of a Boolean network
with N=3 and K=2 out of (32)3 = 729 possibilities.

Fig.1. Example of a wiring configuration in a Boolean
network with N=3 and K=2.

The updating rule of a node can be any Boolean function
of its K inputs, and can be specified by a lookup table with
2K entries. As each entry can contain a value of 1 or 0, there
are 22 K

possible updating rules for each node in the net-
work. As an example, one out of the sixteen possible
Boolean functions for K=2 would be the logical AND
operator, which can be represented by the string <0001> in a
lookup table.

The total number of possible Boolean networks with given

N and K is then (N K)(22 K
)[]N

, a number that can be very

large. For the example of N =3 and K=2, there are

(32)(222
)[]3 ! 3 "106 possible networks.

Some additional issues

We have chosen to update these Boolean networks syn-
chronously, i.e. every time step the whole state vector is
computed using the values of the state vector at the previous
time step. Discrete time, synchronously updating networks
are certainly not biologically defensible: in development the
interactions between regulatory elements do not occur in a
lock-step fashion. The alternative is to update all nodes
asynchronously, each node having a given probability at any
time to recompute its value from its inputs at that time. This
introduces an element of non-determinism however, that
might render any genetic search in a space of such networks
very difficult. In addition, they are less readily analyzed
than their synchronous counterparts, for which there are
excellent analysis tools available (Wuensche 1994). Then
again, they would be useful to examine phenomena like
spontaneous symmetry-breaking interactions between cells,
that can not occur with lock-step updating.

We ended up using a comparatively small number of
elements in the Boolean networks. When one looks at the
function of genes in eukaryotic genomes, one finds that the
vast majority of gene products will be responsible for
housekeeping functions that are common between cell
types, and most of the others are cell-type specific genes
(Walbot et al. 1987, page 174-175). In addition, genes have

been found that switch on whole gene-batteries at a time
(McGinnis and Kuziora 1994), thus acting as a representa-
tive for a whole class of genes. This could suggest that actu-
ally a small number of genes might be responsible for the
regulatory mechanisms within the cell.

The genome that we use in the genetic algorithm is a
straightforward description of one such possible Boolean
network. Both the connection parameters and the Boolean
function are subject to mutation. In some experiments how-
ever, constraints can be imposed to explore restricted search
spaces. Most of the time we used parameter settings of N=6
and K=2.

3.3. Cellular level

At the cellular level we will have to model all the properties
of the cell that play a role in the developing organism at the
higher level and that can be influenced by the genetic regu-
latory networks at the lower level. These properties include
the physical characteristics of the cell, the cell cycle con-
trolling the cell’s behavior and how a cell differentiates into
a particular cell type, which we will discuss here. We will
also touch on the aspects of biological cells that we left out
of the model and why we left them out.

The physical characteristics of the cell

When modeling the physical characteristics of the cell, we
are looking for a model that is both simple enough to be
efficiently simulated in large numbers, and yet captures
enough of the aspects of a biological cell that makes it work
within a developmental process. We think two properties are
essential in this respect: it has to have some form of physical
extent and it has to be able to undergo division. Granted that
this is an extreme simplification of what a real cell actually
constitutes: our ultimate goal is the synthesis of autonomous
agents, however, not the modeling of biological develop-
ment, and we think that these two properties suffice for our
purposes.

Fig.2. Zygote square dividing two times to yield 4 ‘cells’.

Thus, we will simulate the physical appearance of a cell
by a simple, two-dimensional, square element that can
divide in any of two directions, vertical or horizontal. If
division occurs it always takes place in such a way that the
longest dimension is halved, and the two resulting daughter
cells together take up the same space as the original cell.
This very simple approach has as a consequence that we do
not have to deal with cells changing shape as a result of cell

division: after two cleavages the shape is again a square. See
Fig.2 for an illustration.

The cell cycle

A simulated cell cycle consisting of two phases, interphase
and mitosis, co-ordinates the updating of the Boolean
network state and cell division, respectively. In one organ-
ism, each cell would have a copy of the same Boolean
network constituting the genetic information of that organ-
ism. However, the state of the network, corresponding to the
pattern of gene expression in a particular cell, may be differ-
ent in each cell, as they underwent different influences
during their life span or started out with a different initial
state. In Fig.3 the cell cycle is depicted graphically, and we
will discuss each phase here.

0010000
0010100
1110000
0011111
0011111

bit on

bit off

I M

Fig.3. The cell cycles between interphase and mitosis.
Mitosis is skipped if the ‘dividing bit’ is not set.

During the first phase, interphase, the state is syn-
chronously updated until a steady state is reached: a steady
state corresponds to a stable pattern of gene expression. We
make the assumption that each cell has enough time to reach
such a stable state, and when used with the genetic algo-
rithm we will discard any organism whose regulatory net-
work leads to a cyclic pattern. Waiting for a steady state also
means that in every cell the number of updates may be diffe-
rent, because the transient behavior of the network depends
both on the original state vector as on the new environmen-
tal stimuli (see below).

Then, in the second phase, according to the setting of a
specific bit the cell either goes through mitosis and divides
into two daughter cells, or it stays intact and waits for the
next interphase to start. When the cell divides, it’s state
vector is inherited by the two daughter cells. Note that in the
following interphase, unless something in the environment
changes or there is some other external interference, that
state vector will correspond to a stable pattern and nothing
will happen, i.e. that pattern of gene expression will be
passed on to the next generation. Also, our ‘cell cycle’ defi-
nition is not entirely comparable with the biological equiva-
lent, as in our model the cell does not necessarily have to go
through mitosis.

Differentiation into distinct cell-types

There are two ways in which we could model how the
genome determines the final differentiation of a cell: by
combinatorial specification or using ‘master genes’. In
biology, the combinatorial gene regulation theory hypothe-
sizes that the cell can ‘detect’ a particular combination of
regulatory proteins and thus is able to differentiate into the
corresponding cell type. For instance, this type of mecha-
nism is thought to underlie the division of the imaginal discs
in Drosophila into sharply demarcated compartments
(Alberts et al. 1991, page 930). In principle, three different
genes would be sufficient to specify a unique address for
each of the eight compartments formed. Alternatively, there
could be several regulatory ‘master’ genes whose expression
determines the expression of a whole gene batteries needed
in a particular cell type. See (Davidson 1990) for a com-
parative overview of a number of cell fate specification me-
chanisms.

In our implementation we have modeled both these
mechanisms and we can choose between them when running
simulations. In combinatorial mode, a subset of genetic
elements is chosen to determine the final differentiation of
the cell. Every distinct combination of activity in these
elements then corresponds to a particular cell type. This
simply corresponds to a binary encoding of the cell types,
e.g. for N=3 cell type 5 would be represented by the string
<101>. In the other, ‘master gene’ mode, we relate differen-
tiation to the activity of one specific genetic element, with
the additional constraint that there should be no conflict
between competing cell types. For encoding a cell type 5,
we thus need at least N=6, and it would then be represented
by the string <100000>. All the results reported in this paper
use combinatorial specification, as we have found that it
takes considerably longer to evolve the additional mapping
between the state of the network and the different ‘master
genes’.

Our model uses color as an abstraction for cell type. As
it is ultimately our goal to synthesize autonomous agents,
the final differentiation of a cell will then correspond to it
being a sensor, actuator or control-neuron. For the time
being, however, it will be sufficient to simulate this by a
different color that the cell can take on: it will enable us to
demonstrate the different architectures that can be explored
using the model. In the combinatorial mode, we assign a
color according to the settings of lg(C) specific bits in the
state vector, where C is the number of colors. Mostly, C=8
and the three bits used are bit[0], bit[1] and bit[2].

Biological properties we did not include in the model

Although many aspects of biological development at the
cellular level are important and even crucial, we feel that
some of them can be left out in a simplified model without
invalidating our results. Cell movement and coordinated cell
sheet deformations, for instance, lie at the basis of all but the

simplest morphologies encountered in multicellular organ-
isms. However, they would make the model quite complex
and much more difficult to implement. We think it is better
to start off exploring what is possible with ‘simple’ intracel-
lular communication (see below) and genetic regulatory
networks, rather than make the model too complicated from
the start. Once it is clear what can be achieved with a simple
model, it is certainly worthwhile to add incorporate more
complex mechanisms.

3.4. Organismal level

In the subsequent paragraphs we will discuss how individual
cells function within the organism and how two very impor-
tant aspects of development, symmetry breaking and intra-
cellular communication, are implemented.

The organism as a collection of cells

The organism itself is a two-dimensional square consisting
of many cells. Development starts out with one single
square that represents the zygote, which then subsequently
divides according to the state of the genetic regulatory net-
work. As discussed, whenever a square divides the two
daughter cells take up the same space as the original one:
there is no pushing away of neighboring cells or shape
change involved, except that after an odd number of cleav-
ages, cells may be rectangular in shape rather than square.
The organism is then the collection of squares that origi-
nated from the ‘zygote’ square.

Symmetry breaking in the early stages of development

We will have to address a way to break the symmetry
between the very first cells at the early stages of develop-
ment, otherwise we will end up with a uninteresting, homo-
geneous collection of cells: because of the deterministic,
synchronous updating and as they are all descendants of the
same ‘zygote’, all the cells will have the same state vectors
at each step unless something disturbs this symmetry.
Biological development faces the same problem, and there
are diverse mechanisms by which in early development the
correct spatial pattern of differential gene expression is
imposed (Davidson 1990).

We will break the symmetry at the time of the first
cleavage by assuming the existence of a ‘maternally’
imposed a-symmetry in the ‘zygote’ square, that can lead to
different patterns of gene expression in the first two
daughter-cells. This is certainly biologically defensible, as
in many organisms this anisotropic distribution of some
entity is actually observed (Walbot et al. 1987, page 340-
353). We will simulate by flipping a bit of the Boolean net-
work state vector in only one of the two daughter cells. If
you will, the genetic element of which the state is flipped
corresponds to an asymmetrically distributed determinant in
the zygote.

A second spatial clue is introduced by supplying the
developing organism with the notion of a midline. As we
will explain in Section 6, it was sometimes necessary to
provide more spatial clues than only the first cleavage sym-
metry breaking. Thus, we also provided the cells with
information on whether they are adjacent to the horizontal
midline of the organism, according to a bit flipping scheme
similar to the one used in the first cleavage step, although
this time a bit in the neighborhood vector is flipped (see
below). Actual biological embryos get this midline notion
for free because of the three dimensional topology in which
they develop: as an example, in the frog embryo neurulation
takes place along the dorsal midline of the embryo, which
after gastrulation lies closest to the mesodermal germ layer
that is responsible for the initiation of the process (Walbot et
al. 1987, page 368-375).

Intracellular communication

One of the key elements of the developmental process and
consequently of our model is how the cells communicate.
Indeed, following the initial symmetry-breaking the cells
now have a rough plan for the positioning of major body
structures. In all but the simplest organisms, however, a
great deal of fine-tuning is necessary, and this can be
achieved by intracellular communication or induction, i.e.
the way in which one group of cells can alter the develop-
mental fate of another group by providing it with some
signal (Walbot et al. 1987, page 366). We have put a lot of
thought into whether to model this by actually simulating
the existence of cell-surface receptors and chemical ‘signal’
molecules. As an alternative, one could link the genetic
regulatory networks in a more direct way, by letting their
next state depend not only on their own state, but also on
that of surrounding cells.

0111000

0110001

00100000000101

0010101

Network

External Midline

Fig.4. The state vectors of two neighbor cells are ORed
together to yield a neighborhood vector that is combined
with the cell’s state vector to determine the next state.

a b c d

Fig.5. Four different examples that demonstrate the range of organisms we have been able to develop so far.

To implement induction we used a modified version of
the Boolean Network: whereas normally each node has K
incoming edges from other nodes in the network (or recur-
rent), we now allow for some of these incoming edges to
connect to nodes in an abstract ‘neighborhood’ vector. The
latter is the logical OR of all the state-vectors of the neigh-
boring cells. Fig.4 shows this arrangement. In our genetic
description of the network, a negative connection parameter
implies that the corresponding bit in the neighborhood state
vector is taken, in stead of from the cell’s state vector. Note
that an edge to the neighborhood vector can be interpreted
as the existence of a cell-surface receptor, sensing the pres-
ence of specific chemical agents introduced by cells in its
environment.

This implementation implies that our simulation has to
keep track of which cells are neighbors. Although this may
sound an easy thing to do, it does actually complicate things
somewhat, as the cells are not static entities but instead
divide all the time. Thus, a scheme must be devised by
which topological relations are constantly kept up to date.
However, it becomes soon intractable to let each cell poll
every other cell in the organism, because the number of cells
rises exponentially in each organism. We solved this prob-
lem by letting each cell pass on a list of it’s neighbors at the
time of division and then letting each daughter cell poll
these neighbors to check whether they are still adjacent. It is
interesting to note that our particular implementation allows
to easily substitute a more complex (even three dimensional)
geometry for the 2-D square one. Indeed, we have already
modeled one-dimensional ‘string’ organisms in this way,
and plan to look at the more detailed topological framework
model as proposed by (Matela and Fletterick 1979) and
recently elaborated on by (Duvdevani-Bar and Segel 1994).

Another type of induction is the influence exercised by
the external environment: we modeled this by reserving one
bit in the neighborhood state vector for that purpose: it is
forced to ON if the cell in interphase is at the border of the
organism, otherwise it is OFF (See Fig.4.).

4. Examples and Evolvability
4.1. Developmental Examples

Fig.5 shows several examples that demonstrate the range of
organisms we have been able to evolve until now. Although
these are preliminary explorations, mostly found using
‘biomorph mode’ (sitting down at an X-terminal and select-
ing the fittest individual according to subjective taste, see
(Dawkins 1989)), they nevertheless exhibit interesting fea-
tures that can conceivably be put to use in the context of
autonomous agents.

Fig.5a displays an interesting ‘layered’ characteristic,
with cell-types at the sides of the organism (it is facing
towards the right) different from those in the middle, and
with an intermediate layer in between. Note that in biologi-
cal development the three germ layers exhibit the same
spatial order: ectoderm to face the outside, endoderm at the
inside and mesoderm in between them.

We have selected the organism in Fig.5b because it has a
segmentation property, as you can discern a bilaterally sym-
metrical repeat structure at the sides of the organism.
Finally, Fig.5c and d represent more complex morphologies,
both a-symmetric with respect to the vertical axis and
having more detailed patterning at the rostral side.

4.2. Evolvability

Given that our basic goal is to efficiently evolve auto-
nomous agents, one of the things to look at is how the model
behaves when used in conjunction with a genetic algorithm.
To investigate this, we have devised a generic performance
function that maximizes the number of colors, taking care
that no color is more represented than any other. Although
this particular criterion has no direct relevance to
autonomous agents design, it is nevertheless useful to exam-
ine the discoveries made by evolution in maximizing this
function.

We have found that we can successfully evolve Boolean
networks that can steer the developmental model so that the

Fig.6. The best individual after each fitness jump during evolution. The respective performance values of these
individuals are 45, 170, 210, 1200 and 5600. Of the last individual, the developmental stages are also shown.

1

10

100

1000

10000

1 51

10
1

15
1

20
1

Generations

Lo
g

Fi
tn

es
s

Max

Avg

Fig.7. : Maximum fitness and average fitness.

fully developed organism optimizes some performance func-
tion. This is a strong result: there is no obvious relationship
between the setting of a bit in an update rule of the genetic
regulatory network and the performance function to be
optimized. The color of a square in the final design is quite
far removed from the particular wiring of the network. In
addition, the organism is evaluated only at the end of the full
developmental process, so that any mutation in the genome

(= network) must not only be beneficial from a performance
function viewpoint to be incorporated in the population, it
must also take care not to interfere with the existing devel-
opmental process in a ‘wrong’ way.

Also, we have observed that the computational overhead
induced is not as bad as one might expect when introducing
a model with so many different elements. A typical simula-
tion with population size of 20, network parameters N=6 and
K=2, and a maximum of 64 cells per organism takes about
10 minutes to at most half an hour on a Sparc 10 for 200
generations, depending on the performance function and the
mutation rate. Typically, we used mutation rates of 0.1 and
cross-over probabilities of 0.5.

Fig.6 and Fig.7 show the results for a typical run. In
Fig.7 we plotted the maximum and average fitness. The GA
we used for this experiment used elitist selection, i.e. the
best individual is never thrown away, which explains the
step-like manner the maximum fitness evolves. In Fig.6 five
organism are shown, each a snapshot of the best individual
of its generation. The snapshots were taken just after a jump
in fitness occurred: the way our performance function was
constructed, this corresponds to the discovery of a new
color. The last organism has discovered all eight colors.

In the first individual, we can immediately see evidence
of the a-symmetry we introduced at the time of the first divi-
sion: all individuals that did not make use of that were
discarded from the first sample, as it is very easy for the GA
to 'discover' this a-symmetry.

All evolved organisms shown are bilaterally symmetri-
cal. This is a direct consequence of how the model is set up:
the only a-symmetrical stimulus is our first bit-flip, and the
other external stimulus is the environment, which is sym-
metrically introduced at all sides1. Because of the syn-
chronous updating of the networks, no other a-symmetries
are introduced. Thus, in this model we get symmetry for
free.

The next discovery made by the GA is that of the exter-
nal environment. Notice that in the second square there is a
difference between the center and the border cells of the
organism. Together with the a-symmetry, the developmental
process is able to specify 4 colors. In the further course of
the evolutionary process, the previously formed layers
themselves provide information for new cells to assume dif-
ferent colors. The next big discovery is six colors, then
eventually eight.

The last individual shown has discovered all eight
colors, and its developmental sequence is reminiscent of the
discoveries made by the GA during the time span of the
experiment. We have shown the subsequent stages of devel-
opment this individual goes through: as you can readily
observe, the steps that development goes through follow the
‘discoveries’ made in the course of evolution: a-symmetry,
external environment, induction. As we have argued in the
introduction, this is one of the great strengths of the devel-
opmental model: evolution is able to gradually build on pre-
vious discoveries, and extend them towards fitter organisms.

5. Development of a simple “Agent”

We have evolved a simple organism that exhibits the rela-
tive placement of sensors, actuators and control system of
the kind one would like to see in a simple chemotactic
agent. Any attempt at the design of autonomous agents
using a developmental model will have to deal with morpho-
logical features such as these. For the simple task of chemo-
taxis we specifically looked for a bilaterally symmetric
organism, with sensors and actuators placed sideways at the
front and the back, respectively, and a control structure or
‘neural tissue’ connecting them. The performance function
we used tried to minimize the difference between the color-
patterns in the fully developed organism and a template that
to us represented the features needed in a chemotaxic agent.
In Fig.8 the organism, which we have termed ‘seeker’, is
shown along with its developmental sequence. A number
coded representation is used for the different cell types. In
the last stage of development, with 64 cells, you can observe
how the different components are placed: cell type 2,
prominent at the right-side corners of the organism, corre-
sponds to sensors, whereas cell type 4 and 1 correspond to
actuators and ‘neural tissue’, respectively. Note that 2 actua-

1In this particular run there is no notion of a midline, as introduced
in the previous section.

tor-cells are out of place, but the overall relative placement
of the components is quite good.

4 2 6 2 6 6 2 2

6 2 6 6 2 2

6 6 2 2 4 4 4 4 4 4 2 2 6 6 6 6 6 6 2 2
4 0 0 0 0 0 0 2

3 3 3 6 1 1 1 1 1 1 1 6 4 0 0 0 0 0 0 4
1 1 1 1 1 1 1 1

3 3 3 6 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1
4 0 0 0 0 0 0 4

6 6 2 2 4 4 4 4 4 4 2 2 4 0 0 0 0 0 0 2
6 6 6 6 6 6 2 2

Fig.8. The six consecutive stages of development in the
‘seeker’ organism, with digits denoting cell types. Bold
digits indicate the cell type changed relative to the previous
developmental stage.

The ‘seeker’ organism will serve as an excellent example
to illustrate in somewhat more detail just how the develop-
mental model works. To do this we will frequently refer to
Fig.8, but this in itself does not say much about the underly-
ing process. We have access however - in contrast to
researchers in biology - to every variable at every stage of
the developmental process, from the outward appearance of
the cells up to and including the complete description of the
genome. In the subsequent paragraphs we will analyze this
information and show what it can tell us about the sequence
of events in the development of ‘seeker’.

a) 0 1 0 1 b) Equivalent
node 0 0 1 1 inputs node Boolean function
1 0 0 1 0 3 -6 1 ~3 AND mid
2 1 1 0 0 -2 -1 2 ~(-1)
3 0 0 0 1 -5 5 3 ext AND 5
4 1 1 0 1 4 4 4 ~4 OR 4 = TRUE
5 0 1 1 0 6 -6 5 6 XOR mid
6 0 1 1 1 6 -1 6 6 OR -1

Fig.9. a) the actual genome of the ‘seeker’ organism.
b) The Boolean functions in a more readable form.

The genome, shown in detail in Fig.9a, specifies the
wiring of a Boolean network (Fig.10) and the update rules
of each of the nodes (Fig.9b). The ‘seeker’ organism has
network parameters of N=6 and K=2, so the genome consists
of 6 update rules and 12 input addresses. Induction from
other cells is modeled by a negative address, corresponding
to an incoming edge from outside the cell. The numbers -5
and -6 are reserved for conveying the influence of the
external environment and the midline, respectively: if a cell
is on the perimeter of the organism the value of bit ‘-5’ will

be TRUE and FALSE if not. Likewise, the value of bit ‘-6’
is TRUE when the cell borders the midline of the organism,
which runs horizontally across2.

1

2
3

4

5
6

1

2
3

4

5
6

Midline

External

Fig.10. the ‘seeker’ wiring diagram: the dashed lines
represent extracellular inputs. The ‘midline’ and ‘external’
have value 1 when the cell in question is on the midline
resp. the perimeter of the organism.

The wiring of the network can serve very specific
purposes: one thing that immediately catches the eye when
looking at these figures is that both inputs to node 4 are
recurrent connections and that the updating rule
(~4 OR 4=TRUE) ensures that the corresponding genetic
element will be permanently active. This can be explained
by the particular fitness function that was used to evolve the
organism, i.e. it rewarded a high number of cells in the final
design: as bit 4 is used to decide whether to enter mitosis or
not, the genetic algorithm found this positive feedback loop
to ensure that division would take place at every step, result-
ing in a maximum number of cells.

000100 000100 100100

[0] [1][0]

Mitosis

RL

Fig.11. The zygote square divides at least once because we
force the dividing bit 4 to TRUE prior to the first mitosis
phase. Colors are read from the first three bits in the state
vector and are indicated in square brackets.

At the very first stage, it is ensured that the zygote will
divide at least once and that the resulting daughter cells are

2In the simulatied evolution that led to this particular organism, a
midline notion is only present from the 16-cell stage and onwards.
Up to and including the 8-cell stage, bit 6 in the neighbourhood
vector is always 0.

not completely alike, so that the symmetry is broken. The
organism starts out as a single ‘zygote’ square with all but
one genetic elements inactive, i.e. zero state vector, except
for the ‘dividing bit’ node 4, which is forced to 1. This will
ensure that the cell division will take place, dividing the
zygote into two cells L and R (Left and Right). In addition,
at the time of that first cleavage bit 1 is set to 1 in one
daughter cell and to 0 in the other, so that the symmetry is
broken. We then have two cells with state vectors 000100
and 100100 respectively, as depicted in Fig.11. As the cell
type or color is determined by the first three bits (least
significant bit at left) this corresponds to color [0] at the left
and color [1] at the right.

From now on interphase and mitosis will alternate until
the final design of the organism is reached after stage 6 of
the developmental process. We will look at the first stages
in detail and then paint the broader picture when a detailed
explanation becomes both tedious and too space-demanding.
To understand the detailed picture, keep in mind that at each
developmental stage a cell does three things: (1) it deter-
mines its neighborhood vector, (2) it repeatedly updates its
state vector in interphase until a steady state is reached, and
(3) assumes a color and decides whether to divide in the
next stage.

Cell L:
Neighborhood vector: 100110
Interphase: 000100 -> 000101 -> 001111
Color = [4], divide
Cell R:
Neighborhood vector: 000110
Interphase: 100100 -> 010100
Color = [2], divide

Fig.12. Before, during and after interphase in each of the
daughter cells L and R.

After the first interphase, we will have reached the 2-cell
stage of the developmental sequence depicted in Fig.10. As
described in Fig.12, the two daughter cells of the zygote
each go through the three steps described above before
entering mitosis, and you can see that the colors now match
up with the colors shown in Fig.10. We will examine the
behavior of cell L in somewhat more detail: bit 6 switches to
1 because its updating rule (6 OR -1, as we know from
Fig.9b evaluates to TRUE because of the positive induction
from cell R: bit 6 is 0 but bit -1, i.e. bit 1 in the neighbor-
hood vector, is 1, so 6 OR -1 = 1. To put this into more gen-
eral terms, the activity of the genetic element 1 in cell R
induces a change in the pattern of gene expression of cell L,
whose perturbed stable state will now elicit a transient
behavior in the regulatory network. The final pattern of gene
expression is not reached until after a steady state is reached,
however, which happens after one more synchronous
update. The color of cell L can now be read from the first
three bits, i.e. color [4].

Because cells inherit steady state vectors after mitosis,
some change in the environment is needed to trigger a
change in behavior and/or color. After cell L and R go
through mitosis, we get 4 cells which we will denote by LT,
LB, RT and RB, where T and B stand for Top and Bottom.
Because the inherited state vectors represent a steady state
of the regulatory network, nothing will happen unless some
value changes that triggers a perturbation of this steady
state. As it happens, this only occurs in the cells LT and LB,
where the resetting of bit 1 in the neighborhood vector
causes bit 2 to switch on (rule ~(-1)), resulting in color [6]
for both cells after interphase settles down. The details are
given in Fig.13, and the colors can be verified by looking at
Fig.10: only the left cells have changed color from [4] to
[6].

Cells LT and LB:
Neighborhood vector: 011110
Interphase: 001111 -> 011111
Color = [6], divide

Fig.13. The two left cells at stage 2 undergo a transition
from color [4] to color [6].

Now that we have looked in detail at the mechanism that
underlies the transitions in cell color at a given developmen-
tal stage, we can at least qualitatively understand the subse-
quent stages of the developing organism of Fig.10. In stage
3, it looks as if all state vectors remain unperturbed because
the colors are unchanged: when looking at the tracefiles of
the simulation, we have found that this was indeed the case.
To make this difference between ‘active’ and ‘inactive’
interface apparent, we have marked the colors in Fig.10 bold
when they resulted from a triggered transient, i.e. ‘active’
interphase.

A ‘neurulation-like’ event takes place at the 16-cell
stage: suddenly all cells lying around the midline of the
organism undergo a color change. It is clear that this
resulted from the influence of the ‘midline bit’ 6 in the
neighborhood vector, that has value 1 for these cells but
value 0 for the cells at the sides of the organism. This induc-
tive step sets the stage for the specification of sensors and
actuators away from the midline, and for ‘neural tissue’ in
the middle. The reminiscence of neurulation is not alto-
gether surprising as we implemented the midline concept
with just that phenomenon in mind (see Model Section).

A secondary induction event occurs at the 32-cell stage:
all the cells of color [3], created by the ‘neurulation’ event
in the 16-cell stage, in turn induce a perturbation in the cells
around this group. Indeed, it can be verified from Fig.9b that
bit 2, with rule ~(-1), will switch off in response to the now
active genetic element 1 in the middle of the organism. This
at least accounts for the change to color [4] resp. [1], for the
cells that had color [6] resp. [3]. The picture is more compli-
cated for some other cells, and we will not get into it here.

Eventually, via quantitatively similar interactions and
influence from the external environment, the more complex
picture at the last stage of development emerges.

6. Discussion and Conclusions

We have built a simple yet biologically defensible model of
the developmental process. We have shown that it can
account for a range of morphologies and that it is evolvable,
i.e. the genetic regulatory networks can be evolved to opti-
mize some performance function for the fully developed
organism. Moreover, we have analyzed in some detail the
developmental sequence of an agent-like morphology.

The work described in this paper is thus fully in line with
our longer-term goal to use this developmental model for
co-evolving body and control system in autonomous agents.
Although to reach that goal, with computational simplicity
in mind, we do not intend to modify the model all that
much, our initial exploration with the model has raised a
number of questions and suggested some issues that may be
worthwhile to investigate further:
(1) It would be of value to look at a model where symmetry
breaking is the norm, rather than the exception. Continuous
time networks with some introduced noise component are an
option, as are a-synchronously updating Boolean networks.
(2) Many important aspects of biological development that
we have excluded from our model provide rich developmen-
tal possibilities and could be taken into account.
(3) Instead of binary induction between neighboring cells, it
might be advantageous to model gradients of morphogens,
as they are hypothesized to underlie both the expression of
segmenting genes (Walbot et al. 1987, page 641) as the
pattern formation in limbs (Wolpert 1977).
(4) One might want to incorporate a less direct mapping
from genome to genetic regulatory network, using instead
one that lends itself more naturally to operators that splice
out or insert genes, affecting the size of the regulatory net-
work.

Our future work involves, as suggested, extending the
model towards actually functioning autonomous agents. We
will examine whether it is possible to co-evolve
sensor/actuator placement in an organism together with a
control structure - or nervous system, if you will - based on
non-linear neural networks. To that end, we will associate
colors with real functional ‘cell-types’ like neuron, sensor
and actuator, and then let evolved organisms perform some
task in a simulated environment, evaluating them on basis of
performance of that task. An obvious candidate, and easy to
implement, is chemotaxis. Evolving non-linear neural net-
works for controlling a chemotactic agent has already been
done within our research-group (Beer et al. 1992), and it
will be of considerable interest to compare the two
approaches.

Acknowledgments

We would like to thank everyone in the autonomous agents
research group at CWRU for the fruitful discussions that
helped shape this work. Special thanks to Leslie Picardo,
Hurkan Balkir and Katrien Hemelsoet for their comments on
an earlier draft of this paper. This work was supported in
part by grant N00014-90-J-1545 from the Office of Naval
Research.

References

Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J. D.
Watson. 1991. Molecular biology of the cell. New York:
Garland Publishing.

Beer, R. D. and J. C. Gallagher. 1992. “Evolving dynamical
neural networks for adaptive behavior.” Adaptive
Behavior 1 : 91-122.

Davidson, E. H. 1990. “How Embryos work: a comparative
view of diverse modes of cell fate specification.”
Development 108: 365-389.

Dawkins, R. 1989. “The Evolution of Evolvability.” In
Artificial Life., edited by C. G. Langton. Reading, MA:
Addison-Wesley.

deBoer, M. J. M., F. D. Fracchia and P. Prusinkiewicz.
1992. “Analysis and Simulation of the Development of
Cellular Layers.” In Artificial Life II., edited by C. G.
Langton, C. Taylor, J. D. Farmer and S. Rasmussen. 465-
483. Reading, MA: Addison-Wesley.

Duvdevani-Bar, S. and L. Segel. 1994. “On Topological
Simulations in Developmental Biology.” Journal of
theoretical Biology 166: 33-50.

Fleischer, K. and A. H. Barr. 1994. “A Simulation TestBed
for the Study of Multicellular Development: The Multiple
Mechanisms of Morphogenesis.” In Artificial Life III.,
edited by C. G. Langton. 389-416. Reading, MA:
Addison-Wesley.

Gruau, F. and D. Whitley. 1993. “The cellular development
of neural networks: the interaction of learning and
evolution.” Research Report 93-04, Laboratoire de
l’Informatique du Parallélisme, Ecole Normale Supérieure
de Lyon.

Harp, S. A., T. Samad and A. Guha. 1989. “Towards the
Genetic Synthesis of Neural Networks.” In Proceedings of
the Third International Conference on Genetic
Algorithms., edited by J. D. Schaffer. 360-369. San
Mateo, CA.: Morgan Kaufmann.

Harvey, I., P. Husbands and D. Cliff. 1993. “Issues in
evolutionary robotics.” In Proceedings of the Second
International Conference on Simulation of Adaptive
Behaviour., edited by J. Meyer, H. Roitblat and S. Wilson.
Cambridge, MA.: MIT Press.

Jackson, E. R., D. Johnson and W. G. Nash. 1986. “Gene
Networks in Development.” Journal of theoretical
Biology 119: 379-396.

Kauffman, S. 1969. “Metabolic Stability and Epigenesis in
Randomly Constructed Genetic Nets.” Journal of
theoretical Biology 22: 437-467.

Kauffman, S. and S. Levin. 1987. “Towards a General
Theory of Adaptive Walks on Rugged Landscapes.”
Journal of theoretical Biology 128: 11-45.

Kitano, H. 1990. “Designing neural networks using genetic
algorithm with graph generation system.” Complex
Systems 4 : 461-476.

Lewis, M. A., A. H. Fagg and A. Solidium. “Genetic
Programming Approach to the Construction of a Neural
Network for Control of a Walking Robot.” In IEEE
International Conference on Robotics and Automation,
Nice, France. 1992.

Matela, R. J. and R. J. Fletterick. 1979. “A topological
exchange model for self-sorting.” Journal of theoretical
Biology 76: 403-414.

McGinnis, W. and M. Kuziora. 1994. “The Molecular
Architects of Body Design.” Scientific American 270 2:
58-66.

Mjolsness, E., D. H. Sharp and J. Reinitz. 1991. “A
Connectionist Model of Development.” Journal of
theoretical Biology 152: 429-453.

Nolfi, S. and D. Parisi. 1991. “Growing neural networks.”
Report PCIA-91-15, Institute of Psychology, C.N.R.-
Rome.

Thieffry, D. and R. Thomas. “Logical synthesis of
regulatory models.” In Proceedings, Self-Organization
and Life: From Simple Rules to Global Complexity,
European Conference on Artificial Life (ECAL-93),
Brussels, Belgium. 1993.

Walbot, V. and N. Holder. 1987. Developmental Biology.
New York: Random House.

Wilson, S. W. 1989. “The Genetic Algorithm and Simulated
Evolution.” In Artificial Life., edited by C. G. Langton.
157-166. Reading, MA: Addison-Wesley.

Wolpert, L. 1977. “Pattern Formation in Biological
Development.” Scientific American 239 4: 154-164.

Wuensche, A. 1994. “The Ghost in the Machine: Basins of
Attraction of Random Boolean Networks.” In Artificial
Life III., edited by C. G. Langton. 465-501. Reading, MA:
Addison-Wesley.

