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Abstract

Most simulations of biological evolu-
tion depend on a rather restricted set
of properties. In this paper a richer
model, based on differential gene expres-
sion 1s introduced to control develop-
mental processes in an artificial evolu-
tionary system. Differential gene expres-
sion is used to get different cell types
and to modulate cell division and cell
death. One of the advantages using
developmental processes in evolutionary
systems is the reduction of the informa-
tion needed in the genome to encode e.g.
shapes or cell types which results in bet-
ter scaling behavior of the system. My
result showed that the shaping of multi-
cellular organisms in 3d is possible with
the proposed system.

1 Introduction

In the field of artificial evolution, current re-
search tries to imitate biological concepts of
evolution and development to simulate or build
artificial organisms. This paper reports on a
biologically inspired model that has been used
to evolve 3d shapes of simulated, multicellular
organisms. The model is based on cell-cell in-
teractions which allow the regulation of gene
expression in a specific and concentration de-
pendent way.

As biological organisms are the product of
the interplay of genetics, developmental pro-
cesses and evolution [10, 13], T included sev-
eral developmental processes, such as cell divi-
sion, cell death and cell differentiation in the
proposed artificial evolutionary system (AES).
Even though this makes the whole approach

more complex, there are several good reasons
to include developmental processes in the AES:

First of all, developmental processes can re-
duce the information in the genome which is
needed to encode a body shape or a neural net-
work. This allows for example to make the
length of the genome independent of the num-
ber of the cells in an organisms which results
in a better scaling behavior, when the number
of cells increases. This is especially important
in three dimensional system. Second, devel-
opmental processes can take advantage of the
possibilities of self-organization of a multicom-
ponent system. In our case, the type of the ar-
tificial cells is such an emergent property. Cell
types are not pre-specified, but a result of in-
tercellular communication. Third, as every cell
contains the same genome, an approach with
developmental processes is conceptually much
closer to the principle of parallel distributed in-
formation processing (in this case on the level of
genes). This is important, if one wants to dis-
tribute the simulation on several computers or
processors. Fourth, systems with developmen-
tal processes have an inherent stability. An ex-
ample of this is cell growth: although every cell
has the possibility to choose randomly a free
place around the six next neighboring places,
the emerging shapes are rather similar (see 8).
Fifth, from a biological point of view, AES with
developmental processes have much more bio-
logical appeal and allow therefore a comparison
with biological data, which can often be very
useful and inspiring.

In the next section I discuss the related
work on combining developmental processes
with evolutionary computing methods to evolve
simulated or real world autonomous agents. In



section three the used biological concepts are
explained and in section four the implementa-
tion of these concepts are described. Results
are presented in section five and in the last sec-
tion I discuss the advantages and disadvantages
of the proposed approach.

2 Related Work

Babloyantz and Hiernaux [1] made a model of
gene regulation and cell differentiation which
was based on the operon model of gene reg-
ulation. They implemented the chemical re-
actions as ordinary differential equation and
chose the parameters of these equations from
the biological data of the bacteria Escherichia
coli. The model was restricted to one cell.
Fleischer and Barr [12] used a genetic encoding
(hand coded) to specify the developmental pro-
cesses by means of ordinary differential equa-
tions which were coupled with if-clauses to al-
low for differential gene expression. While from
a biological perspective this approach 1s highly
fruitful it is not suitable for autonomous agents
because of the high computational costs. Stork
et al. [30] developed a system to evolve arti-
ficial networks. They introduced a structured
genome which consists of two types of genes,
control genes (also called enhancers) and struc-
tural genes. The activities of the different genes
are directly encoded in an activity table where
the state of each gene is determined geneti-
cally. In other words, there is no intercellular
communication which determines the state of a
gene dynamically during development. Belew
[2] used a grammar to simulate developmen-
tal processes. His scheme is context sensitive,
but it is restricted to pre-specified neural net-
work topologies. Gruau and Whitley [14] en-
coded the developmental process as a grammar
tree. In this approach the cells inherit their con-
nections and no context sensitive development
is possible. Vaario [31] proposed a grammar-
based simulation tool, in which the develop-
mental process is described by a set of rules.
A rule-based system bears the danger that cer-
tain properties of the system are defined by the
designer rather than being emergent from the
developmental process. Nolfi [25] and Cangelosi
et al. [4] proposed a developmental model for
neural networks based on cell division and cell
migration. The major flaw of this approach is

that the number of the genes in the genome
grows with the number of neurons which leads
to a bad scaling behavior. Kitano [16] reduced
the size of the genome using a graph generation
grammar to encode neural network topologies
which has a better scaling behavior than direct
encoding schemes. Furthermore, he[17, 18] de-
veloped a model based on a genetic algorithm
to simulate the metabolism of cells, cell divi-
sion and neurogenesis. The genome encodes
metabolic rules which describe chemical reac-
tions in a cell. These rules are linked to or-
dinary differential equations to calculate the
changes of all the possible substances. Also dif-
fusion and active transport of these substances
are implemented. In addition a model of neu-
rogenesis is included which is based on spe-
cial growth factors. Simple cell differentiation
of cells were reported ( at least two different
types of cells), where different substances are
marks for the cell’s state. Even neural net-
works were evolved, but to which no function
could be assigned. In contrast to our approach,
Kitano used no differential gene expression and
in his system no forms of cell clusters evolved.
Michel and Biondi [23] introduced a develop-
mental model which uses morphogenetic mech-
anisms to evolve neural control structures for
autonomous agents. As this model does not
describe any mechanisms about cell differentia-
tion, it is not clear how different cells can result.
Sims [29] described a system for the evolution
of artificial creatures that compete in a physi-
cally realistic simulation of a three-dimensional
artificial world. Dellaert and Beer [8, 7, 9] pro-
posed a model based on Boolean networks to
evolve autonomous agents in two dimensions.
They use a genetic algorithm to specify boolean
functions which depend on different cell prod-
ucts which are able to activate a gene. If a
gene is activated one or two different substances
are produced. Mechanisms of cell differentia-
tion like cell induction and symmetry breaking
are included. Their system was able to evolve
simple autonomous agents. In this approach
the developmental process was not modulated
by specific and concentration dependent gene
regulation mechanisms.



3 The Used Biological Concepts

The study of developmental biology has led to
the 1dentification of many mechanisms for mor-
phogenesis and development. The following
mechanisms are generally accepted to be im-
portant for development in biological systems:

o cell differentiation (cell lineage and cell-cell
interactions)

o cell division [10, 13]
o cell death [10, 13]

e positional information by morphogenetic

gradients [35]

These mechanisms will be shortly described
in the next section.

3.1 Gene Regulation

In living organisms all somatic cells contain the
same genome (with a few exceptions, e.g. as
some blood cells (lymphocytes)). The differ-
ences between the cells are emergent and due to
regulatory mechanisms which can turn genes on
or off. Two cells are different, if they have dif-
ferent subsets of active genes. In other words,
one can define a cell type as a set of cells with
the same gene activity pattern [6, 20, 13].

The activity of a gene is regulated by spe-
cial regions in the genome, the regulatory units
[21, 28]. Two types of regulatory elements af-
fect the activity of a gene. The first group
consists of the so-called regulatory units or
cis-regulators which represent specific DNA re-
gions. The other group are the transcription
factors or trans-regulators which are soluble
and affect the activity of a gene by binding on
a cis-element of that gene. (See Figure 1).

In prokaryotes (simple unicellular organisms
such as bacteria) several genes can be under the
control of one single cis regulator. In cells of
eukaryotes (more complicated organisms such
as plants or vertebrates) typically several cis
regulators regulate one single gene.

The activity of a gene depends on the follow-
ing factors

1. the affinity of the cis- and trans regulators
[28]

2. the concentration of trans-regulators at the
genome [13]
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Figure 1: Cis and trans regulatory units are
schematically shown. The concentration of the
trans regulators (transcription factors) at the
cis regulators (regulatory units) and the affinity
between the regulators determine the activity of
the gene.

3. the interactions of all the proteins which are
necessary for the transcription of a gene by
polymerases [13][p.380]

4. autocatalytic regulation of the gene once it
is activated

3.2  Cell division and Cell Death

The duration of cell division varies among dif-
ferent cell types: Neurons and muscle cells do
not divide anymore, whereas gut or blood cells
divide all the time. These differences are due to
different regulatory mechanisms which control
cell division. In cell cultures cells stop to divide,
if they have contact with each other (contact in-
hibition). Another mechanism is the regulation
of cell proliferation by growth factors. To these
belong several hormones like steroid hormones
(such as progesteron which has an effect on nu-
clear receptors), protein hormones like insuline,
nerve growth factors which influence the cell via
a surface receptor on the cell membrane or me-
diators like prostaglandines. An overview on
how cells division is regulated, is given in figure
2 [13].

There exist physiological mechanisms in the
cell which can cause programmed cell death by
activating special genes [10, 13]. Tt seems that



mediators like histamine steroid hormones

nudless | [\ /
o

nucleus
other cell

protein hormones

Receptor

Figure 2: Overview of the possible influences
on how cell division by different substances.

primary cell death programs (apoptosis) are
conserved in different species throughout evo-
lution [32]. Programmed cell death is seen dur-
ing many biological processes as development of
the neural system [10], the gut, the limb buds,
bones or lymphocytes[32]. A well known exam-
ple is the worm Caenorhabditis elegans in which
many cells will die. In vertebrates cell death 1s
used to shape certain body parts. Examples are
the limbs in which cell death shapes the joints
and separates fingers and toes [13][p.712]. But
also in the nervous systems of mammals up to
70 percent of the cells die [10].

3.3  Cell Differentiation

Two cells are different, if they express different
subsets of active genes in their genomes. Stud-
ies of biological cell differentiation are based on
identification and characterization of differenti-
ation markers, which often correspond to cer-
tain gene expressions [20].

Cell differentiation is based on two different
mechanisms: cell lineage and cell induction.
The first is an autonomous mechanism where
cell differentiation depends on intracellular fac-
tors, which are unequally distributed in differ-
ent cells [13].

With the second mechanism, cell induction,
cells become different because they get different
signaling from other cells. Developmental biol-
ogists talk of induction, if one embryonic region
sends a signal to a a second embryonic region,
which determines the fate of this second region

[13][p.591].

3.4 Positional Information

Wolpert [33, 34, 35] proposed a mechanism, how
cells are informed about their positions during
An example of such a mecha-
nism is a concentration gradient of a morphogen

development.

which every cell is able to read. The effect
of a morphogen depends on the type of sub-
stance and the affinity between the substance
and the cis-regulators. If these effects exceed
a certain threshold, genes can be turned on or
off. The existence of such morphogens i1s been
established[20, 26]. Developmentally important
substances from the mother are placed in the
egg at the beginning of the development of the
embryo. These substances are used to guide de-
velopment in the early stages and are often also
the base of symmetry breaking mechanisms to
determine e.g. the body axis. These so called
maternal effects are especially well studied in
Drosophila [20]. An example of a morphogen
is bicoid RNA, which is used in Drosophila
to determine the anterior-posterior axe of the
body during the very first stages of develop-
ment [20, 26].

4 Implementation

4.1  Gene Regulation

To obtain cells which are able to differentiate,
I introduced a set of regulatory mechanisms of
gene expression in an artificial genome.

Geneactivity
’444445 l 342120 | 343226 I 122225 |342430 |344436 ‘
activation no effect
TF
Geneactivity + + +

’444445 I 342120| 343226| 122225| 342430 | 344436 ‘

Regulatory Structural

Figure 3: A transcription factor (TF) is com-
pared to two regulatory units and the TF is
only able to activate one if the affinity and the
concentration are high enough.

In contrast to the usal genetic algorithms, a
structured genome was used that contain two
classes of genes: regulatory units and structural
genes (See figure 1). The regulatory units are
some kind of switches to turn on or off the genes
they control. Structural genes encode for spe-



cific substances which are used to modulate de-
velopmental processes.

Every gene has the same length of n integers
of which the last integer (in the following called
marker) is used to indicate to which of the two
gene classes a specific gene belongs. The possi-
ble values of the integers are taken from the set
{0,1,2,3,4,5,6}. The first gene of the genome is
assumed to be a regulatory unit. The following
genes between the first gene and the marker 5
are per definition also regulatory units. All the
genes between the marker 5 and the marker
6 are structural genes. The activity of the
(these) structural gene(s) depend on the regu-
latory unit(s) directly adjacent to them. After
the marker 6 is encountered the next marker b is
searched and all genes between them are regu-
latory units which control the structural genes
between the 5 and the next 6. This reading
continues until all genes are classified. Several
regulatory units can determine the activity of
one or several structural genes. Figure 4 illus-
trates an example of a typical genome which is

used 1n the AES.

affinity affinit} diffusion| ty%

‘ 421210‘221135 ‘112326 |423230 ‘243215 ‘323326 [

133210 4326 42121022113511232642323024321 61 30

] Regulatory unit
[ | Structural gene

Figure 4: Some integers of the genes are used to
encode substance classes and properties like the
diffusion coefficient and the region where the
affinity is calculated. Type is used to specify to
which class a gene product belongs.

The activity of a structural gene is regulated
in the following way. Every cell contains a list
of transcription factors (TF) which influence
its genome. The TF’s as well as the regula-
tory units are implemented as strings of inte-
gers. The two strings are then compared: The
first n (typically 6-8) integers of the string are
used to calculate the affinity. As every string
contains numbers out of the set {1,2,3/4 }, the
affinity is calculated in base 4. The total dif-

ference between the integers of the TF- and the
regulator string represents the degree of affin-
ity. As the difference can be negative as well as
positive, the sign is used to determine the effect.
A negative sign represents an inhibitory effect
whereas a positive sign represents an activating
effect. In a second step, also the concentration
of the TF’s is taken into account. A concentra-
tion 1s assigned to every TF. The product of the
affinity and the concentration of every TF at a
regulatory unit is calculated and the products
summed. The same is repeated for every regu-
latory unit of a gene. The total sum is then put
in a sigmoidal function and if a fixed threshold
is exceeded, the gene is activated or inhibited
(See equations 1,2,3).

n

r; = Zaffi * cone; (1)
i=1
1
ar = 2
ey M
—-1.0 ar < 0.2
g = 1.0 ap > 0.8 (3)
0.0 : otherwise

e aff; = affinity of the ith TF with the jth
regulatory unit gene

e conc; = concentration of the ith TF

e r; = activity of the jth regulatory unit of a
structural gene

e aj; = total sum of the activities of all regu-
latory units of the kth gene

e gr = activity of kth gene
4.2 Classes of Gene products

Depending on which structural gene is active,
one of the following possibilities can occur:

1. A transcription factor is produced to regu-
late the gene activities.

2. A cell adhesion molecule (CAM) is produced
to connect cells to each other, if on the other
cell’s surface is a CAM with a high enough
affinity



3. A receptor is produced to regulate the com-
munication between the cells.

4. A artificial function like cell division, cell
death or searching can occur.

Which of these activities occur is determined
by the first three integers of a structural gene
(see fig 4).

4.3 Cell Differentiation

To simulate cell differentiation I implemented
three different possible pathways to exchange
information between cells. First, there are sub-

i

Figure 5: Intercellular gene regulation by acti-
vators and repressors. The following regulation
scheme is implemented: a. intracellular regula-
tion b. intercellular regulation c¢. The intercel-
lular communication depends on a receptor (1),
which sends an activating signal to a regulatory
site (2), if the affinity between the receptor and
the transcription factor is high enough.

stances which do not leave the cell and which
regulate the activity of its own gene. Second,
there are substances which penetrate the cell
wall and can reach all cells that are nearby.
Third, there are specific receptors on the cell
surface which can be stimulated by substances.
If a transcription factor has a high enough affin-
ity to the receptor, a gene or a group of genes is
influenced as if the transcription factor would
be at the genome. Only those cells which have a
specific receptor on the cell surface will respond
to a certain substance (Figure 5).

4.4 Positional Information

The mechanism of positional information is al-
ready implemented by the regulatory mecha-
nisms mentioned above. TFs produced by a
cell can diffuse to nearby cells. In this case,
they could be called morphogens that may in-
duce a change of the state of some genes in cells
which can read this message. In my implemen-
tation a morphogen is just a kind of TF which
is also represented as an integer string with
an associated concentration. Note, that this is
not a biologically realistic implementation, be-
cause TFs can usually not pass the cell mem-
brane. One should note that this mechanism is
not just a simple signaling, because the read-
ing mechanism (the cis-regulators) is also con-
trolled by the AES. Therefore the same gradient
(same concentrations and the same substance)
can have very different effects on different cells
(See illustration in figure 7). Some examples of
such effects are changes in cell type, cell divi-
sion rate or motility. These basic developmen-
tal processes are in principle implemented the
same way.

4.5 Classes of Gene Products and
Functions of a Cell

Functions

- Cell division

- Cell death

- Searching for Partner
- Cell migration

Receptor

Figure 6: Overview on the products and func-
tions of a cell in the AES.(The functions of the
different substances are explained in the text).

The different active genes will determine which
substances are produced in a cell. These sub-
stances are stored in lists for further use.

At this point of the development the arti-
ficial cells have a structured genome, a list
which holds the activity of the genes (which can
change dynamically) and different lists which
represent different substance classes that are
contained in the cell.



4.6 Fvolution

The base of my AES is a genetic algorithm
which changes randomly a population of 120
genomes. In our experiments T used n (usually
8) units which contained 2 regulatory units for
2 structural genes to control the shaping of the
multicellular organisms. As genetic operators |
used one-point cross over and mutation.

5 Results
5.1  Cell Differentiation

In our AES the concentrations of the mor-
phogens are read by the cells. Depending on
which regulatory units are activated, the same
morphogen can have different effects. In fig-
ure 7 some examples of different effects of the
same morphogen are shown. The reading mech-
anisms (the regulatory units) vary in their affin-
ity, which explains the different effects on the
different cells.

Figure 7: In the middle of a plane of cells a
morphogenetic source is put and the cells read
the concentration of the morphogen. Different
cells have different gene activity patterns. Note
that depending on the cell, the same morphogen
can have different effects.

5.2 Growth and Forms

In Drosophila the substance bicoid RNA acts
as a morphogen to determine the anterior-
posterior axis of the body. The genomes are
reading the concentration of this morphogen

and genes are activated in a specific and con-
centration dependent way. In analogy to these
facts the AES has the possibility to put mor-
phogens at different places in a grid. The dif-
ferent gradients which are possibly built up are
a sort of chemical coordinate system which is
read by the cells and will inform them of their
position by activating different genes. In this
way 1t is possible to guide the growth of cells,
because once the concentration of a substance
which activates the cell division gene drops be-
low a certain threshold | growth will stop.

So

Figure 8: The two upper cell clusters are the
result of random cell growth. The two lower cell
clusters emerged if in addition one morphogen
is allowed to modulate the growth (See text for
more details).

In figure 8 the modulating effect of mor-
phogen gradients on a random growth process
with contact inhibition is illustrated. During
the implemented cell growth, each cell looks
for a free place in the next 6 neighbors and
chooses one randomly. If there is no empty
neighbor hood around a cell, its division is in-
hibited (contact inhibition). Note that during
a random growth process the emergent forms
are rather different (See upper part of figure
8). A morphogen producing cell is positioned
in the middle of the grid, which activates cell
division. If the influence of the concentration
of the morphogen and the affinity goes below
a threshold, the cells stop to divide. Now, the
structure of the cell cluster is smoothed out and
becomes independent of the randomness of the



cell division. The size of the balls is the result
of the different concentration and the different
diffusion properties of the morphogen, as well
as the properties of the reading mechanism of
the genes (cis-regulators).

5.3  Development of bilateral shapes

First, the program generates the environment
and a population of genomes. One cell is po-
sitioned in the middle of a 3d grid of typically
30x30x30 sites. This grid represents the envi-
ronment of the cells and is used to position cells
and cell products in the environment. Three
sources of different morphogens are positioned
on 3 different axes in space with varying dis-
tances to the first cell. These sources produce
morphogens which diffuse into the environment.
The cells are able to read and interprete these
gradients with the effect that possibly different
genes are expressed. Also cell induction as an-
other mechanism of cell differentiation is used.
The cells can synthesize transcription factors,
which influence the gene activities of other cells.

The fitness function was depended on the
number of cells and their position with respect
to the x-axis.

1.

fitness = max — |(max — n)| (4)

max = cell number which is assumed opti-
mal

n = actual cell number after the cell divi-
sions have stopped

2. for every existing cell the fitness was in-
creased, if the cell had a symmeterical coun-
terpart at the other side of the x-axis. After
the number of cells stopped to increase, the
fitness of the organisms was evaluated. If
the number of cells was bigger than a pre-
defined number of cells, the fitness was put

to 0.0.

6 Discussion

As the number of genes in the genome is insuf-
ficient to specify precisely every cell, epigenetic
processes with their combinatorial expression of
sets of genes are used in Nature to specify the
cells [15]. Therefore, T proposed in this work
that biological ideas are useful and applicable
to the field of artificial evolution. Implementing
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Figure 9: Several examples of evolved forms.
The fitness functions only evaluated the num-
ber of cells and the bilaterality of the found
organisms.

important developmental processes we showed
that cell growth, cell differentiation and the de-
velopment of shapes of simple organisms are in
the reach of this AES.

In contrast to less biological approaches the
following points are noteworthy:

e as in real cells every artificial cell contains
the same genetic information

o differential gene expression allows the mod-
ulation of developmental processes such as
cell division, cell death and shaping of an
organism.

e epigenetic processes allow to reduce the
length of the genome. Especially important
is the fact that the genome will not neces-
sarily grow, if the number of cells is larger.

e no direct encoding of genetic information for
cell types, cell position or links to other cells,
because these things are emergent proper-
ties of epigenetic processes

The proposed AES was able to evolve three
dimensional shapes for simulated, multicellular



organisms. With the proposed AES a step to-
wards the following scientific goals is made:

7

the AES evolves plans of three dimensional
robots which can be used to produce real
world robots

the investigation of the co-evolution of the
morphology (shape) and its neural control
structures for 3d, multicellular organisms.
It was shown that also neural networks for
real world robots can be evolved by the same

type of AES [11].

if one investigates complex systems one tries
to understand how simple parts are able to
build more complex wholes. In our specific
case we ask: What should a singele cell be
able to do, if many cells should be able to
develop a more complex organism?

one of the main problems of every artifi-
cial evolutionary system is the evolvability.
Which capabilities have to be introduced in
an AES that systems of increasing complex-
ity can be evolved? (Chaitin[5] gives a defi-
nition of complexity).

analysis of the simulator to explore its lim-
its. We will analyze statistically our AES
and test the different results with differ-
ent 1initializations of the random genera-
tor and the different possibilities of the ge-
netic operators which can be introduced if
one uses structured genomes. Interchang-
ing and duplicating genetic material seems
very promising to us, especially as these op-
erators change possible interactions between
cells.
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