
' ~ ' Computer Graphics, Volume 23, Number 3, July 1989

V O X E L SPACE A U T O M A T A :
M O D E L I N G WITH STOCHASTIC G R O W T H

P R O C E S S E S IN V O X E L SPACE

N e d G r e e n e

N Y I T C o m p u t e r G r a p h i c s Lab'~
O l d W e s t b u r y , N e w Y o r k

Abstract

A novel stochastic modeling technique is described which

operates on a voxel data base in which objects are represented

as collections of voxel records. Models are "grown" from

predefined geometric elements according to rules based on

simple relationships like intersection, proximity, and occlusion

which can be evaluated more quickly and easily in voxel space

than with analytic geometry. Growth is probabilistic: multiple

trials are attempted in which an element's position and orienta-
tion are randomly perturbed, and the trial which best fits a set
of rules is selected. The term voxel space automata is intro-
duced to describe growth processes that sense and react to a

voxel environment.

Applications include simulation of plant growth, for which
voxel representation facilitates sensing the environment.
Illumination can be effidently estimated at each plant "node" at
each growth iteration by casting rays into the voxel environ-
ment, allowing accurate simulation of reaction to light includ-

ing heliotropism.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling - Curve, surface, solid and

object representation. 1.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism. 1.6 [Simulation and

Modeling]: Applications.

Additional Keywords and Phrases: Voxel, automata, stochastic

processes, illumination, heliotropism, radiosity

t Author 's current address:
Apple Computer, 20525 Mariani Ave., Cupertino, CA 95014

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1989 ACM-0-89791-312-4/89/007/0175 $00.75

1. Voxel Space

By a voxel space we mean a region of three dimensional space

partitioned into identical cubes (volume elements or vaxels),

typically a region bounded by a rectangular solid so that it can
be represented as an array or oetree of voxel records. Model-

ing and rendering techniques which operate on a voxel space
are the subject of increasingly active research. Various
volume rendering techniques have been developed to visualize

data produced by 3D medical imaging devices and computa-

tional simulation [5], [19], [21]. In the synthesis domain,
voxel spaces have been employed to create surfaces defined by

implicit functions [2], [13], [22].

Alternatively, arbitrary three dimensional shapes can be

represented in voxel space by marking the voxels that they

intersect as "occupied" [11]. This representation is necessarily
approximate, since it only indicates which voxels are inter-
sected by the object, not the object's actual surface. Multiple

objects can be distinguished from each other by assigning each

a unique voxel value, so any collection of non-interseoting

objects can be represented. Although partitioning space into
voxels makes geometric calculations only approximate and puts

a lower limit on the size of objects that can be distinguished,
for many applications these disadvantages are outweighted by
convenience and speed.

Suppose we wish to initialize voxel space with an environment
modeled as a collection of geometric primitives such as lines,
polygons, and polyhedra. The process of identifying and

labeling voxels that are intersected by a primitive object is
referred to as tiling. Kaufman has outlined incremental tech-
niques for tiling various primitives [11], although his criterion
for tiling a voxel is somewhat different than the simple inter-

section criterion employed herein: a voxel is tiled if the cube
representing its extent is intersected. Figure 1 shows voxel

representations of a line and a polygon.

Voxel representation of an environment simplifies geometric

operations such as intersection testing and measuring the

relative proximity of objects. Whether an object intersects
another object already represented in voxel space may be
determined by testing each voxel that it intersects to see if it's

already occupied. This method of sensing intersection is only
approximate in the sense that two non-intersecting objects can

175

:~~SIGGRAPH
intersect the same voxel, in which case intersection will be

falsely detected. But it is faster and more convenient than the
conventional method of intersecting one geometric element
with all other elements in its vicinity using analytic geometry.
The conventional approach can be difficult to implement, par-

ticularly if a model is constructed from different surface types
(polygons, quadric surfaces, patches, etc.). With the voxel

method, riling is the only geometric operation which must be
performed, and testing an element of one surface type against
an element of another surface type only requires the ability to
tile voxel space with each. In addition, performance is
independent of scene complexity and does not depend on the
number of nearby objects.

'89, Boston, 31 July-4 August, 1989

Voxel representation also simplifies determining proximity

relationships. Given a point in space we may identify the
nearest object by scanning voxels in the neighborhood and
comparing distances to occupied voxels encountered. Alterna.
tively, the process may be facilitated by adding "boundary
layers" of voxels to objects in the environment. According to
this scheme, voxels adjacent to voxels which are part of object

N are marked as being in boundary layer 1 of object N, voxels

one additional layer removed from object N are marked as

being in boundary layer 2, and so forth up to some specified
number of boundary layers. If L boundary layers have been
added to all objects, for any point in voxel spaee we may
immediately determine whether it lies within L voxels of an
object, and if so, the identity of the nearest object.

As the discussion will show, voxel representation also facili-
tates ray casting and a variety of other geometric operations.

2. Growth Systems

The computer graphics literature includes a variety of
approaches to simulating plant growth including particle sys-
tems [17],[20], graftals [20], and fractals [14]. Recently,

Prusinkiewicz e ta l . and de Reffye et al. have approached the

problem with empirically based models of plant development,
producing relatively realistic models of actual plant species
[16], [18].

176

Figure I.

An 8x8x8 voxel space with voxel
representations of a polygon and a line

Less attention has been paid to the problem of simulating the

effects of environmental factors on plant development, which
are particularly important in complex environments where
plants interact as they compete for space and light. To faith-
fully mimic a natural growth process which senses and reacts
to the environment, a simulated growth process must sense

and react to the environment. In crude terms, growth is

affected by conditions within the local environment: obstacles
should be avoided, proximity to objects or other organisms
may inhibit or promote growth, and growth is modulated by

available light. At a minimum, simulated growth processes

should be aware of these conditions.

Arvo and Kirk have described growth processes capable of
sensing the environment which they refer to as "environment-

sensitive automata" [1]. Their method performs ray casting to
test for intersection and proximity, and they have applied the
technique to simulate clinging vines and patches of grass which
avoid obstacles. They mention that the method could be

extended to simulate heliotropism (sun seeking) and other
effects. Their sole means of sensing the environment is ray-
object intersection, which limits the type of information that

can be obtained.

This article argues that voxel representation simplifies sensing

of the environment by growth processes. In particular, it is
easier to obtain geometric information by scanning or sam-

pling a voxel environment than by ray casting a conventional
model. From any point in voxel space the size, shape, and

proximity of neighboring objects can be determined by inspect-
ing the records of nearby voxels. Voxel records may include
information about material properties, making it straightfor-

ward to confine growth to appropriate regions of the environ-
ment. A variety of statistics about the local environment such
as "center of mass" and "density" are readily obtained.

Illumination, which depends on the global environment, can be

estimated by sampling with ray casting. In this context, ray

casting means tiling a ray in voxel space; a ray is occluded if it
intersects an occupied voxel. While this means of estimating
illumination isn't as accurate or general as ray tracing, it is suf-

ficlent to estimate exposure to sunlight and "skylight" in an
outdoor scene, and it can be performed very efficiently since it

does not require ray-object intersection or any substantial aria-
lyric geometry. Fujimoto e t a l . discuss incremental methods

for tiling rays in the context of using uniform spatial subdivi-
sion (like a coarse voxel space) to enhance ray tracing perfor-

mance [6] . The efficiency of ray casting in voxel space makes
it feasible to build an illumination table at each active plant

"node" at each iteration, allowing accurate simulation of reac-
tion to light including heliotropism.

A paradigm for growth in voxel space may be outlined as

follows. The initial state of voxel space is specified, either
"empty" or tiled with a three dimensional model of an environ-
ment. Beginning at specified seed points, models are grown
from predefined geometric elements, added one by one to the

model subject to satisfying a set of rules. Typically, rules con-

~ Computer Graphics, Volume 23, Number 3, July 1989

sist of geometric constraints based on simple relationships like

intersection, proximity, and occlusion which are evaluated by

sensing the voxel representation of objects. Growth is proba-

bilistic: multiple trials are attempted in which an element's
position and orientation are randomly perturbed, and the trial
which best fits the rule set (if any trial does) is selected. Vari-
ous methods of propagation can be employed for choosing

possible sites for new growth - tree-structured "random walk,"
"diffusion," etc. Experience has shown that a few simple rules
are suffident to simulate some complex phenomena.

The term voxel space automata will be applied to growth
processes that sense and react to a voxel environment. The
term automata is used informally here, and the approach
presented in this article is only loosely related to the formal

mathematical realm of cellular automata [15]. While both

approaches are rule-based and operate on a matrix of cells,
contrary to the spirit of cellular automata the implementation

presented here is driven by geometry, and voxel representa-
tion functions primarily to simplify geometric operations.
Nevertheless, some of the methods described are formally

developed in the cellular automata literature, for example rules
based on inspection of neighborhoods.

With respect to plant simulation, this paper is primarily con-
cerned with environmental factors - obstacle avoidance, reac-

tion to light, etc. The developmental model employed, a form
of random walk subject to constraints, is not adequate for real-
istic simulation of most plant species. In this sense, the exam-
ples cited are more a detailed illustration of how voxel space
automata work than a serious attempt to simulate plant
growth. The latter objective requires a sophisticated model of
plant development in addition to the ability to sense the
environment, which suggests the possibility of combining the
two in a voxel space automaton.

3. Geometric Operations in Voxel Space

Constraints based on geometric rules such as intersection
avoidance and proximity constraints provide a high level
means of controlling growth. The skeleton of Figure 2

represents a tree-structured "random walk" through voxel
space constrained by intersection avoidance. If growth in one

randomly perturbed direction results in intersection with an

occupied voxel, that trial is rejected and growth in another

direction is attempted. Incidentally, the term "random walk" is

used informally throughout this paper; segment directions are

not chosen at random, but are generated by perturbing the
direction of the last segment according to a parameterized dis-
tribution function.

Since we are generating and evaluating randomly perturbed
trials, this approach to intersection avoidance may be con-

sidered a "Monte Carlo" method [10]. In a sense, the growing
model feels its way through voxel space by sensing the voxel
representation of objects.

Figure 3 illustrates how growth can be controlled with simple

biases and constraints. Panel A shows the initial state of voxel

space in cross-section: a cylindrical column is surrounded by

four boundary layers (records for voxels in this region include

information about proximity to the column). Panel B shows

growth with a slight bias to grow upward, implemented by

interpolating trial segment directions with a vertical vector.

Panel C shows growth with an upward bias and subject to a

proximity constraint (on average, voxels intersected by a seg-

ment must lie within two voxels of the column). Panel D

shows growth with biases to grow upward and helically twist,

subject to a proximity constraint.

Growth rules can be based on any relationship that can be

evaluated by reading voxel records. For a particular applica-

tion, "center of mass" within a certain region or the "density"

of a certain object within a certain radius may be of interest.

The helical bias apparent in Figure 3D was imparted by per-

turbing trial segment directions toward one side of a plane

defined by the last segment and the local "center of mass."

If information about a large region of voxel space is desired,
sampling is an alternative to examining every voxel within the

region. In evaluating relationships like illumination that
depend on the global environment, sampling methods may be

the only feasible approach.

i i i i i i i)) 1 1 i i i i l l l , , , J , , i , , , , , i F
l l l l l l l) l l l l l l l l f l , , , , , , , , i J , , , ,
l l l l l l l l l l l l l l l l l l , l , , , , , J l , , , , ,

Figure 2.

Skeleton generated by tree-structured random

walk through 2D voxel space with intersection

avoidance. Frame at left shows all attempts to
place segments and voxels intersected by success-

fully placed segments. Fan-shaped clusters

represent unsuccessful trials. Skeleton generated

is shown at right.

177

~(~SIGGRAPH
The vine model of Figure 5 illustrates how a complex model

can be produced from a few simple rules. The vines were
grown in 51 iterations in a 165x150x195 voxel space which was

initialized by tiling with a polygonal model of the wail and

ground plane and then adding four boundary layers. Figure 4
lists the growth rules which generated the vines. The proxim-
ity constraint which held vine growth close to the wall has
already been discussed. Illumination rules which confined vine
growth to regions of the wall with substantial exposure to light
are discussed in the following section.

'89, Boston, 31 July-4 August, 1989

4. Determining Available Light for Plant Shnulatlon

Light is one of the most important environmental factors to be
considered in simulating growth of photosynthetic plants. For
typical species, normal development requires illumination
within a certain range, light intensity affects rate of growth,

and shadowing within the local environment may affect direc-

tion of growth. Since different parts of an organism may react
differently to light, and shadowing changes from iteration to
iteration, accurate simulation of reaction to light requires find-
ing illumination at numerous sites on an organism at each
iteration. For example, development of an individual tree

limb is affected by illumination within the locai environment
which changes over time as neighboring limbs develop. On a
smaller scale, development of an individual leaf may depend
on available illumination in its local environment. Ideally, we
would like to be able to estimate illumination at each plant

"node" at each growth iteration. The efficiency of sampling
methods for estimating illumination in voxel space makes this
feasible to do.

In an outdoor scene, "direct" illumination comes from the sky

hemisphere. To estimate exposure to the sky of an arbitrary
point in voxel space we cast rays from the point toward points

on the sky hemisphere. In this context, "casting a ray" means
tiling a ray in voxel space; it is occluded if it intersects an occu-
pied voxel. If we cast 100 rays from a point toward the sky

and 40 of them are occluded, the point's exposure to sky is
0.6. In growth rules, this quantity will be called sky_exposure,
which ranges in value between 0 (complete occlusion) and 1
(complete exposure).

Similarly, to estimate exposure of an arbitrary point to direct
sunlight, rays are cast towards points on a 180 degree arc

representing the sun's trajectory and the fraction of occluded

rays is determined. In growth rules, exposure to the sun's tra-
jectory will be called sun_exposure, which ranges in value
between 0 and 1.

To confine growth of a plant species to regions of the environ-

ment having the appropriate exposure to light we may specify
minimum and maximum values for exposure expressed as a
blend of sun_exposure and sky_exposure. For example, the
illumination constraint from the growth rules for the vines of
Figure 5

light {

blend sun=0.8 sky=0.2
exposure rain=0.3 m a x = l . 0
boost 1.8

}

confines growth to regions of the environment with between

J

\

</
/

F i g u r e 3.

/ /

\
\

i

/

~78 A B C D

~(~ Computer Graphics, Volume 23, Number 3, July 1989

30 and 100 percent of full exposure, and exposure is measured

as an 80%/20% weighted average of sun_exposure and
sky_exposure. The "blend" ratio is a way of specifying the

relative importance of sun_exposure and sky_exposure which
depends on mean climatic conditions (e.g., degree of cloud

cover) and the illumination requirements of a particular
species. In the scene of Figure 5 the sun's trajectory is

inclined at 20 degrees from vertical, "behind" the wall with a
window, so vine growth is confined to the brighter regions of
the wall as expected.

Figures 6A-6F were rendered from the voxel representation of
the scene. Panels A and B, showing sun_exposure and

sky_exposure respectively, were produced by estimating expo-
sure at each occupied voxel by casting rays as previously
described. Note that the image of sun_exposure is not a "sha-
dow matte" corresponding to shadows cast by the sun in a
fixed position, but rather a time exposure indicating average

exposure to direct sunlight in the course of a day. Panel C
shows the region of the environment above the illumination

threshold for the vines, which corresponds nicely with the
actual growth pattern.

Of course growth processes don' t need to know about illumi-
nation in the whole environment; they determine illumination
at spedfie sites in voxel space as needed to evaluate illumlna-

tion constraints. For example, as the vines grew, sunexposure

and sky_exposure were deterniined at one location for each
growing tendril at each iteration, and growth at a particular

tendril stopped whenever illumination fell below the threshold.

The "boost" parameter in the constraint affects rate of growth,
average number of leaves per segment, and leaf size. For
example, a simple linear relationship between exposure and
scale produced leaves having full exposure (1.0) that were 1.8

times the scale of leaves having the minimum exposure (0.3).
Accordingly, leaves are larger and more numerous at the top

of the wall where illumination is high than on the wall's verti-
cal faces. Of course this crude intuitive model for modulating
growth would benefit from empirical study.

Figures 6A and 6B were created to show that the method for
estimating illumination is accurate enough to evaluate illumina-

tion constraints. They also suggest that estimating illumination

in this manner may have application to surface shading. A
detailed discussion of rendering issues is beyond the scope of
this paper, but a few observations are in order.

$. Estimating Diffuse Reflection

Estimating illumination by ray casting on a voxel by voxel

basis as previously described is essentially a radiosity approach

which estimates diffuse reflection [7], and interreflection of
light among objects in the environment can be simulated by
making multiple passes through the voxel data. In producing
Figures 6A and 6B a ray sample was black if the ray was
occluded, otherwise white. On a second pass through the

voxel data, occluded rays can be assigned the gray level of the

intersected voxel (instead of black), improving accuracy, and
subsequent passes further refine the image. The same strategy

can be applied to color rendering if color information is stored
at each voxel. A "first pass" color rendering of the scene

(Panel F) has been simulated by blending a shadow matte
(Panel D) with the image of sky exposure (Panel B) to approxi-
mate overall illumination, and matting an image of surface
color (Panel E) through this image.

Figures 6A-6F were produced with a conventional polygon
renderer by drawing a cube for each occupied voxel in the
scene. Alternatively, colors associated with occupied voxels

can be applied to a polygonal model by dicing each polygon to

the voxel grid and assigning each fragment the color of the
corresponding voxel. Figures 5 and 9A were produced in this
manner.

F igure 4: Growth rules for vines of F igure 5

/* 17 seed locations (at base of walt, inside and outside the courtyard) */

seed 0.50 -0.89 0.56

seed 0.35 -0.89 0.56

seed 0.56 -0.89 -0.60

/* skeleton parameters */

raadom_~ee {

length 2.4/* limb length in "voxel wldr_hs" */

breach_ age_/ange 13/* 1, 2, or 3 iterations before branching (picked at random) */

branch..angle 60/* (degrees) */

vertical_bias .08/* slight bias to grow upward */

no_of~:rials_max 300/* try 300 randomly perturbed trials before giving up *1

no_of~:rials_min 150 P try 150 trials before picking best proximity fit */

seekprox 1.5/* pick tr/al with avg. proximity closest to 1.5 "voxel widths" */

maxprox 3.0/* reject trials with avg. proximity greater than 3.0 "voxel widths" */

}

/* illumination */

ught{

blend sunl0.8 sky-0.2/* blend of sunexposur¢ arid sky_exposure */

~posure rain-0.3 m,ax-l.0/* nodes with less than 30% expo. become inactive */

boost 1.8/* fuU exposure nodes grow 1.8 times faster than 30% exposure nodes */
}

/* leaf element */

dement {

number of_triaLs 30/* attempt placement 30 times before giving up */

expected..frequency 1.5/* try to place 1.5 leaves per branch segment */

model {/* coordinates of 2 polygons in leaf model */

polygon (0,.32,.04),(-.23,.1..3,-.01),(..36,.4.4,-.11),(-.24,.76,-.11),(0,.99,-.06)

polygon (0,.32,.04),(0,.99,-.06),(.28,.76,..1.3),(.41,.45,..13),(.25,.13:.02)
}

}

179

';r~~SIGGRAPH

In making these images, voxel colors were obtained by multi-
plying surface color, shown in Panel E, by sky_exposure, like
Panel B but estimated by casting 100 rays from each occupied
voxel toward randomly selected points on the sky hemisphere.
Using random ray directions overcomes quantization caused by
shooting the same fixed pattern of rays at each voxel
(apparent in Panels A and B) but introduces noise, most evi-
dent in Figure 5 in the salt and pepper texturing of the wall.
Noise can be reduced by using Cook's stochastic sampling
method of picking ray directions at random, but rejecting
directions that are within some small angular displacement of a
previously selected direction to avoid clustering of samples [4].
Of course shooting more rays also reduces noise.

'89, Boston, 31 July-4 August, 1989

If conventional volume rendering techniques are applied,
jagged edges can be avoided by storing an alpha value at each
voxel indicating the fraction of a voxel 's volume that is occu-
pied by intersecting objects. Then ray marching f rom the
eyepoint through voxel space, accumulating opacity along each
ray, would produce images free of aliasing, provided that the
limit on spatial frequencies imposed by the sampling theorem
is observed [5] (actually, this requirement is not met by the
voxel environment of Figure 6).

As presently implemented, ray samples shot from a voxel are
weighted equally without regard to direction, which fails to
simulate Lambert ian reflection as the radiosity model dictates
[7]. Proper simulation of Lambert ian reflection requires esti-
mation of a "surface normal" at each voxel.

Estimating diffuse reflection by ray casting may prove to be
more practical than a conventional radiosity approach for com-
plex scenes. If a voxel environment is represented as a 3D
array, the computational cost of ray casting at a voxel is pro-
port ional to the linear resolution of voxel space and otherwise
independent of scene complexity. 8o, for example, doubling
the x, y, and z resolution of voxel space, which allows

representing an environment of eight times the complexity,
would increase the cost per voxel of estimating diffuse reflec-
tion by a factor of two, and the total cost of estimating diffuse
reflection for the scene by a factor of sixteen. In general, a

K-fold i n u l a s e in complexity increases running t ime by a fac-
tor of K . With octree representat ion of the environment,
complexity characteristics for some environments are consider-
ably better. However, this analysis assumes constant t ime for
voxel access which becomes less feasible as storage require-
ments increase.

With a conventional radiosi ty2approach , estimating illumina-
tion for N patches is an O(N) computation [3~, so a K-fold
increase in scene complexity produces an O(K) increase in
running time.

As is apparent from the preceding discussion, the author 's
experience with this approach to rendering voxel environments
is very limited. Presently, the method should be considered a
curiosity deserving of further study due to its favorable com-
plexity characteristics.

Figure 5.

This image was created by estimating diffuse
reflection at occupied voxels and then dicing the
polygonal model of the scene to the voxel grid,
assigning each f ragment the color of the
corresponding voxel. There are approximately
27,000 polygons in the scene and image genera-
~.ion took roughly 30 hours on a sun4. The color
table is nonlinear, making dark areas appear
brighter.

180

~ Computer Graphics, Volume 23, Number 3, July 1989

6A. sun_exposure 6B. sky_exposure

Il lumination threshold
for vines

6C.
6D. Shadow matte

6E. Surface color

Figure 6.

6F. Simulated "first pass"
color rendering

This environment was represented as a 165x150x195 voxel space, initialized by tiling with a polygonal
model of the wall and groundplane. A growth program produced the configuration of paving tiles in

addition to the vegetation. Images were created with a conventional polygon renderer by drawing a
cube for each occupied voxel in the scene.

181

~(..,~[~SIGG RAPH
6. Simulating Heliotropism

'89, Boston, 31 July-4 August, 1989

Heliotropism (sun seeking) can be simulated by constructing a
latitude-longitude illumination table at each node of a plant

skeleton at each iteration and biasing growth in the direction

of the "brightest spot" in the table. To build a table we cast
rays originating from the node in the directions of the

azimuths and elevations in the table. Obstructed rays are
represented by black table entries, unobstructed rays with

white.

Once a table has been constructed, the direction of the bright-
est spot can be estimated by low-pass filtering the table and
looking for the greatest value. Applying a technique which
has been used to make diffuse illumination tables for environ-
ment mapping, the table can be filtered by convolving with a

Lambert 's law cosine function, a kernel covering one hemi-

sphere of the environment [12],[8].

The process is illustrated in the example of Figure 7 where a
single tendril grows directly toward the brightest spot in the

sky, beginning from a point sheltered from direct sunlight. At
each of five iterations a latitude-longitude illumination table of
the environment is constructed from the "viewpoint" of the

tendril's tip (Column A). This table is matted with a table
representing background illumination (mean brightness of the

sky at latitude-longitude coordinates), shown at bottom left, to
produce the tables of Column B. These tables are then low-

pass filtered to estimate the brightest spot in the sky, marked
with a cross.

sun's trajectory A B

Figure 8.

The efficiency of ray casting in voxel space makes simulation

of heliotropism practical in complex environments. In growth

rules, heliotropism is expressed as a bias, ranging in value

between 0 and 1, 0 meaning none and 1 meaning that growing
limbs point directly toward the brightest spot in the sky as in
the example of Figure 7 (the numerical value applies to simple

linear interpolation of direction vectors).

The two clusters of plants shown in Figure 8 were grown from
identical growth rules, except that the cluster on the right
included a bias for heliotropism which was expressed as fol-
lows:

light {

blend sun=O.O s k y = l . 0

exposure min=0.0 m a x = l . 0
seeksun_bias 0.25

While the plant on the right obviously looks more natural, no
claim is made that heliotropism produces such pronounced
effects in nature. But the example does suggest that this sim-

ple intuitive approach to simulating heliotropism can enhance
realism. As a second example, the growth rules for the
flowering plants of Figure 5 included a similar bias for

heliotropism which accounts for their tendency to grow away
from the wall and toward open space.

t82

Figure 7.

Illustration of heliotropism: tendril sheltered by
cube with one side open grows towards "bright-
est spot" in the sky at each of five iterations,
growing out open side and upward toward apex

of sun's trajectory.

Summarizing the discussion of light, methods have been
presented to confine development of plants to regions of the

environment with suitable illumination, to modulate growth by

available illumination, and to bias growth in the direction of
brightest light. Of course reaction to light is a complex

phenomenon that varies from species to species. Although

rules based on intuitively obvious relationships such as the
ones given in this paper may produce reasonable looking

results, simulation that is true to nature requires rules based
on empirical study. In any case, voxel representation provides
a convenient and efficient way of sensing illumination in the

environment.

' ~ Computer Graphics, Volume 23, Number 3, July 1989

7. Stochastic Detailing of Geometric Models

Thus far, the discussion has focused on simulation. A second
application of voxel space automata, which may be described

as "stochastic detailing," involves producing a detailed model
from a 3D "rough sketch" of underlying geometry. Given a
simple model which has been placed in voxel space by tiling,
we may produce a detailed counterpart by tracking features of

the model and adding predefined geometric elements to the
environment according to rules based on geometric constraints

or other conditions.

Various techniques enhance the method's versatility. Different
growth rules may be applied to different regions of the model
by partitioning the underlying model into discrete regions,
associating a set of growth rules with each region, and then

selecting among rule sets as growth proceeds depending on

which region of the underlying model is in closest proximity.

Regions of an underlying model may also be used to represent
different material properties. In the scene of Figure 5, for

example, paving tiles are one region and the associated rule set
did not permit plant growth.

Another mechanism for switching among rule sets involves
specifying multiple rule sets, and if a "primary" rule set is not
satisfied in a given situation, switching to a "secondary" rule

set, and so forth.

As an illustration of these techniques, the model of Figure 9C

served as a crude template for the model of Figure 9A, shown
without foliage in Figure 9B. A set of growth rules was asso-

ciated with each of several regions of the underlying model,
and in this way the character of different regions of the model

was independently controlled: limbs near the gables were

biased to grow away from the apices of the arches, limbs near
the edge of the roof were biased to grow down a few iterations
and then stop, and so forth.

9A

Figure 9.

Above: Model from "Organic Architecture" [9], ani-

mation of growth in a 300x300x300 voxel space from
the Siggraph '88 Film Show. Panel C shows the crude

model that the growth program tracked and Panel B

shows the model without foliage.

Panel A was produced by applying voxel color assign-
ments to the polygonal model, which consists of
roughly 650,000 polygons. This "first pass" rendering
took about 35 hours on a sun4 (voxel resolution:

180x150x180).

9C

9B

183

~~SIGGRAPH

Pr imary and secondary ru le sets were employed to t rack lines

del ineat ing the "rail ing" in the under ly ing model . To m a k e the

skeleton b ranch w h e r e l ines in the under ly ing mode l f o r k e d

and n o w h e r e else, a p r imary ru le set a t t empted to b r a n c h

everywhere , subject to a proximity const ra in t , succeeding only

in the n e i g h b o r h o o d of a fork . W h e n b ranch ing failed, a

secondary rule set a t t empted to place a single l imb segment

subject to a p roximi ty const ra in t , o f ten succeeding, al lowing

growth to cont inue . This s t ra tegy produced full de l ineat ion of

the rai l ing t racery, as is a p p a r e n t in F igure 9B.

'89, 8oston, 31 July-4 August, 1989

The essential m e t h o d of ru le -based stochastic g rowth in voxel

space is m o r e genera l than the examples p r e sen t ed suggest .

M o d e of p ropaga t ion need no t be a r a n d o m walk; a l te rnat ives

include some f o r m of "dif fus ion" - g iven successful p lacement

of an e lement , new sites for potent ia l g rowth in the ne ighbor -

hood can be chosen according to a d is t r ibut ion funct ion. T h e

conf igura t ion of paving tiles in F igure 5 was p roduced f r o m

three pr imi t ive e lements with this p ropaga t ion mode , subject

to const ra in ts on proximi ty and intersect ion. This M o n t e

Carlo approach to a r rang ing pr imi t ive e lements in close prox-

imity while avoid ing in te rsec t ion may p r o v e to have wide

applicat ion in assembl ing complex models f r o m r a n d o m l y

a r r anged e lements .

8. Conc lus ion

At a rb i t ra ry locat ions in voxel space, the local e n v i r o n m e n t

can be easily and efficiently scanned and the global envi ron-
men t can be easily and efficiently sampled. These p roper t i e s

m a k e voxel r e p r e s e n t a t i o n usefu l for g rowth processes that

sense and react to an e n v i r o n m e n t .

9. Acknowledgements

This paper is the core of a mas te r s thesis submi t t ed to the

Compute r Science D e p a r t m e n t of the C ou r an t Ins t i tu te of

Mathemat ica l Sciences, New York Univers i ty . I would like to

thank Prof . Ken Perl in for acting as my thesis advisor and

mos t of all fo r encourag ing me to en te r the mas te r s p r o g r a m

at Couran t . I would also l ike to t h a n k Mike Gwil l iam who

very generous ly lent his t ime to help with image genera t ion ,

p roduc ing Figures 5 and 9A. Paul H e c k b e r t and Jules

B loomentha l rev iewed the manusc r ip t and o f fe red m a n y help-

ful suggest ions , as did one of the a n o n y m o u s reviewers . Pho-

tographic w o r k by Arie l Shaw,

i0. References

1. Arvo, James, David Kirk, Modeling Plants with Environment-

Sensitive Automata, Proceedings of Ausgraph '88, 27-33.

2 . Bloomenthal, Jules, Polygonization of Implicit Surfaces, Computer

Aided Geometric Design, 5, 4 (Nov. 198~), 34.1-355.

184

3. Cohen, Michael F., Shenchang E. Chert, John A. Wallace, Donald

Greenberg, A Progressive Refinement Approach to Fast Radiosity

Image Generation, Computer Graphics, 22, 4 (Aug. 1988), 75-84.

4 . Cook, Robert L., Stochastic Sampling in Computer Graphics, ACM

Transactions on Graphics, 5, 1 (Jan. 1986), 51-72.

5 . Drebin, Robert A., Lurch Carpenter, Pat Hanrahan, Volume

Rendering, Computer Graphics, 22, 4 (Aug. 1988), 65-74.

6 . Fujimoto, Akira, Tanaka Takayuki, Kansei Iwata, ARTS:

Accelerated Ray-Tracing System, IEEE Computer Graphics and

Applications, 6, 4 (Apr. 1986), 16-26.

7 . Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg,

Modeling the Interaction of Light Between Diffuse Surfaces, Com-

puter Graphics, 18, 3 (July 1984), 119-128.

8. Greene, Ned, Environment Mapping and Other Applications of

World Pro jection s, 1EEE Cutup uter Grap hies and Applications, 6, 11

(Nov. 1986), 210.9.

9 . Greene, Ned, Organic Architecture [videotape], Siggraph Video

Review 38, (Aug. 1988), ACM Siggraph, New York, segment 16.

10 . Hahon, J. H., A Retrospective and Prospective Survey of the

Monte Carlo Method, SIAMRev., 12, 1 (Jan. 1970), 1-63.

11. Kaufman, Arie, 3D Scan Conversion Algorithms for Voxel-Based

Graphics, Proceedings of 1986 Workshop on Interactive 3D Graphics,

(Oct. 1986), 45-75.

12. Miller, Gene S., and C. Robert Hoffman, Illumination and Reflec-

tion Maps: Simulated Objects in Simulated and Real Environ-

ments, SIGGRAPH 84: Advanced Comp uter Animation Seminar Notes,

(July 1984).

13. Norton, Alan, Generation and Display of Geometric Fractals in

3D, Computer Graphics, 16, 3 (July 1982), 61-67

14. Oppenheimer, Peter, Real Time Design and Animation of Fractal

Plants and Trees, Computer Graphics, 20, 4 (Aug. 1986), 56-64.

15 . Preston, Kendall, and J. B. Duff, Modern cellular automata: theory

and applications, Plenum, New York, 1984.

16. Prusinkiewicz, Przemyslaw, Aristid Lindenmayer, James I-Ianan,

Developmental Models of Herbaceous Plants for Computer

Imagery Purposes, Computer Graphics, 22, 4 (Aug. 1988), 141-150.

17. Reeves, William T., Particle Systems - A Technique for Modeling a

Class of Fuzzy Objects, Computer Graphics, 17, 3 (July 1983), 359-

376.

18 . de Reffye, Philippe, Claude Edelin, Jean Francon, Marc Jaeger,

Claude Puech, Plant Models Faithful to Botanical Structure and

Development, Computer Graphics, 22, 4 (Aug. 1988), 151-158.

19. Sabella, Paola, A Rendering Algorithm for Visualizing 3D Scalar

Fields, Computer Graphics, 22, 4 (Aug. 1988), 51-58.

2 0 . Smith, Alvy Ray, Plants, Fractals, and Formal Languages, Com-

puter Graphics, 18, 3 (July 1984), 1-10.

21 . Upson, Craig, Michael Keeler, VBUFFER: Visible Volume
Rendering, Computer Graphics, 22, 4 (Aug. 1988), 59-64.

2 2 . Wyvill, Brian, Craig McPheeters, Geoff Wyvill, Data Structure for
Soft Objects, The Visual Computer, 2, 4 (1986), 227-234.

