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The evolutionary forces that produced the canonical genetic code before the last universal ancestor remain obscure.
One hypothesis is that the arrangement of amino acid/codon assignments results from selection to minimize the
effects of errors (e.g., mistranslation and mutation) on resulting proteins. If amino acid similarity is measured as
polarity, the canonical code does indeed outperform most theoretical alternatives. However, this finding does not
hold for other amino acid properties, ignores plausible restrictions on possible code structure, and does not address
the naturally occurring nonstandard genetic codes. Finally, other analyses have shown that significantly better code
structures are possible. Here, we show that if theoretically possible code structures are limited to reflect plausible
biological constraints, and amino acid similarity is quantified using empirical data of substitution frequencies, the
canonical code is at or very close to a global optimum for error minimization across plausible parameter space.
This result is robust to variation in the methods and assumptions of the analysis. Although significantly better codes
do exist under some assumptions, they are extremely rare and thus consistent with reports of an adaptive code:
previous analyses which suggest otherwise derive from a misleading metric. However, all extant, naturally occurring,
secondarily derived, nonstandard genetic codes do appear less adaptive. The arrangement of amino acid assignments
to the codons of the standard genetic code appears to be a direct product of natural selection for a system that
minimizes the phenotypic impact of genetic error. Potential criticisms of previous analyses appear to be without
substance. That known variants of the standard genetic code appear less adaptive suggests that different evolutionary
factors predominated before and after fixation of the canonical code. While the evidence for an adaptive code is
clear, the process by which the code achieved this optimization requires further attention.

Introduction

All known nonstandard genetic codes appear to be
secondarily derived minor modifications of the canoni-
cal code (Osawa 1995). The fact that codon reassign-
ment is not always lethal indicates that the amino acid/
codon assignments of the canonical code need not be a
‘‘frozen accident’’ of history (Crick 1965), but, rather,
require explanation. One hypothesis is that the arrange-
ment of amino acid assignments results from natural se-
lection among different codes favoring those that min-
imize the phenotypic impact of genetic error by maxi-
mizing the similarity of amino acids assigned to codons
differing by only a single nucleotide (Sonneborn 1965;
Woese 1965; Zuckerkandl and Pauling 1965).

Previous evidence for an adaptive code structure
derives as follows. The canonical code’s susceptibility
to error is quantified as a ‘‘code error value,’’ Dcode, rep-
resenting the average change in amino acid meaning (ac-
cording to some quantitative similarity measure) result-
ing from all single-nucleotide substitutions in all codons.
This is then compared with equivalent values measured
for theoretical alternative codes. When amino acid sim-
ilarity is measured in terms of Polar Requirement
(Woese et al. 1966) (essentially a measure of hydropho-
bicity), the canonical code outperforms all but one in
10,000 randomly generated alternatives (Haig and Hurst
1991; Freeland and Hurst 1998a) and appears to be bet-
ter still when calculation of Dcode is adjusted to incor-
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porate known biases in mutation and mistranslation rates
(Ardell 1998; Freeland and Hurst 1998a).

Adaptive Evidence as an Artifact of Stereochemistry?

However, this evidence is potentially flawed in sev-
eral ways. First, when other measures of amino acid
similarity, such as volume or charge, are used, the ca-
nonical code no longer appears special (Haig and Hurst
1991). Without clear evidence that amino acid polarity
is the major defining factor of protein fitness, claims for
an adaptive canonical code might be spurious. In partic-
ular, the ‘‘stereochemical’’ hypothesis proposes that the
canonical code originated through specific steric inter-
actions between amino acids and their associated codons
(Yarus 1998; Knight, Freeland, and Landweber 1999).
Because Polar Requirement values derive from chro-
matographic partitioning of amino acids in a water/pyr-
idine system (Woese et al. 1966), amino acids that bind
nucleotides similarly but act differently in proteins could
be responsible for Polar Requirement values, such that
a code formed through stereochemical interactions
might appear adaptive as an artifact. We address this
weakness by employing point accepted mutations
(PAM) 74–100 matrix data (Benner, Cohen, and Gonnet
1994), which are derived from the pattern of amino acid
substitution frequencies observed within naturally oc-
curring pairs of homologous proteins and thus provide
a direct measure of amino acid similarity in terms of
protein biochemistry.

Potential Problems with PAM

A subtle and potentially profound problem with us-
ing PAM matrix data in this context is that PAM matrix
values may simply reflect the structure of the genetic
code. Specifically, over a short evolutionary period,
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most amino acid substitutions are likely to result from
single point mutations within codons: PAM scores for
minimally diverged proteins are therefore likely to re-
flect the arrangement of codon assignments rather than
amino acid similarity in terms of protein chemistry, ren-
dering code analysis based on PAM scores a tautologous
exercise. The PAM 74–100 uniquely avoids this prob-
lem, since it is derived from only highly diverged pro-
tein sequences (other PAM matrices are calculated from
homologs of low divergence and manipulated mathe-
matically to predict substitution patterns at high diver-
gence). Quantitative analysis of the PAM 74–100 dem-
onstrates its superior measurement of amino acid simi-
larity. PAM matrices derived for homologs of increasing
divergence do differ from one another, consistent with
the idea that they decreasingly reflect code structure and
increasingly reflect amino acid similarity (in terms of
protein biochemistry). That PAMs of increasing diver-
gence approach an asymptote below the divergence
threshold used to choose proteins for the calculation of
the 74–100 indicates that this matrix predominantly re-
flects amino acid biochemical similarity (i.e., higher di-
vergence would provide no further surprises). Further
qualitative observations support this interpretation. For
example, within the standard code, Tryptophan is as-
signed a single codon semisurrounded by termination
codons and can only change to arginine by means of a
single nucleotide transition error (UGG→CGR). How-
ever, tryptophan’s side chain is a hydrophobic ring,
whereas arginine’s side chain is aliphatic and hydro-
philic. It is intuitive that tryptophan’s protein biochem-
istry would be more similar to that of, say, phenylala-
nine (with an aromatic, hydrophobic side chain), which
lies two point mutations away in codon space. Low-
divergence PAMs imply a greater similarity between Trp
and Arg than between Trp and Phe, whereas the PAM
74–100 indicates the opposite relationship, consistent
with the idea that the PAM 74–100 accurately records
the biochemical similarity of amino acids rather than
their assignments within the code. The overall high cor-
relation between the PAM 74–100 and PAMs of low
divergence (or theoretical PAM’s derived purely from
code structure) does not indicate the matrix’s depen-
dence on code structure, but can equally well be ex-
plained by an adaptive code in which similar codons are
assigned to amino acids with similar biochemical prop-
erties: it is only the differences, outlined above, that in-
form the PAM 74–100’s suitability for code analysis.

On a different note, it may be argued that because
the PAM 74–100 measures amino acid physiochemical
similarity in a very general sense (i.e., the degree to
which different side chains can operate in similar struc-
ture/function roles), we cannot completely rule out the
possibility that matrix values would apply to nucleotide-
binding affinities of the different amino acids. A stereo-
chemical interpretation of PAM-based analysis thus re-
mains possible, although at present no evidence exists
to support this argument; quite simply, we know that the
PAM 74–100 is an accurate measure of interchange-
ability within proteins; the correlation with nucleotide-
binding affinities remains at best speculative.

Adaptive Evidence as an Artifact of Biosynthetic
Relatedness?

A second weakness in previous adaptive analyses
(Wong 1980; DiGiulio 1989, 1994; Haig and Hurst
1991; Goldman 1993; Ardell 1998; Freeland and Hurst
1998a) is that most have assumed that each synonymous
codon block of the canonical code could have taken any
amino acid assignment (fig. 1a). A growing body of
circumstantial evidence questions this assumption
(Knight, Freeland, and Landweber 1999). Many of the
20 canonical amino acids are not plausible products of
prebiotic chemistry (Wong and Bronskill 1979) and are
only produced in extant organisms as biosynthetic mod-
ifications of their plausibly primordial counterparts. Fur-
thermore, biosynthetically related amino acids are often
assigned to similar codons within the canonical code
(Wong 1975; Taylor and Coates 1989). Taken together,
these observations have provoked the code coevolution
hypothesis (Wong 1975), proposing that the canonical
code evolved from a simpler ancestral form (encoding
fewer amino acids with greater redundancy) by succes-
sively reassigning subsets of synonymous codons to in-
corporate novel amino acid biosynthetic derivatives. Al-
though detailed perceived patterns (Wong 1975) are un-
trustworthy because of the biosynthetic interrelatedness
of most amino acids within present-day metabolism
(Amirnovin 1997), it does appear that amino acids from
the same biosynthetic pathway are generally assigned to
codons sharing the same first base (Taylor and Coates
1989) (fig. 1b). If this reflects a history of biosynthetic
expansion from some primordial code, then the implied
restrictions on code evolution would reduce the number
of possible codes so greatly as to render previous adap-
tive results meaningless (Freeland and Hurst 1998b). We
investigate this possibility by constructing a set of pos-
sible codes that allows interchange of amino acids only
within each biochemical pathway (fig. 1c).

Other Analyses Indicate a Nonadaptive Code

Third, while previous analyses suggest that the ca-
nonical code outperforms most alternatives, a compre-
hensive search of possible code structures suggests that
far better alternatives are possible (Wong 1980; DiGiulio
1989, 1994; Goldman 1993). Indeed, the canonical code
achieves between 45.3% (Wong 1980) and 78% (Di-
Giulio 1994) of the possible error minimization, de-
pending on precise assumptions. Unfortunately, this al-
ternative method of estimating code optimality, cited as
evidence against an adaptive canonical code, has coin-
cided with further methodological differences which
could either explain or obscure the qualitatively different
results. In particular, previous reports of a highly opti-
mized code structure have measured the average squared
difference in amino acid Polar Requirement, whereas
those reporting a less adaptive code structure have used
the modular difference. One possible explanation of
qualitatively different results is that the adaptive ar-
rangement of just a few key amino acids with extreme
Polar Requirement values could account for most ap-
parent optimization of the code: squaring the Polar Re-
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FIG. 1.—Definitions of the unrestricted and restricted sets of theoretically possible codes. Both sets maintain the pattern of synonymous
codon blocks and the assignments of termination codons found in the canonical code (implying a fixed relationship between codons and tRNA
anticodons). a, The unrestricted set; the 20 amino acids are randomly assigned to the 20 synonymous codon blocks with no further mapping
restrictions. b, The correlation between amino acid biosynthetic pathways and amino acid assignments within the code reported by Taylor and
Coates (1989). c, The restricted set; codon assignments are divided into four groups (A–D), each containing five members (1–5). Each group
takes the same five assignments as in the canonical code, although assignments within a group are allowed to vary randomly. While the best
treatment of Leu, His, and the extra codon pairs assigned to Ser and Arg remains unclear, our results show minimal change when these codon
assignments are allowed to vary freely.

quirement differences between amino acids would ex-
aggerate the importance of the arrangement of outlier
amino acids within the code, providing an exaggerated
estimate of code optimality. We compare estimates of
code optimality according to both interpretations of op-
timality over a range of scaling values and transition/
transversion biases.

What of Nonstandard Genetic Codes?

Finally, previous analyses have concentrated exclu-
sively on the canonical genetic code, ignoring second-
arily derived nonstandard variants. We present a com-
parative analysis of all known nonstandard codes to in-
vestigate their relationship to the adaptive hypothesis.

Materials and Methods

The process of testing the canonical code for evi-
dence of adaptation in terms of error minimization may
be divided into three stages: (1) summarizing a partic-
ular code’s susceptibility to genetic error as a code error
value, (2) defining a set of theoretically possible codes
from which the canonical code evolved, and (3) mea-
suring the optimality of the canonical code by compar-
ing its error value with those of randomly selected plau-
sible alternatives.

Calculating a Code’s Error Value

A particular code’s error value, Di, is the weighted
mean of all possible changes in codon meaning resulting
from all possible single-nucleotide changes in all co-
dons. With errors subdivided into transitions and trans-
versions, Di is calculated as

210

(wa 1 b )eO i i i
i51D 5 , (1)i 210

(wa 1 b )O i i
i51

where ei is the error magnitude associated with amino
acid substitution i (see below), w represents the transi-
tion/transversion bias weighting under consideration,
and ai and bi represent the total numbers of times error
ei occurs within a particular code as the result of single-
nucleotide transitions and transversions, respectively.
For example, three single nucleotide changes cause sub-
stitution of Ile for Met in the canonical code, the tran-
sition AUG→AUA, and the two transversions
AUG→AUY; thus, aMet→Ile 5 1, whereas bMet→Ile 5 2.
Many amino acid substitutions will not occur as the re-
sult of any single-nucleotide substitutions for any given
code; e.g., aMet→Gly 5 bMet→Gly 5 0 for the canonical
code. The summation terms reflect that 210 different
errors are possible for an amino acid alphabet of 20
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members, given error symmetry (i.e., the error caused
by substitution of amino acid a1 for amino acid a2 is
equivalent to that caused by the substitution of a2 for
a1). Although abundant empirical data indicate that tran-
sitions occur more frequently than transversions (i.e., w
. 1), an exact value is not known for primordial evo-
lution. We therefore test a range of w values.

Calculation of individual codon error (ei) values
varies according to the measure of amino acid similarity
used. For data from the PAM 74–100 matrix, we use
the transformation

2(M ,M /10) pa1 a2(10 ) a ± a1 2e 5 (2)50 a 5 a ,1 2

where ei is the error value associated with a change from
amino acid a1 to amino acid a2 (the ‘‘correct’’ and ‘‘in-
correct’’ amino acids) and Ma1,a2 is the PAM matrix
score associated with amino acids a1 and a2Ma1,a2 5
Ma2,a1 because of error symmetry), and p is the power
to which the modular difference in amino acid property
is raised (‘‘modular power function’’).

For comparison with previous analyses, we also use
Polar Requirement (Woese et al. 1966) data, a measure
of hydrophobicity, for which the codon error value is
calculated as

pe 5 zA 2 A z ,1 2 (3)

where A1 and A2 are the values for the ‘‘correct’’ and
‘‘incorrect’’ amino acid meanings.

Neither similarity measure defines values for Ter
codons, which are ignored. Since the most biologically
realistic value of the scaling function p is unknown, we
test robustness over differences in this arbitrarily chosen
parameter (1 # p # 5).

Defining the Set of Possible Codes

The level of error minimization achieved by the
canonical genetic code is found by assessing the position
of its error value (Dcode: eq. 1) relative to those of pos-
sible alternatives: this entails definition of the set of pos-
sible codes. Minimal requirements are that all variants
comprise 64 codons, with assignments divided between
the 20 amino acids and the translation termination sig-
nal. We further retain both the pattern of redundancy
and the position of ‘‘stop’’ codons found in the canon-
ical genetic code. Although redundancy patterns vary in
secondarily derived nonstandard codes, their relevance
to the evolution of the canonical code is unclear. For
example, the precanonical codes probably utilized a
minimal set of tRNAs, usually one per amino acid,
whereas extant code variation has involved further
tRNA diversification (Osawa 1995). Furthermore, it is
plausible that the canonical code reached its present
form through incorporation of novel amino acids via
subdivision and reassignment of synonymous codon
blocks (Dillon 1973; Wong 1975). Under any of these
models, our assumptions represent possible code varia-
tion with good accuracy. More importantly, if our re-
strictions underestimate possible code variation, then

they actually bias our analysis against the adaptive hy-
pothesis: most variation in redundancy (especially in-
dividual codon reassignments) would reduce the re-
markable symmetry of the canonical code, leading to an
increased error value. For example, a code in which in-
dividual codons are randomly reassigned produces a
sample of one million variant codes with a mean error
value (Dmean) between 23% (p 5 1, w 5 1) and 33% (p
5 1, w 5 5) higher than the mean of a sample produced
by our method. Given these considerations, in asking
whether the arrangement of amino acid assignments
within the canonical code is adaptive, retaining the syn-
onymous codon block structure for all variants repre-
sents the best compromise.

Our rules permit 20! ø 2.43 3 1018 different codes
(fig. 1a), which we refer to as the ‘‘unrestricted’’ set.
The incorporation of further restrictions to reflect the
observation that biosynthetically related amino acids are
often assigned codons with the same first base identity
(fig. 1b) produces a ‘‘restricted’’ set of (5!)4 ø 2 3 109

codes (fig. 1c).

Measuring the Optimality of the Natural Genetic Code

Our analysis considers an optimal code as one in
which the arrangement of amino acid assignments to
synonymous codon blocks minimizes the average amino
acid difference resulting from single-nucleotide changes
within all codons. Previous analyses of code structure
have interpreted this criterion, estimating optimality of
the canonical code relative to that of plausible theoret-
ical alternatives in one of two different ways: (1) anal-
yses indicating a highly optimized code have used a
statistical measure of efficiency, generating a sample of
possible codes and calculating the proportion that have
a lower error value than the canonical code (Haig and
Hurst 1991; Ardell 1998; Freeland and Hurst 1998a,
1998b), and (2) those indicating a less optimized code
have used an engineering approach, measuring Dcode rel-
ative to the lowest code error value (Dopt) and the mean
error value (Dmean) of all possible codes (Wong 1980;
DiGiulio 1989, 1994; Goldman 1993; DiGiulio and Me-
dugno 1999):

D 2 Dmean code% optimization 5 3 100%. (4)
D 2 Dmean opt

Identifying Dopt within ‘‘possible code space’’ under any
particular set of assumptions has previously been ap-
proached analytically (Wong 1980; DiGiulio 1989) and
by heuristic computer search algorithms (Goldman
1993; DiGiulio 1994: DiGiulio and Medugno 1999).
The latter outperform the former (DiGiulio 1994), and
the most comprehensive search to date used simulated
annealing (SAN) (Goldman 1993). We use a powerful
alternative known as ‘‘the Great Deluge algorithm’’
(GDA) (Dueck 1992). The GDA outperforms SAN in
classical optimization problems, requiring fewer opera-
tional parameters to locate better optima in less com-
puting time (Dueck 1992). For each point in parameter
space, the GDA procedure was run 100 times, each start-
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FIG. 2.—Estimates of code optimality. a, The proportion of better codes found in a sample of one million random variants drawn from the
‘‘restricted’’ set of codes using PAM matrix data. b, The same analysis repeated using Polar Requirement to measure amino acid similarity. c,
Percentage distance minimization estimates for the ‘‘restricted’’ set of codes using PAM data. d, the same analysis repeated for the ‘‘unrestricted’’
set of codes.

ing from a random code configuration. Optima located
through the GDA were used to calculate percentage dis-
tance minimization estimates (eq. 4) with Dmean calcu-
lated for random samples of one million variant codes.

Results
The Adaptive Code Is No Artifact of Stereochemistry,
Analytical Methodology, or Biosynthetic Restrictions

Our analysis shows that when the canonical code
is tested against a sample of one million random variants
using PAM matrix data to measure amino acid dissim-
ilarity, the code appears to be extremely highly opti-
mized at all transition weightings and modular power
functions. For the unrestricted set of codes, no better
alternatives are found anywhere (data not shown). This
pattern is repeated for the restricted set of possible codes
excepting the least plausible extremes of parameter
space (no transition bias [w 5 1] and at a high-modular-
power mapping function [4 # p # 5]), where three and
five better variants are found, respectively (fig. 2a). Far
from explaining reports of a highly adapted code struc-
ture as an artifact, high-modular-power scaling functions
actually cause the code to appear less adaptive. This
suggests that overall code optimality is not the result of
careful arrangement of a few key outlier amino acids,
but is indeed a reflection of a complex and intricate
adaptive arrangement.

When the analysis is repeated using Polar Require-
ment as a similarity measure, the results are remarkably
similar: once again, no better alternatives are found in
a sample of one million codes drawn from the unre-
stricted set (data not shown), and the only exceptions

for the restricted set of codes are once again found in
the absence of a transition bias (w 5 1) (fig. 2b). It is
noteworthy that where results differ, those based on
PAM matrix data provide consistently higher estimates
of code optimality (by around two orders of magnitude)
than those based on Polar Requirement; the better the
definition of amino acid similarity (in terms of selec-
tion), the better the canonical code appears. These ob-
servations vindicate previous adaptive evidence as a ro-
bust interpretation of code evolution rather than an ar-
tifact of, say, a stereochemically determined code.

The Best of All Possible Codes?

When the error value of the standard code is com-
pared with the lowest error value of any code found in
an extensive search of parameter space, results are
somewhat more variable. Estimates based on PAM data
for the restricted set of codes indicate that the canonical
code achieves between 96% and 100% optimization rel-
ative to the best possible code configuration (fig. 2c). If
our definition of biosynthetic restrictions are a good ap-
proximation of the possible variation from which the
canonical code emerged, then it appears at or very close
to a global optimum for error minimization: the best of
all possible codes.

Previous Reports of a Less Optimized Code are Based
on a Flawed Measurement System

Equivalent calculations based on the unrestricted
set of possible codes are much more variable over pa-
rameter space (fig. 2d), placing code optimality between
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FIG. 3.—Comparison of methods for estimating code optimality: percentage of distance error minimization (‘‘engineering’’) versus propor-
tion of better codes found (‘‘statistical’’). The distribution shown is for a sample of one million codes drawn from the restricted set using PAM
matrix data for a measure of amino acid similarity p 5 1, w 5 5. The comparison remains qualitatively unchanged over parameter space.

76% and 97% relative to the global optimum arrange-
ment of codon assignments. However, where sampling
and percentage distance minimization provide very dif-
ferent estimates (fig. 3), the sampling method is more
biologically relevant: the ‘‘better’’ codes implied by per-
centage error minimization scores are not found within
the random sample simply because they are so rare. Per-
centage error minimization estimates misleadingly mea-
sure code optimality on a simple linear scale; the dis-
tribution of possible error values is approximately
Gaussian rather than uniform. Increasingly fit codes are
increasingly rare. Evolutionary changes within the code
would thus not follow a linear path of successive fitness
increments, but, rather, would approach the global op-
timum asymptotically. This becomes particularly impor-
tant where strong conclusions are drawn from the pre-
cise values produced by this metric under questionable
assumptions (e.g., see DiGiulio and Medugno 1999). Ef-
fectively, such studies rely on the flawed assumption
that a normally distributed variable observed, say, two
standard deviations from the mean is twice as significant
as one observed one standard deviation from the mean.
Quite simply, only the sampling method of estimating
code optimality presents an accurate and robust picture

of the strength of natural selection in determining codon
assignments.

The observed variation in optimization estimates
for the canonical code thus indicates it to be highly op-
timized under any set of assumptions, but ‘‘the best of
all possible codes’’ only if biosynthetic restrictions and
a moderate transition bias are assumed.

Naturally Occurring Nonstandard Codes Are Less
Adaptive

The canonical code may be highly adaptive in
terms of error minimization, but what of the secondarily
derived nonstandard codes? The error values of all non-
standard codes are equal to or slightly higher than that
of the canonical code (fig. 4), indicating that none are
more adaptive in this respect. This observation agrees
well with a detailed review of explanations for second-
ary code variation (Osawa 1995). Other factors, includ-
ing codon usage patterns (associated with fluctuations in
genome GC content), genome simplification, and found-
er effects, probably dominate here. This difference can
be understood in terms of the timing of canonical code
evolution relative to secondary code divergence. Extant
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FIG. 4.—A comparison of code error values, D, for the canonical genetic code (black circle), the nine mitchondrial nonstandard codes
(white circles), and the four nuclear nonstandard codes, as recorded in GenBank (Elzanowski and Ostell 1996). C 5 canonical code; 1 5
vertebrate mitochondrial code; 2 5 yeast mitochondrial code; 3 5 mold/protist/coelenterate mitochondrial code; 4 5 invertebrate mitochondrial
code; 5 5 echinoderm mitochondrial code; 6 5 pyrudae (sea squirt) mitochondrial code; 7 5 platyhelminth mitochondrial code; 8 5 chloro-
phycean mitochondrial code; 9 5 trematode mitochondrial code; 10 5 ciliate nuclear code; 11 5 euplotid nuclear code; 12 5 yeast nuclear
code; 13 5 Blepharisma spp. (ciliate) nuclear code.

genomes operate in a remarkably error-free environ-
ment, by combining use of DNA for genetic information
storage with sophisticated protein machinery for repli-
cation, translation, and error checking. This is unlikely
to have been true for primordial organisms in which the
canonical code evolved (Freeland, Knight, and Land-
weber 1999). In particular, new evidence (Logan et al.
1999) supports the hypothesis that the genetic code
emerged in an RNA world before the evolution of DNA
(Reichard 1993). Not only is RNA intrinsically more
error prone, by several orders of magnitude, than DNA
(Lazcano et al. 1988), but where protein enzymes seem
to have replaced ribozyme forerunners (Nagel and Doo-
little 1995; Wetzel 1995), they are likely to have done
so by affording greater catalytic sophistication (Szath-
mary 1999). Our results are consistent with a model for
primordial evolution in which genetic error played a sig-
nificantly greater role in defining the relative fitness of
organisms.

Discussion

Taken together, our results provide strong evidence
that the structure of the canonical code was strongly
influenced by natural selection for error minimization.
Analysis based on PAM matrix values demonstrates not
only that results of previous analyses are unlikely to be
an artifact of stereochemistry, but that if biosynthetic
pathways limited codon assignments, then the code is
very near to (and quite possibly at) a global optimum
for error minimization. While our implementation of
biosynthetic restrictions on possible code evolution may
not be entirely accurate, it is the best available at present
and is representative of general patterns within the code.
Importantly, then, analysis of biosynthetically restricted
codes indicates that code coevolution, far from explain-

ing adaptive code structure as an artifact, actually pre-
cludes the few ‘‘better’’ alternative codon arrangements
found in previous analyses.

The Mechanism of Adaptive Code Evolution

This leads to the question of the evolutionary
mechanisms responsible for an adaptive canonical code.
The many models of precanonical code evolution, re-
viewed extensively elsewhere (Knight, Freeland, and
Landweber 1999), permit two major possibilities: that
an adaptive code was selected from a large pool of var-
iants, or that an adaptive code arose de novo by code
expansion (or simplification) within adaptive, error-min-
imizing constraints. Individual codon reassignments,
necessary for adaptive code shuffling, are certainly pos-
sible, but the question remains unresolved, and two lines
of evidence increasingly favor the latter explanation.

First, the notion of code expansion from a simpler
primordial form, although still lacking in detail, is now
associated with a diverse body of empirical and phylo-
genetic evidence (Knight, Freeland, and Landweber
1999). It seems unlikely that clear patterns of biosyn-
thetic relatedness would be found in a code which had
undergone extensive codon assignment shuffling. Ad-
ditionally, while adaptive code structure is unlikely to
be an artifact of a stereochemically determined code,
empirical evidence suggests that stereochemistry is not
without a role. For example, RNA molecules artificially
selected to bind Arginine contain disproportionately
many CGN/AGR codons (Knight and Landweber 1998).
If all or most amino acids show stereochemical affinities
for their corresponding codons, this would suggest that
natural selection worked in concert with stereochemical
interactions and biosynthetic expansion to produce the
canonical code de novo, ‘‘choosing’’ the current 20 ami-
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no acids as those that satisfied criteria for both stereo-
chemical affinity and error minimization. This interpre-
tation would thus offer a novel insight into the selection
of the proteinaceous amino acids from the near-infinite
possibilities of both prebiotic syntheses and biosynthetic
modification.

Conclusions

We have presented comprehensive evidence that
the standard genetic code is a product of natural selec-
tion to minimize the phenotypic impact of genetic error;
the arrangement of codon assignments meets, to an ex-
traordinary degree, the predictions of the adaptive hy-
pothesis and cannot be explained as an artifact of ste-
reochemistry, biosynthetically mediated code expansion,
or analytical methodology. However, the process by
which an adaptive code evolved at present remains un-
clear, and yet its resolution may be of key importance
to our understanding of the amino acid components uni-
versal to life.
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