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Abstract The body-brain coevolution of aerial life forms has
not been developed as far as aquatic or terrestrial locomotion in
the field of artificial life. We are studying physically simulated 3D
flying creatures by evolving both wing shapes and their controllers.
A creature’s wing is modeled as a number of articulated cylinders,
connected by triangular films (patagia). The wing structure and its
motor controllers for cruising flight are generated by an evolutionary
algorithm within a simulated aerodynamic environment. The most
energy-efficient cruising speed and the lift and drag coefficients of
each flier are calculated from its morphological characteristics and
used in the fitness evaluation. To observe a wide range of creature
size, the evolution is run separately for creatures categorized into
three species by body weight. The resulting creatures vary in size
from pigeons to pterosaurs, with various wing configurations. We
discuss the characteristics of shape and motion of the evolved
creatures, including flight stability and Strouhal number.

1 Introduction

In recent years, a number of studies have been conducted on evolving both the morphology and
locomotion of physically simulated virtual agents. Sims [43, 44] pioneered an innovative approach in
generating both the morphology and the behavior of physics-based articulated figures by artificial
evolution. His blockies creatures moved in a way that looked both organic and elegant. Other recent
work, such as Sexual Swimmers [55], Framsticks [21], and Virtual Pets [35], has produced a range of
applications. The Golem project [23] even took this technique a step further by evolving simulations
of physically realistic mobile robots and then building real-world copies.

While the most recent work in this area [6, 20, 51, 56] has produced an assortment of virtual
creatures crawling on the land or swimming under water, relatively little attention has been paid to
the synthesis of flapping flight. Reynolds [39] developed a stochastic model of the flocking behavior
of birds, but he did not animate individual birds. Ramakrishnananda and Wong [34] presented a
physically based bird model using two segmented airfoils, but the entire motion of both wings is
controlled by predesigned kinematics, and only the overall lift and thrust were calculated from
aerodynamics. Wu and Popović [58] developed a realistic model of a bird with flexible feathers and
successfully generated flying motions corresponding to given trajectories by optimizing the control
parameters for each wingbeat, using simulated annealing. Augustsson et al. [2] conducted online
learning by a real robot with flat wings to develop flying behavior using an evolutionary algorithm.
Encouraged by these studies, we have proposed a new developmental model for evolving wing
morphology and behavior using a traditional nested graph structure [41], and we have also
attempted to exert high-level control over flying creatures using a neural network with a two-step
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evolution strategy [42]. But our attempts to apply neural control to flight itself have not been
successful, because of the intrinsic instability of the aerial environment. Its properties are significantly
different from those of the land or water.

One of the crucial points in evolving virtual creatures with simulated physics is the sensitivity
of locomotion. Sensitivity can be considered as the ease with which a creature’s locomotion can
be interrupted, or even terminated, by external or internal disturbances. External disturbances
come from the surroundings, and might include gusts of wind or unexpected obstacles. Even
without these effects, generating the basic locomotion of a linked body structure would be a chal-
lenging problem in itself. Internal disturbances are unexpected changes caused by the movement
of the creature itself, such as vortices and turbulence in the fluid, and inertial forces during
maneuvering. A common but important external influence is gravity. Because of the existence of
gravity, a creature in motion also needs to retain its balance to maintain stable locomotion by
exploiting hydro/aerodynamic forces from the fluid medium or counteractive/frictional forces from
the ground.

Underwater is a more stable environment. Water has a higher density and viscosity than air, so the
motion of an immersed body is less sensitive to disturbances. Moreover, buoyancy greatly reduces
the effect of gravity. Underwater creatures have less need to balance, and can adopt an almost
arbitrary attitude. For land creatures, balancing problems are related to factors such as the height of
their center of mass, the number and configuration of their legs, and terrain irregularity. Terrestrial
creatures that fail to maintain balance will fall over, and locomotion will terminate immediately. Even
creatures for which balance is less important, such as snakes and creeping insects, need to adapt
attitudes appropriate for their direction of motion; for instance, many animals cannot move if they
are turned over or laid on their side.

Maintaining locomotive stability in the air is much tougher than in these other two environments.
The density and viscosity of the surrounding medium is much lower than that of the water, and there
is little buoyancy and nowhere to stand. And a failure of locomotion can mean the death of the
creature. The interaction between a flapping wing and the air is very complicated. The forces
generated by this interaction are chaotic, and their simulation is often unstable because of high
sensitivity. Computational fluid dynamics (CFD) methods are sufficiently accurate, but too time-
consuming to build into an evolution framework. For instance, Milano et al. [25] conducted a CFD
study using a controlled random search genetic algorithm to optimize the placement and operating
parameters of two actuator systems (rotating surface belts and jet actuators) on a single cylinder in
order to reduce the drag coefficient. The optimized cases showed over 50% drag reduction.
However, their simulation took up to 1500 iterations to converge, requiring 30 hours of CPU time
on an NEC SX-4 supercomputer, making their approach computationally very intensive.

In this article, we focus on evolving structure and control for stable and efficient cruising flight, as
a preliminary to addressing in-flight maneuvers. This work begins with a neutral state of locomotion,
which must be mechanically efficient and stable. The avian power curve [27, 28, 37], with its
characteristic U shape, plays a central role in defining the scope of our work. This curve shows how
power varies as a function of flight speed, summarizes the most important aspects of flight
performance and stability [49, 53], and has proved to be a valuable tool for understanding many of
the decisions that flying animals make in flight. It is also strongly related to the physical and
morphological properties of flying animals, so that it can offer valuable knowledge about the body-
brain coevolution of flight. We use the avian power curve to achieve optimal flight speeds with
minimum power consumption. Aerodynamic stability is considered in the fitness evaluation by
measuring force and moment equilibrium, and additional passive stabilization is considered by
varying the point at which the wing is attached to a creature’s body.

The rest of this article is organized as follows: In Section 2, we overview the physical structure of
a creature and its controller and introduce an encoding scheme that can express this data as a
genotype. We describe simplified conventional aerodynamics for the aerial environment in Section 3.
Section 4 deals with extracting the desired flight speed from an avian power curve and the physical
properties of a creature. Section 5 describes fitness evaluation and the evolution process. We present
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our results in Section 6 and discuss flight stability in cruising by means of experiments which
introduce external disturbances. We also discuss the physical validity of our work by investigating the
Strouhal numbers of evolved flyers and comparing them with those of real birds.

2 The Model

Our creatures are constructed from a basic model with truss-shaped wings [41, 42]. This design is
inspired by the hang glider and the bat wing. We have simplified and generalized this idea into an
arbitrarily constructible wing skeleton, which we can use to explore various wing structures beyond
those known in nature.

As shown in Figure 1, genotype encoding is accomplished using a multiconnected list, which
assesses symmetry of shape and wing motion. Handling variations of the genotype, such as mutation
or mating, is convenient because of this linear structure. The root node represents the body of a
creature, and the wing root represents the start of the wings, at a point inside the central body. These
first two nodes and their connections exist in all individuals, but are followed by an arbitrary number
of wing segment nodes. A tail also exists as a fan-shaped surface, and its radius is included in the
genotype description. The angle of the fan (tail spread) is fixed at 22.5j. In this current work a tail
only exerts small forces, but it is likely to become more important when maneuvers are considered.

2.1 Creature Development
A creature’s skeleton is made from capped cylinders, each of which is aligned along a local z axis. A
wing joint connects a child cylinder to its parent and can have one or two degrees of freedom,
allowing both dihedral and sweep motions. The parameters of each cylinder are contained in the
corresponding node in the genotype description. The centers of the hemispherical ends become the
start and end point of a cylinder. The start point is position 0, and the end point corresponds to a
specified parametric distance along the cylinder’s local z axis.

Figure 1. A genotype and a creature structure. Each node of a genotype contains the cylinder parameter (length, radius,
joint type, and a motor controller). The radii of the wing root and the following segments are all fixed to the same value.
Each connection has parameters that indicate how two body parts should be connected (position and orientation).
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A node connection specifies how and where to attach a cylinder to its parent. As shown in Figure 2,
the connection parameter ap indicates the position on a parent cylinder where the child’s 0 point will
be placed, and by setting values of ap to 0 or 1 we obtain a trusslike wing structure. The angle between
the local z axes of parent and child is c (limited to the range 10j to 90j), and this determines the
direction in which the wing grows. u is initially set to zero, so that the wings are aligned horizontally.
c and u are initialized to neutral values at each joint and changed over time by angular motors during
the simulation. Figure 3 shows an example of this construction process, resulting in the wing skeleton
shown in Figure 1.

Many studies on legged robots have used passive dynamics [54] and static stability [8] to construct
efficient and robust locomotion. Several aeronautical studies [9, 26] have discussed static stability,

Figure 2. Joining a cylinder pair. (a) Initial arrangement of cylinders. If the attachment point (ap) flag is 0, the child cylinder
rotates through an angleC about the parent cylinder. If it is 1, the orientation of the child is flipped before rotating. (b) A
dihedral joint rotates about the parent’s local z axis (u), and a sweep joint rotates in the C direction.

Figure 3. Detailed description of the skeleton construction shown in Figure 1.
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which produces stabilizing moments against external perturbations. Often, this process can be
helped by proper location of the relative position of the wing root and body. Figure 4 shows two
variables wh and wf, which describe the horizontal and vertical distance of the wing root from the
body’s center of mass. This helps the creature to stabilize pitch and roll movement. The range of
each value is [0,2R] for wh and [�0.4L,0.4L] for wf, where R and L are the radius and length of the
body. This will be discussed in more detail in Section 6.

After two cylinders have been attached to each other, a weightless rigid film, forming a patagium,
is stretched between them. Figure 5 shows an example of a complete creature. Since each triangle of
film is attached to a child cylinder, its linear and angular velocities can be calculated from those of the
child cylinder. The whole of a creature’s wing, looking like that of a bat or hang glider, is composed
of a sequence of child-parent pairs with attached triangles of film, each of which is subject to
appropriate aerodynamic forces.

2.2 Controller
Although continuous-time neural networks (CTRNNs) are widely used in robot control [4, 5, 11, 45]
and can generate a variety of signal patterns, the use of a periodic sinusoidal function has advantages
for the purposes of this work. Most continuous locomotion of real animals (especially in flapping
flight) can be expressed in terms of the harmonics of sinusoidal functions. A sinusoidal function has
infinite derivative continuity, so that unexpected fluctuations of the joint motors, which might be
critical disturbances in flight, can be minimized. However, expressing a single motor signal using
sinusoidal harmonics needs many parameters, and the search space of possible signal patterns then
becomes unnecessarily huge (in effect it encompasses almost all wave patterns). Instead, we have
chosen a piecewise composition of sinusoidal functions, which connects each piece smoothly.

Each controller specifies the angle to be achieved by a motor. The difference between the actual
joint angle and the controller output is fed to the motor as a desired velocity. All controllers operate

Figure 4. Relative position of the wing root and the body.

Figure 5. An example of a completed creature.
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with a cycle of the same duration, so that all joint motions are controlled synchronously. The con-
troller parameters include the duration of a cycle (T ) and a number of control points that deter-
mine the shape of its output function. Each control point has a magnitude in the range [�1,1] and
a phase fraction in the range [0,1], which represents the proportion of the cycle affected by this
control point. The actual values of u are scaled by the joint range (Fk/2 in this work), and those of
t are scaled by the cycle period T. The control function is constructed by smooth interpolation
between each pair of neighboring control points. In an interval [tn, tn+1], we can write the controller
function U as

UðtÞ ¼ un þ unþ1

2
þ un � unþ1

2
cos

t � tn

tnþ1 � tn
k

� �
; ð1Þ

where u is the output value of a control point, and t is the time parameter. Thus, P(t, u) in Figure 6 is
a graph of time against output in a 2D parameterized control space. The final control point is
connected back to the first one, making the function periodic. These parameters are also coded into
each node of the genotype.

3 Physics Simulation

The Open Dynamics Engine, an open-source simulator by Russell Smith [46], has been used to
simulate the movement of a physical creature with articulated rigid body dynamics. The forces
on the patagium are calculated by simplified aerodynamics. The simulation uses a first-order
semi-implicit integrator, where the constraint forces are implicit and the external forces are explicit
[1, 48].

The forces acting on a surface depend on its area and the angle of attack with respect to the
velocity of the airstream. Since this work deals with large flying creatures (at least bird size), it is
reasonable to use a conventional aerodynamics. We used blade element theory with a quasi-steady
assumption [57] as the simplified aerodynamics.

The triangular element of a patagium covering a parent-child cylinder pair is divided into several
patches, and the calculated forces are considered to be exerted on the center of mass of each patch.
The stream velocity for each patch is calculated by inverting the sign of the vector representing the

Figure 6. An example of a parameterized control function.
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velocity of the patch’s center of mass and projecting it onto the plane formed by the patch’s nor-
mal and the local z axis. The lift and drag forces can then be calculated using the lift coefficient
CL and the drag coefficient CD. The lift coefficient is proportional to the angle of incidence (a) of
the wing, and, from thin-airfoil theory [12], its slope is 2k for a 2D wing of infinite span. How-
ever, Prandtl’s lifting-line theory [32, 33] shows that for a finite span, the slope depends on the
aspect ratio of the wing because of the effect of induced velocity. In Prandtl’s model, the drag
coefficient CD is composed of induced and parasite components, and yields an airfoil polar equation
of the form

CD ¼ CD0
þ C2

L

kqðARÞ ; ð2Þ

where

CL ¼ 2k
AR

AR þ 2

� �
a: ð3Þ

CD0
is the parasite drag coefficient due to viscosity, and is assumed to be 0.1; q is the Munk span

efficiency, which is normally slightly less than 1 (we set it to 1); and AR is the aspect ratio determined
by AR= 4b2/S. However, a cannot be very large, because flow separates and the wing stalls at high
angles of attack. In reality, if the angle of attack increases and passes the stall angle, at one point all
lift will be lost while the drag continues to increase. We therefore modeled the shape of the lift
coefficients, as shown in Figures 8 and 9, by synthesizing functions to return lift coefficients for any
given angle. (The maximum value is proportional to AR; for AR = 7.25, the value is 1.6.) The line
is shifted to the left so that a zero angle of attack corresponds to a0 c �4j. The drag coeffi-
cient is generated using Equation 2 over the active range of the lift coefficient, and gradually
flattened to 2 near F90j. Drag acts in the direction of the airstream velocity. The direction of lift is

Figure 7. Force on a triangular patch i, with local axes xi, yi, and zi. The actual air velocity (vp) is projected onto the patch’s
local yz plane, and the resultant vector vi is taken as the incoming velocity. Initially, the local axes of patches are those of
the central body.
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perpendicular to that of the drag, so a patch produces not only lift but also thrust tangential to its
surface (Figure 7). The force on each patch i is returned to the physics simulator as an accumulated
force on the child cylinder:

FL;i ¼
1

2
UCLðaÞSi jjvi jj2li ; ð4Þ

FD;i ¼
1

2
UCDðaÞSi jjvi jj2di ; ð5Þ

where S is the area of the patch, and U is the density of the air (1.21 kg/m3). After the forces on each
patch have been calculated, the resulting force and the torque on the cylinder are obtained by

Ftotal ¼
X
iaN

FL;i þ FD;i ; ð6Þ

Figure 8. Lift and drag coefficients. A wing with high aspect ratio (AR) receives more lift and less drag.

Figure 9. The area of a cylinder projected onto the stream direction.
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Ttotal ¼
X
iaN

ðFL;i þ FD;iÞ � ri ; ð7Þ

where N is the set of patches in the triangular segments, and r is a vector from the cylinder’s center
of mass to the center of the each segment. The forces on the tail can be calculated in the same way as
those on a wing patch. The angle of the tail fan is fixed at 22.5j.

The parasite drag on the central body cylinder is also calculated using Equation 5, and can be
written as

FD ¼ 1

2
UCdbð2RL sin uþ kR2Þmv; ð8Þ

where Cdb c 0.1 is the body drag coefficient. As shown in Figure 9, the area that receives this force
is idealized as the projection of the capped cylinder onto a surface normal to the velocity vector.

4 The Avian Power Curve

The avian power curve, with its characteristic U shape, shows how power varies as a function of
flight speed. It summarizes the most important aspects of flight performance, and has proved to
be a valuable tool for understanding many of the strategies of flying animals. From the geometry of
the power curve, or by simple manipulations of the underlying mathematical models, it is possible
to make predictions about, for instance, choices such as the selection of flight speed in relation to
wind, food availability, or a migration goal [15, 16], or decisions between steady and intermittent
flight [36, 38].

Birds and other flying animals can fly at a variety of speeds, and their flapping kinematics may
change with speed. Our primary interest is to observe common and energy-efficient wing motions
by the evolved creatures, rather than simple gliding or hovering in the air with laborious wingbeats.
In this work, we have adopted a power curve obtained from a mathematical model by Pennycuick
[27, 47], and we set the creatures to fly near to the minimum-power speed of their individual power
curves. The total mechanical power, P, required for flight is calculated as

P ¼ Pi þ Ppar þ Ppro; ð9Þ

where Pi is the induced power required to support the weight, Ppar is the parasite power required to
overcome viscous drag on the body, and Ppro is the profile power required to overcome viscous
drag on the wing surface. The general shape of the power curve can be expressed in the form P =
1/V+ V3, which has a characteristic U shape (Figure 10). We can obtain Vmp by differentiating the
power equation BP

BV
jVmp ¼ 0 and rewriting Vmp as

Vmpðm; b; SbÞ ¼
kg2

3kU2Cdb

� �1
4 m2

b2Sb

� �1
4

¼ K
m2

b2Sb

� �1
4

: ð10Þ

In this equation, k (=1.2) is the airfoil efficiency factor, Sb is the frontal area of the body, and Cdb

(=0.1) is the body drag coefficient. The complete derivation of these equations is presented elsewhere
[47]. From this approximation, Vmp is represented as a function of mass and shape. We set K as a
proportional factor, and its calculated value is 3.0246. Table 4 in Section 7 shows the morphological
parameters and calculated Vobs/Vmp for various species of birds, collected from [29–31].

Artificial Life Volume 12, Number 4 569

Evolving Physically Simulated Flying Creatures for Efficient CruisingY.-S. Shim and C.-H. Kim



Pennycuick [30] indicated the relation between Vmp and observed flight speeds. From the data in
Table 4, Vobs/Vmp can be described as a function of mass;

Vobs

Vmp
¼ 0:9868� 0:2706 log m: ð11Þ

Figure 11 illustrates this approximation by showing Vobs/Vmp plotted against log m. This indicates
that smaller birds usually fly faster than their minimum-power speed.

Figure 10. The idealized lifting-line power curve. This is shown in nondimensional form, together with induced ( 12V )
and friction (12V

3) terms. This curve yields two characteristic speeds: Vmc is the speed at which the tangent from
the origin meets the curve, and at which the cost of transport is a minimum [37]; and at Vmp, the power consumption
is a minimum.

Figure 11. Logarithmic plot of the ratio of the observed speed Vobs to the calculated minimum-power speed Vmp,
obtained from Pennycuick [29–31].
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5 Evolution Process

We divided our creatures into three species based on their mass (small, medium, and heavy), and the
simulation was run separately for each category. The creature’s body density was set to 300 kg/m3, a
careful heuristic choice to match the body size and the overall mass of the creature. We roughly set
the limits of other morphological data, such as wing load and aspect ratio, within the acceptable
range. Table 1 shows the parameter ranges used in the simulation.

5.1 Fitness Evaluation
Each creature was rewarded for a long flight time and for high flight speed in the forward direction,
and penalized for high vertical acceleration of the center of mass (disequilibrium between gravity and
lift), high angular acceleration (reduced aerodynamic moment), and high torques at the joint motors
(power consumption). The creature receives no extra reward for speeds higher than Vmp. This is
because the maximum available motor torque is not explicitly constrained. It would be possible to
assign different cylinder radii and maximum torques to each of them [44], but it is hard to make a
creature with such a thick skeleton fly, and a factor to determine the actual torque value has to be
carefully tuned. Providing a high torque means that the creature can fly extraordinarily fast (using
‘‘superpower’’), and this will result in fast flapping flight like that of a dragonfly at very high
velocities. Criteria other than speed of flight are used to differentiate between creatures flying at
speeds around Vmp. The fitness function is

ftot ¼ kh
th

T
þ ð2� khÞ

1P
ki

XT
t

f ðtÞ; ð12Þ

Table 1. Some of the parameter settings.

Value

Parameter Small Medium Heavy

Total mass (kg) 0.02–0.7 0.1–10.0 10.0–50.0

Number of wing segments 4–10 4–10 4–10

Central body length (m) 0.02–0.2 0.2–0.8 0.5–1.0

Central body radius (m) 0.1L–0.3L 0.1L–0.3L 0.1L–0.3L

Wing segment length (m) 0.002–0.1 0.02–0.5 0.3–1.5

Wing segment radius (m) 0.005 0.01 0.01

c (rad) 0.2–1.5 0.2–1.5 0.2–1.5

Wingbeat frequency (Hz) 1.0–20.0 1.0–8.0 0.5–4.0

Number of control points 1–4 1–4 1–4

Simulation step (s) 0.005 0.01 0.02

Starting altitude (m) 10.0 20.0 40.0
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f ðtÞ ¼ k1~
V ðtÞ
Vmp

� �
þ k2

1

1þ<ðamðtÞÞ
þ k3

1

1þ jjaðtÞjj þ k4
1

1þ 1
m

PN
GiðtÞyt

; ð13Þ

where ftot is the total fitness, f (t ) is the fitness measured at time t, kh is the fractional contribution of
flight time, th is the maximum flight time, T is the total evaluation time,V is the forward speed, av is the
vertical acceleration of the center of mass of the creature, a is the angular acceleration of the central
body, m is the mass of the creature (a heavier one may use more torque in absolute value), Gi is the
torque of the ith motor, N is the number of motors, and yt is the time step. ~ (x) is equal to x when
x < 1, otherwise 1. <(x) is �2x when x < 0, otherwise x. This attaches more penalty to downward
acceleration (falling). The values of k used were kh = 0.9, k1 = 1.2, k2 = 1.2, k3 = 1.2, k4 = 1.0.

5.2 Evolutionary Algorithm
Using a typical evolutionary algorithm tends to apply a strong selection pressure to creatures and
leads to premature convergence. To ensure genetic diversity, a geographically distributed genetic
algorithm [17] was used, usually with a population of 400 (20�20 grid) individuals. Within the grid
core lies the concept of a neighborhood. The child is placed at a position near its parents, so it is
possible for two different solutions of equal fitness to exist as demes on different parts of the grid.
This can prevent the evolution process from reaching a local optimum in which the gene pool
contains only one solution and the process is thus incapable of reaching a high fitness.

Mating was limited to the 8 grid squares surrounding a genotype, plus a 25% chance of it
occurring within the next ring of 16 squares (see Figure 12). The algorithm for mating is as follows:
first, a parent is chosen by tournament selection from three randomly chosen genotypes. From
within the selected genotype’s neighborhood, three more genotypes are chosen. The best of these is
mated with the selected genotype, and the worst is replaced by their offspring. A generation is
completed when this process has been applied to a certain number of individuals. To implement
elitism, the best individual in the population is selected 20% more frequently than the others. This
procedure is shown graphically in Figure 13.

Using a square grid, the individuals at the corners or edges find it hard to propagate their genetic
information to the other sides. To give them a better chance of mating, we used a wrapped form of 2D
grid, as shown in Figure 12. The opposite edges are connected, and topologically the grid forms a
torus. This allows every individual to have an equal number of neighborhoods. For the recombining
process, both the double point crossover and grafting [43, 44] were used, with the same probability.

After mating, the offspring has a chance to mutate. The mutation rate was initially set to 0.5
and slowly reduced during evolution. Each genotype has its own adaptive mutation rate, which is

Figure 12. Population grid with toroidal geometry. A toroidal grid ensures that every individual has an equal number of
neighborhoods.

Artificial Life Volume 12, Number 4572

Evolving Physically Simulated Flying Creatures for Efficient CruisingY.-S. Shim and C.-H. Kim



adjusted every time mating occurs. If individuals A and B produce child C by mating, the mutation
rate of C becomes the average of A and B’s mutation rates. If the fitness of C is greater than 70% of
A and B’s average fitness, then A and B’s mutation rates are increased by q (=0.001); otherwise they
are reduced by q. This design choice was inspired by studies in which bacteria appear to increase their
mutation rate in stressful environments [40]. Over time the mutation rate of the parent is adjusted in
an attempt to keep the children’s fitness at least 70% of their parents’. After adjusting the mutation
rates, each genotype was mutated in the following steps:

1. The unique parameters such as wingbeat cycle, wing attachment point, or tail length have
a chance of being mutated.

2. A new random node is added, or an existing node (other than the central body and the
wing root) is deleted.

3. The internal parameters of each node have a chance of being subjected to alterations.
Morphological parameters can be varied within their allowed range, and joint types are
changed from one to another.

4. After changing the degrees of freedom of a joint, its controller parameters are mutated.
A new control point is added or an existing one is deleted. Then the position of each
control point is altered within its possible range.

5. The parameters of each connection are mutated.

When mutating the time fraction corresponding a control point, two points cannot be moved too
close. That might result in a step change in motor velocity with a resulting peak in motor torque.
Control points are not permitted to be closer than 10% of the total wingbeat duration.

The time required for the evaluation process as a whole was reduced by early termination of any
individual that is not performing well. Creatures with mutually intersecting wings are replaced by a
random individual. A creature is considered to be nonviable if the speed of any of its body parts
exceeds a limit (typically 1000 m/s). Interim fitness measurements are performed after a quarter of
the total evaluation period has elapsed, and any individuals whose fitness is less than one-fifth of that
of the least fit creature of the previous generation are removed.

Additional checks were made for morphological errors corresponding to eccentric shapes that
stray far from the range of wing loadings and aspect ratios that are characteristics of feasible flight.
Wing loading is defined as the mass of the creature divided by its wing area, and the unit g/cm2 is
generally used. We used a range based on real-life data [13, 14, 24]. The permitted range of wing
loading is 0.1 to 0.5 for the small, 0.3 to 1.0 for the medium, and 0.5 to 1.5 for the heavy creatures;
while the aspect ratio should be 1 to 20 for small creatures and 3 to 20 for both medium and heavy.
Any creature that is out of its range receives a negative score corresponding to the extent of its
deviation. It is given no stronger penalty, so as to keep its other, potentially good features within the

Figure 13. Grid-based mating scheme. First, three genotypes are chosen at random and the best is selected (parent 1).
Second, three candidates for mating are selected within the surrounding 24 squares, and the best is chosen (parent 2).
Finally, the worst of the three spouses is replaced by the offspring of parent 1 and parent 2.
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population. Another kind of dynamic wing collision caused by a wide range of dihedral motion
(clapping) was checked for, and if it was found, the creature’s fitness was lowered by half. The statistics
of the abnormal individuals are shown in Figure 15.

6 Results and Discussion

Each creature was placed at an initial altitude, and given an initial velocity of Vmp. The evaluation
period was about 40–50 seconds in simulation time, representing between 100 and 500 generations.
Most of the creatures used the dihedral joint of the wing segment nearest to the wing root to
generate primary lift and thrust. The fitness of the population was dominated by flight time in the
early stages of evolution. After the average flight time of all individuals reached a certain level, other
fitness scores such as speed, force equilibrium, and efficient use of power took a greater role. Not all
creatures are simulated for a full evaluation period: those that crash are deemed not to have useful
genetic material and are terminated early.

Since individuals are evaluated while staying airborne, the duration of flight is crucial for survival
through the early stages of evolution. In most simulations, a jump in fitness is observed, at which
point the average flight time of the population achieves a stable value. If the contribution of flight
time is reduced, the jump appears later in the total evaluation period. Many individuals get a high
fitness score initially, but quickly crash. In this case, ‘‘high fitness during short lifetime’’ is recorded.
We set the contribution of flight time to more than a quarter of the total fitness score (0.7<kh<1.0).
The total fitness and the sub-scores are plotted as a function of the generation in Figure 14.

Emphasizing flight time promotes the ascendancy of creatures that can perform stable gliding.
But these are passive solutions, without joint movement, so they cannot avoid losing speed and
altitude. Solely in terms of performance, the difference between these gliders and successful flyers is
unfortunately perceptible only over a long evaluation. We addressed this problem by forcing all
creatures to have at least one pair of oscillating control points in at least one controller.

The starting altitude was adapted to the creature’s wing loading, because light wing loading makes
remaining aloft easier. The starting altitude was set as a function of wing loading within the
prescribed range for each species:

altitude ¼ 2H

Wmin þWmax
w; ð14Þ

whereH is the altitude where the wing loading is the middle value of the range, and its value is 5 m for
the small, 10 m for the medium, and 20 m for the heavy creatures. Wmin and Wmax are the mini-
mum and maximum wing loading, and w is the wing loading of the current individual. Figures 15 and
16 shows the best four creatures of each species; the detailed specification of each creature is
presented in Table 2.

Disappointingly, there was no significant difference of wing shape between species, except that the
medium and small creatures have wings that are somewhat more backward swept. Possible wing shape
characteristics are: the aspect ratio, rounded or sharp wingtips, and forward, backward, or neutral sweep
of wing. In this work, smaller wings tended to have high aspect ratio, but other differences cannot be
captured. Our wing model cannot represent a smoothly rounded wingtip. Although the wingtip vortex is
reflected in some extent in the model, it is not deeply modeled enough to affect the wingtip shape.
Rather, it affects the aspect ratio and lift coefficient. We expect that wing sweep would be more clearly
distinguished if the evolution were based on maneuvering flight. Generally, rapidly turning birds have
wings with a backward sweep, and slow-turning birds have comparatively flat wings (Table 3).

However, there were differences in wingbeat frequencies, although the ranges for the species
overlapped. The larger species had lower frequencies, though the medium and the small creatures
did not have as high frequencies as we expected. Wing loadings were distributed near the lower
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bounds in the given ranges. Flight speeds were higher for heavy creatures, as expected [52]. It seems
that an isometric relation overlooks additional metabolic characteristics such as differences in
respiratory system and chemical energy consumption. A more accurate relation might be obtained by
relating the maximum available torque at each motor to the weight of the connected body parts, but
such a relationship would need to be carefully tuned.

Despite these shortcomings, most creatures showed elegant flapping motions, and some folded
their wings efficiently on the upstroke (see Figure 17b, motor 8). The creatures’ flight is shown more
fully in Figures 24, 25, and 26 (Section 7). There are also some movie clips and colored figures of this
article available at http://kucg.korea.ac.kr/~ysshim/shim/efcec.htm.

Figure 15. The numbers of creatures with (a) morphological errors (outranged wing loading or aspect ratio) and (b)
clapping wings. Morphological errors decrease significantly after a while. Clapping creatures show less variation as
evolution proceeds. While clapping is related to implementation of the simulation, the morphological error directly
influences flight performance, although its effect is moderate.

Figure 14. Fitness of the average (a) and the best individual (b) by generation. The period between the dashed vertical
lines indicates a fitness jump. The scores for lift-weight equilibrium, moment equilibrium, and powerless flight become
lower as the creatures start to flap their wings to stay in the air, and then gradually increases as efficient flight is achieved.
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Figure 16. Some of the best-adapted creatures. H1 to H4 are heavy, M1 to M4 are medium, and S1 to S4 are small. The
size ratio of the creatures is shown, but S1 to S4 are scaled and redrawn for clarity.

Table 2. Specification of evolved creatures.

Name

Mass

(kg)

Wing area

(m2)

Half span

(m)

Wing loading

(g/cm2)

Aspect

ratio

Frequency

(Hz)

Average speed

(m/s)

Vmp

(m/s)

H1 15.268 2.963 2.433 0.515 7.993 1.136 15.0 13.968

H2 16.920 3.197 2.825 0.529 9.981 0.806 14.0 13.564

H3 18.275 3.465 2.754 0.527 8.758 1.000 15.0 13.910

H4 16.710 3.138 2.911 0.532 10.798 1.250 13.5 13.124

M1 2.579 0.566 0.989 0.455 6.904 1.923 12.0 13.220

M2 2.766 0.685 1.128 0.404 7.431 2.083 14.0 12.423

M3 2.360 0.670 1.060 0.353 6.711 2.083 12.0 12.216

M4 2.220 0.607 1.092 0.365 7.848 1.111 12.5 12.243

S1 0.049 0.048 0.464 0.102 17.778 2.381 5.0 5.094

S2 0.043 0.039 0.220 0.110 4.939 4.167 5.8 7.102

S3 0.042 0.021 0.252 0.202 12.057 7.143 8.0 6.558

S4 0.028 0.028 0.336 0.100 15.966 2.273 5.5 5.029
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6.1 Flight Stability
Stability is usually assumed to be problematic, especially in flapping flight, and it is sometimes
suggested that it presented a particular hurdle in evolution. But there is nothing inherently
destabilizing about flapping. Faster wingbeats simply amplify any existing stability or instability,
and under some circumstances flapping can actually enhance stability, compared to gliding at the
same airspeed [49]. It is even reasonable to apply the requirements for passive stability of gliding to
flapping flight with regular wingbeats: by means of a quasi-static assumption, the net aerodynamic
forces can be taken to be the same.

In our flying creatures, stability seems to evolve naturally because the creatures have to fly faster
than the minimum-power speed (V z Vmp), and the creature inevitably drops at the start of the
simulation and must stabilize the resulting oscillation in order to survive. Across a certain range of
power outputs, there exist two equilibrium flight speeds for any given power (because the curve is
U-shaped). Disturbances from equilibrium will only be opposed if the slope of the curve is positive
(i.e., if the power required increases with flight speed); so only the higher of each pair of equilibrium
speeds is stable [49].

The wing usually contributes to stability if its aerodynamic center lies behind or above the center
of gravity [53]. The stability gained when the aerodynamic center lies behind the center of gravity is
similar to that provided by the tailplane of a conventional aircraft. When the lift acts behind the center
of gravity, the increase in lift resulting from a rising nose will tend to bring the nose back down again.
The pendulum stability provided by having the center of gravity beneath the aerodynamic center is

Table 3. Strouhal number of evolved creatures.

Name

Frequency

(Hz)

Amplitude

(m)

Speed

(m/s) St

H1 1.136 2.43 15.0 0.184

H2 0.806 2.82 14.0 0.162

H3 1.000 3.30 15.0 0.220

H4 1.250 2.60 13.5 0.241

M1 1.923 0.96 12.0 0.154

M2 2.083 1.10 14.0 0.164

M3 2.083 0.99 12.0 0.172

M4 1.111 1.07 12.5 0.095

S1 2.381 0.37 5.0 0.176

S2 4.167 0.19 5.8 0.137

S3 7.143 0.22 8.0 0.196

S4 2.273 0.30 5.5 0.124
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Table 4 . Collected morphological data on birds [29–31], with observed and calculated speeds. The data is sorted
by mass.

Species

Vmp

(m/s) Vobs

Mass

(kg)

Span

(m)

Sb

(m2) Vobs/Vmp

Zebra finch 5.7796 6.0 0.0136 0.3400 0.0005 1.0381

Tree swallow 6.7864 11.3 0.0201 0.3200 0.0006 1.6650

Chaffinch 7.8221 15.3 0.0228 0.2620 0.0006 1.9560

Storm petrel 7.3401 10.4 0.0350 0.3960 0.0009 1.4168

Starling 10.1526 17.3 0.0884 0.3840 0.0016 1.7039

American kestrel 8.9328 9.1 0.0900 0.5020 0.0016 1.0187

Northern flicker 10.0699 12.7 0.1320 0.5100 0.0021 1.2611

Antarctic prion 9.5211 11.1 0.1550 0.6350 0.0023 1.1658

Sparrowhawk 10.4966 8.72 0.1960 0.6110 0.0027 0.8307

Eurasian kestrel 9.8062 8.1 0.2130 0.7400 0.0029 0.8260

Black-headed gull 9.4171 10.1 0.2800 0.9630 0.0035 1.0725

Black skimmer 9.5039 9.9 0.3000 0.9900 0.0036 1.0416

Laughing gull 9.5696 9.5 0.3250 1.0300 0.0038 0.9927

Little blue heron 9.9595 8.8 0.3400 0.9800 0.0039 0.8835

Common gull 9.6168 11.6 0.3640 1.1000 0.0041 1.2062

Kittiwakes 10.4794 13.1 0.3870 0.9650 0.0043 1.2500

Arctic skua 10.0723 13.3 0.3900 1.0500 0.0043 1.3204

Common puffin 14.0241 17.6 0.3980 0.5490 0.0044 1.2549

Cape pigeon 11.2917 12.3 0.4180 0.8750 0.0045 1.0892

Royal tern 10.2423 10.0 0.4700 1.1500 0.0049 0.9763
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Table 4 . (continued)

Species

Vmp

(m/s) Vobs

Mass

(kg)

Span

(m)

Sb

(m2) Vobs/Vmp

Wood pigeon 12.8953 15.4 0.4950 0.7510 0.0050 1.1942

Hooded crow 12.0567 10.5 0.5530 0.9250 0.0054 0.8708

Razorbill 14.8171 16.0 0.6200 0.6610 0.0059 1.0798

Widgeon 14.2827 17.1 0.7700 0.8220 0.0068 1.1972

Northern fulmar 12.4146 13.0 0.8150 1.1300 0.0070 1.0471

Red kite 10.9317 7.9 0.8510 1.5000 0.0073 0.7226

Great egret 11.6693 10.6 0.8740 1.3400 0.0074 0.9083

White ibis 13.9879 12.9 0.9000 0.9510 0.0075 0.9222

Herring gull 11.8479 11.8 0.9250 1.3500 0.0077 0.9959

Guillemot 16.5182 19.1 0.9500 0.7070 0.0078 1.1562

Common buzzard 12.2884 9.31 0.9640 1.2900 0.0079 0.7576

Grey heron 11.9028 11.0 1.2100 1.6000 0.0092 0.9241

Roseate spoonbill 13.7926 11.9 1.3000 1.2500 0.0096 0.8627

Great skua 13.3416 14.9 1.3500 1.3700 0.0099 1.1168

Eider 15.9451 20.2 1.3900 0.9780 0.0101 1.2668

Cormorant 14.7108 14.5 1.4100 1.1600 0.0102 0.9856

Magnificent

frigate bird

10.6165 9.3 1.4700 2.2900 0.0105 0.8759

Osprey 12.7985 10.6 1.4900 1.5900 0.0106 0.8282

Black-backed gull 12.5816 12.8 1.5100 1.6600 0.0106 1.0173

Turkey vulture 12.3611 10.6 1.5500 1.7500 0.0108 0.8575
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similar to the self-righting property of a ship [22] and is the source of stability in parachutes and
paragliders. These simple contributions are potentially included in the genotype description by
allowing a variable wing root position so that the relative position of the aerodynamic center can
vary. Stability is also affected by changes to the morphology of the wing, which change its sweep.

A simple experiment for observing flight stability was performed with the medium creatures.
They were given disturbing moments about their pitch and roll axes. Either a pitch-up or a pitch-
down moment was exerted on each creature’s central body for 10 time steps. Although it is desirable
that the disturbance should be proportional to the creature’s moment of inertia, we applied the
same amount (10 N	m) to all creatures, on the basis that their size and mass are similar. Figure 18
is a qualitative overview of some creatures’ motion, visualized as wingtip trajectories, which show
the aerodynamic center position relative to the center of mass. Creatures were placed in the air
with no gravity. All except M1 showed pitch-down movements, showing that the aerodynamic center
is behind the center of gravity. M2 generated the strongest pitch-down movement, and even M1’s
pitch-up movement was very slight. The flapping of M3 and M4 generated more thrust than the
others.

Figures 19 and 20 show the flight profiles after the disturbance. In all cases, this looks like a
damped oscillation. It is strange that the rising height of M1 (which seems most unstable after the
pitch-up disturbance) is very small at the time of the pitch-up disturbance, but this is because M1 did

Table 4 . (continued)

Species

Vmp

(m/s) Vobs

Mass

(kg)

Span

(m)

Sb
(m2) Vobs/Vmp

Shag 16.8858 15.4 1.8100 1.0400 0.0120 0.9120

Great blue heron 13.2381 9.4 1.9200 1.7600 0.0125 0.7100

Black vulture 15.3545 10.8 2.0800 1.3800 0.0132 0.7033

Great white heron 13.8771 11.0 2.5000 1.9100 0.0149 0.7926

Cormorant 16.6373 15.0 2.5600 1.3500 0.0152 0.9015

Northern gannet 15.0009 14.9 3.0100 1.8500 0.0169 0.9932

Black-browed

albatross

13.8935 13.3 3.0800 2.1900 0.0171 0.9572

Giant petrel 14.8606 15.2 3.2400 1.9800 0.0177 1.0228

Brown pelican 14.1211 10.1 3.3900 2.2600 0.0183 0.7152

Bald eagle 15.7945 11.2 4.6800 2.2400 0.0227 0.7091

Wandering

albatross

16.6582 15.0 8.5500 3.0100 0.0339 0.9004

Mute swan 19.3507 16.0 9.0100 2.3100 0.0351 0.8268
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a somersault. M3 and M4 have more thrust and show better stability. Higher thrust allows the
necessary stabilizing forces to be generated more quickly.

The roll disturbances were exerted during one time step. Figure 21 shows consecutive images of
the response by M3 to three different roll impacts. Figure 22 shows the different responses of M1,
M2, and M4 to the same disturbance (100 N	m). Here, there is both pendulum stabilization and
stabilization through the dihedral effect [9, 26]. If the left wing of a creature is raised, the net lift
vector does not remain vertical, so the weight now has a component in the direction of the right

Figure 17. Example of motor controllers. H3 and M3, with the richest movements of their joint motors, are described.
Four cycle periods are plotted for each controller. H3 has four joints with two degrees of freedom, but M3 only has
joints with one degree of freedom.

Figure 18. Brief visualization of the aerodynamic center of the creatures. Creatures were placed in the air with no gravity,
and their trajectories are shown. All except M1 showed pitch-down movement (aerodynamic center is behind the center
of gravity). The two on the right show stronger thrust.
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wing. The body begins to slide down in the direction of the right wing. Because of the upward
dihedral angle of the wings, this sideslip increases the angle of attack of the right wing and decreases
the angle of attack of the left wing. The higher lift on the right wing produces a stabilizing moment.
In Figure 22a, M2 makes a strong initial downstroke and returns to a safe roll angle more quickly
than the other creatures, performing a large flat spiral and losing little altitude, though the final

Figure 19. Oscillations after a pitch disturbance. The upper image shows the aftermath of a pitch-up disturbance, while
the lower image shows the result of pitch-down. The graphs represent 2000 time steps and were aligned at the start of
disturbance, represented by a dashed line. The units are centimeters.

Figure 20. Trajectories of each creature. Each figure shows the response after pitch-up (black line) and pitch-down (gray
line) impacts. The two cases show similar stabilization trajectories.
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recovery is slow because of its small sideslip. Figure 22b shows the spiral descent of M1, which has a
typical, moderate level of stability. M4 (Figure 22c) is very unstable in this test, though it showed the
best pitch stability. It seems that its wingbeat frequency is too low and its amplitude is too high; the
creature simply rolled over before being able to make the next downstroke.

Both pitch and roll stability are achieved by appropriate coupling of several effects. In all cases,
however, the pendulum effect is a necessary condition for better stability, because it not only helps
a creature to stabilize, but also significantly extends the allowable error limits for the magnitude of
stabilizing moments, which are produced by the relative position of the aerodynamic center or by the
dihedral effect. Without the pendulum effect, there could hardly be any roll stabilization, although
pitch stability could still be achieved by having sufficient sweep of wings and a strong thrust.

6.2 The Strouhal Number in Cruising Flight
We now analyze our results in terms of the Strouhal number when cruising. For dolphins, sharks,
and other bony fish traveling at their preferred cruising speed, the ratio of the product of tail
frequency and amplitude to forward speed is constrained for efficiency to a narrow range of values.
This dimensionless ratio is the Strouhal number, and evolution seems to favor efficient swimming
motion with a Strouhal number in the range 0.2 to 0.4. A recent study by Taylor et al. [50] showed
that Strouhal numbers for birds, bats, and insects flying at cruising speed also seem to be constrained
within a similar range of values. It is surprising to see the same range of values across creatures in
such different habitats, with wildly different size, mass, and flight patterns, as well as across species
that evolved the ability to fly independently.

Figure 21. Stabilization after receiving different amounts of roll disturbance. The arrow indicates the time of impact.

Figure 22. Response patterns to a roll disturbance. (a) Large planar spiral path, which results from slow stabilization. (b)
Falling spiral. (c) Crash.
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For an animal in flight, the Strouhal number is determined by the wingbeat frequency ( f ),
multiplied by the amplitude (A) of the wing stroke, divided by the animal’s forward speed (U )
through the air:

St ¼ fA

U
: ð15Þ

Also known as wingtip excursion, the amplitude of the stroke is the vertical distance traveled by the
tip of the wing during the flapping stroke.

In terms of fluid dynamics, the Strouhal number is concerned with the number of vortices shed
by an oscillating object in the fluid [10]. While detailed fluid behavior of this sort is not captured by
our simplified aerodynamics, we consider the Strouhal number to be relevant because formalized
aerodynamics such as thin airfoil theory and lifting-line theory encapsulate the effects of those
complicated phenomena. The Strouhal number is bound to affect aerodynamic force coefficients
and propulsive efficiency, because it defines the maximum aerodynamic angle of attack and the time
scales associated with the growth and shedding of vortices, which are the source of aerodynamic
forces.

The significance of Strouhal numbers in the range 0.2 to 0.4 can be explained in terms of the
optimal space-time synchronization of an oscillating foil so that it sheds a fully developed vortex at
each end of each downstroke. Therefore the propulsive efficiency of a flapping foil usually peaks in
this range. If the Strouhal number is too small, the vortex is shed before the end of downstroke; if it
is too large, the vortex collides with the foil on the upstroke. Although these phenomena were not
modeled in our work, we suggest that the lift/drag coefficient, the fitness constraints, and the
creature morphology involved in the evolution process delineate three boundaries on feasible
operation: the minimum-power speed roughly bounds the speed range, the minimum undulatory
movement of the body prevents the wingbeat from being too slow or having too high an amplitude,
and the reward for low power consumption limits rapid change of wing motion, which would lead to
excessive frequency and low amplitude.

Figure 23 shows the Strouhal numbers of actual birds, as presented by Taylor, together with those
of our evolved creatures (see Table 3). The evolved creatures show a similar range to the real animals.

Figure 23. Strouhal numbers for birds from Taylor (some have multiple values) and for the creatures in this work. All data
from Taylor is for continuous flight, except for budgerigars and woodpeckers, for which it is for intermittent flight.
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Figure 24. Consecutive images of the flight of the heavy creatures. From the top, H1, H2, H3, and H4 are shown, sampled
every 10 frames. The four images at the bottom show the wingtip trajectory of each creature.
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Figure 25. Consecutive images of the flight of the medium creatures. From the top, M1, M2, M3, and M4 are shown,
sampled every 5 frames.
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Figure 26. Consecutive images of the flight of the small creatures. From the top, S1, S2, S3, and S4 are shown, sampled
every 2 frames.
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In Taylor’s measurements, birds have lower values within the range and bats have higher values. Our
creatures incorporate many parameters from birds, and also have low values.

7 Conclusions and Future Work

We have presented an evolutionary approach to evolve both wing morphology and flapping flight,
which is a challenging topic in the generation of virtual creatures. We combined several aspects of
aerodynamics and flight energetics with morphological characteristics within an evolutionary
framework, and attempted to include intrinsic flight stability indirectly in the evolution system.
The resulting creatures have enhanced physical and biological plausibility.

Nevertheless, there are several sources of physical inaccuracy, especially the lack of unsteady-state
aerodynamic effects, of allowance for interactions between wing segments, and of a model of the
spanwise force distribution, which are hard to achieve with an arbitrary wing shape and motion. A
major key to success in this sort of evolutionary system is the availability of sufficiently accurate
physics of the environment (even in the generation of swimming and crawling creatures). Therefore
more computationally efficient and sophisticated aerodynamic influences need to be modeled if we
are to improve on the results reported in this article.

There are significant constraints on the ways in which a bird may move its wings [37], and it
would be interesting to explore possible modes of flight more widely, by excluding biological
soundness and loosening the mechanical constraints on a creature’s body, without abandoning
physical accuracy. We expect that the search space for powered flight is probably quite small and also
discontinuous, because we see that most flying animals have several significantly different modes of
flight (such as gliding or flapping, with continuous or intermittent wingbeats).

The next step will be to generate stable and continuous flight maneuvers by our enhanced
flying creatures. Achieving a flexible and robust maneuvering capability is likely to require both
passive stability and the use of dynamic neural networks. In previous work [42] we attempted to
generate maneuvering creatures using traditional artificial neural networks, but the maneuvers were
restricted to a given path, and the creatures were controlled by static networks, which were unable to
respond to external disturbances, leading to high instability. We plan to replace our sinusoidal
controller with central pattern generators [3, 7, 18, 19], and achieve navigation using CTRNNs.
Another interesting goal would be to generate a wider range of behaviors, which could be totally
changed as required, and not simply modulated. In an eventful environment, a creature would be
able to select its mode of flight between the translatory mode and the stationary mode (soaring in a
rising current or diving toward a prey). Applying selective attention behavior [11, 45] to this might be
a good initial target.

Bringing evolved flyers into the real world is not an impossible suggestion. A robot vehicle would
be thrown into an environment that is more unstable and noisy than any we can model, but we
believe that adaptive control could bridge the reality gap.
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