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Abstract 

A novel stochastic modeling technique is described which 

operates on a voxel data base in which objects are represented 

as collections of voxel records. Models are "grown" from 

predefined geometric elements according to rules based on 

simple relationships like intersection, proximity, and occlusion 

which can be evaluated more quickly and easily in voxel space 

than with analytic geometry. Growth is probabilistic: multiple 

trials are attempted in which an element's position and orienta- 
tion are randomly perturbed, and the trial which best fits a set 
of rules is selected. The term voxel space automata is intro- 
duced to describe growth processes that sense and react to a 

voxel environment. 

Applications include simulation of plant growth, for which 
voxel representation facilitates sensing the environment. 
Illumination can be effidently estimated at each plant "node" at 
each growth iteration by casting rays into the voxel environ- 
ment, allowing accurate simulation of reaction to light includ- 

ing heliotropism. 
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1. Voxel Space 

By a voxel space we mean a region of three dimensional space 

partitioned into identical cubes (volume elements or vaxels), 

typically a region bounded by a rectangular solid so that it can 
be represented as an array or oetree of voxel records. Model- 

ing and rendering techniques which operate on a voxel space 
are the subject of increasingly active research. Various 
volume rendering techniques have been developed to visualize 

data produced by 3D medical imaging devices and computa- 

tional simulation [5], [19], [21]. In the synthesis domain, 
voxel spaces have been employed to create surfaces defined by 

implicit functions [2], [13], [22]. 

Alternatively, arbitrary three dimensional shapes can be 

represented in voxel space by marking the voxels that they 

intersect as "occupied" [11]. This representation is necessarily 
approximate, since it only indicates which voxels are inter- 
sected by the object, not the object's actual surface. Multiple 

objects can be distinguished from each other by assigning each 

a unique voxel value, so any collection of non-interseoting 

objects can be represented. Although partitioning space into 
voxels makes geometric calculations only approximate and puts 

a lower limit on the size of objects that can be distinguished, 
for many applications these disadvantages are outweighted by 
convenience and speed. 

Suppose we wish to initialize voxel space with an environment 
modeled as a collection of geometric primitives such as lines, 
polygons, and polyhedra. The process of identifying and 

labeling voxels that are intersected by a primitive object is 
referred to as tiling. Kaufman has outlined incremental tech- 
niques for tiling various primitives [11], although his criterion 
for tiling a voxel is somewhat different than the simple inter- 

section criterion employed herein: a voxel is tiled if the cube 
representing its extent is intersected. Figure 1 shows voxel 

representations of a line and a polygon. 

Voxel representation of an environment simplifies geometric 

operations such as intersection testing and measuring the 

relative proximity of objects. Whether an object intersects 
another object already represented in voxel space may be 
determined by testing each voxel that it intersects to see if it's 

already occupied. This method of sensing intersection is only 
approximate in the sense that two non-intersecting objects can 
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intersect the same voxel, in which case intersection will be 

falsely detected. But it is faster and more convenient than the 
conventional method of intersecting one geometric element 
with all other elements in its vicinity using analytic geometry. 
The conventional approach can be difficult to implement, par- 

ticularly if a model is constructed from different surface types 
(polygons, quadric surfaces, patches, etc.). With the voxel 

method, riling is the only geometric operation which must be 
performed, and testing an element of one surface type against 
an element of another surface type only requires the ability to 
tile voxel space with each. In addition, performance is 
independent of scene complexity and does not depend on the 
number of nearby objects. 

'89, Boston, 31 July-4 August, 1989 

Voxel representation also simplifies determining proximity 

relationships. Given a point in space we may identify the 
nearest object by scanning voxels in the neighborhood and 
comparing distances to occupied voxels encountered. Alterna. 
tively, the process may be facilitated by adding "boundary 
layers" of voxels to objects in the environment.  According to 
this scheme, voxels adjacent to voxels which are part of object 

N are marked as being in boundary layer 1 of object N, voxels 

one additional layer removed from object N are marked as 

being in boundary layer 2, and so forth up to some specified 
number of boundary layers. If L boundary layers have been 
added to all objects, for any point in voxel spaee we may 
immediately determine whether it lies within L voxels of an 
object, and if so, the identity of the nearest object. 

As the discussion will show, voxel representation also facili- 
tates ray casting and a variety of other geometric operations. 

2. Growth Systems 

The computer graphics literature includes a variety of 
approaches to simulating plant growth including particle sys- 
tems [17],[20], graftals [20], and fractals [14]. Recently, 

Prusinkiewicz e ta l .  and de Reffye et al. have approached the 

problem with empirically based models of plant development, 
producing relatively realistic models of actual plant species 
[16], [18]. 
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Figure I. 

An 8x8x8 voxel space with voxel 
representations of a polygon and a line 

Less attention has been paid to the problem of simulating the 

effects of environmental factors on plant development, which 
are particularly important in complex environments where 
plants interact as they compete for space and light. To faith- 
fully mimic a natural growth process which senses and reacts 
to the environment, a simulated growth process must sense 

and react to the environment. In crude terms, growth is 

affected by conditions within the local environment: obstacles 
should be avoided, proximity to objects or other organisms 
may inhibit or promote growth, and growth is modulated by 

available light. At a minimum, simulated growth processes 

should be aware of these conditions. 

Arvo and Kirk have described growth processes capable of 
sensing the environment which they refer to as "environment- 

sensitive automata" [1]. Their method performs ray casting to 
test for intersection and proximity, and they have applied the 
technique to simulate clinging vines and patches of grass which 
avoid obstacles. They mention that the method could be 

extended to simulate heliotropism (sun seeking) and other 
effects. Their sole means of sensing the environment  is ray- 
object intersection, which limits the type of information that 

can be obtained. 

This article argues that voxel representation simplifies sensing 

of the environment by growth processes. In particular, it is 
easier to obtain geometric information by scanning or sam- 

pling a voxel environment than by ray casting a conventional 
model. From any point in voxel space the size, shape, and 

proximity of neighboring objects can be determined by inspect- 
ing the records of nearby voxels. Voxel records may include 
information about material properties, making it straightfor- 

ward to confine growth to appropriate regions of the environ- 
ment. A variety of statistics about the local environment such 
as "center of mass" and "density" are readily obtained. 

Illumination, which depends on the global environment,  can be 

estimated by sampling with ray casting. In  this context, ray 

casting means tiling a ray in voxel space; a ray is occluded if it 
intersects an occupied voxel. While this means of estimating 
illumination isn't as accurate or general as ray tracing, it is suf- 

ficlent to estimate exposure to sunlight and "skylight" in an 
outdoor scene, and it can be performed very efficiently since it 

does not require ray-object intersection or any substantial aria- 
lyric geometry. Fujimoto e t a l .  discuss incremental methods 

for tiling rays in the context of using uniform spatial subdivi- 
sion (like a coarse voxel space) to enhance ray tracing perfor- 

mance [6] . The efficiency of ray casting in voxel space makes 
it feasible to build an illumination table at each active plant 

"node" at each iteration, allowing accurate simulation of reac- 
tion to light including heliotropism. 

A paradigm for growth in voxel space may be outlined as 

follows. The initial state of voxel space is specified, either 
"empty" or tiled with a three dimensional model of an environ- 
ment. Beginning at specified seed points, models are grown 
from predefined geometric elements, added one by one to the 

model subject to satisfying a set of rules. Typically, rules con- 



~ Computer Graphics, Volume 23, Number 3, July 1989 

sist of geometric constraints based on simple relationships like 

intersection, proximity, and occlusion which are evaluated by 

sensing the voxel representation of objects. Growth is proba- 

bilistic: multiple trials are attempted in which an element's 
position and orientation are randomly perturbed, and the trial 
which best fits the rule set (if any trial does) is selected. Vari- 
ous methods of propagation can be employed for choosing 

possible sites for new growth - tree-structured "random walk," 
"diffusion," etc. Experience has shown that a few simple rules 
are suffident to simulate some complex phenomena. 

The term voxel space  automata will be applied to growth 
processes that sense and react to a voxel environment. The 
term automata is used informally here, and the approach 
presented in this article is only loosely related to the formal 

mathematical realm of cellular automata [15]. While both 

approaches are rule-based and operate on a matrix of cells, 
contrary to the spirit of cellular automata the implementation 

presented here is driven by geometry, and voxel representa- 
tion functions primarily to simplify geometric operations. 
Nevertheless, some of the methods described are formally 

developed in the cellular automata literature, for example rules 
based on inspection of neighborhoods. 

With respect to plant simulation, this paper is primarily con- 
cerned with environmental factors - obstacle avoidance, reac- 

tion to light, etc. The developmental model employed, a form 
of random walk subject to constraints, is not adequate for real- 
istic simulation of most plant species. In this sense, the exam- 
ples cited are more a detailed illustration of how voxel space 
automata work than a serious attempt to simulate plant 
growth. The latter objective requires a sophisticated model of 
plant development in addition to the ability to sense the 
environment, which suggests the possibility of combining the 
two in a voxel space automaton. 

3. Geometric Operations in Voxel Space 

Constraints based on geometric rules such as intersection 
avoidance and proximity constraints provide a high level 
means of controlling growth. The skeleton of Figure 2 

represents a tree-structured "random walk" through voxel 
space constrained by intersection avoidance. If growth in one 

randomly perturbed direction results in intersection with an 

occupied voxel, that trial is rejected and growth in another 

direction is attempted. Incidentally, the term "random walk" is 

used informally throughout this paper; segment directions are 

not chosen at random, but are generated by perturbing the 
direction of the last segment according to a parameterized dis- 
tribution function. 

Since we are generating and evaluating randomly perturbed 
trials, this approach to intersection avoidance may be con- 

sidered a "Monte Carlo" method [10]. In a sense, the growing 
model feels its way through voxel space by sensing the voxel 
representation of objects. 

Figure 3 illustrates how growth can be controlled with simple 

biases and constraints. Panel A shows the initial state of voxel 

space in cross-section: a cylindrical column is surrounded by 

four boundary layers (records for voxels in this region include 

information about proximity to the column). Panel B shows 

growth with a slight bias to grow upward, implemented by 

interpolating trial segment directions with a vertical vector. 

Panel C shows growth with an upward bias and subject to a 

proximity constraint (on average, voxels intersected by a seg- 

ment must lie within two voxels of the column). Panel D 

shows growth with biases to grow upward and helically twist, 

subject to a proximity constraint. 

Growth rules can be based on any relationship that can be 

evaluated by reading voxel records. For a particular applica- 

tion, "center of mass" within a certain region or the "density" 

of a certain object within a certain radius may be of interest. 

The helical bias apparent in Figure 3D was imparted by per- 

turbing trial segment directions toward one side of a plane 

defined by the last segment and the local "center of mass." 

If information about a large region of voxel space is desired, 
sampling is an alternative to examining every voxel within the 

region. In evaluating relationships like illumination that 
depend on the global environment, sampling methods may be 

the only feasible approach. 
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Figure 2. 

Skeleton generated by tree-structured random 

walk through 2D voxel space with intersection 

avoidance. Frame at left shows all attempts to 
place segments and voxels intersected by success- 

fully placed segments. Fan-shaped clusters 

represent unsuccessful trials. Skeleton generated 

is shown at right. 
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The vine model of Figure 5 illustrates how a complex model 

can be produced from a few simple rules. The vines were 
grown in 51 iterations in a 165x150x195 voxel space which was 

initialized by tiling with a polygonal model of the wail and 

ground plane and then adding four boundary layers. Figure 4 
lists the growth rules which generated the vines. The proxim- 
ity constraint which held vine growth close to the wall has 
already been discussed. Illumination rules which confined vine 
growth to regions of the wall with substantial exposure to light 
are discussed in the following section. 

'89, Boston, 31 July-4 August, 1989 

4. Determining Available Light for Plant Shnulatlon 

Light is one of the most important environmental factors to be 
considered in simulating growth of photosynthetic plants. For 
typical species, normal development requires illumination 
within a certain range, light intensity affects rate of growth, 

and shadowing within the local environment may affect direc- 

tion of growth. Since different parts of an organism may react 
differently to light, and shadowing changes from iteration to 
iteration, accurate simulation of reaction to light requires find- 
ing illumination at numerous sites on an organism at each 
iteration. For example, development of an individual tree 

limb is affected by illumination within the locai environment 
which changes over time as neighboring limbs develop. On a 
smaller scale, development of an individual leaf may depend 
on available illumination in its local environment. Ideally, we 
would like to be able to estimate illumination at each plant 

"node" at each growth iteration. The efficiency of sampling 
methods for estimating illumination in voxel space makes this 
feasible to do. 

In an outdoor scene, "direct" illumination comes from the sky 

hemisphere. To estimate exposure to the sky of an arbitrary 
point in voxel space we cast rays from the point toward points 

on the sky hemisphere. In this context, "casting a ray" means 
tiling a ray in voxel space; it is occluded if it intersects an occu- 
pied voxel. If we cast 100 rays from a point toward the sky 

and 40 of them are occluded, the point's exposure to sky is 
0.6. In growth rules, this quantity will be called sky_exposure, 
which ranges in value between 0 (complete occlusion) and 1 
(complete exposure). 

Similarly, to estimate exposure of an arbitrary point to direct 
sunlight, rays are cast towards points on a 180 degree arc 

representing the sun's trajectory and the fraction of occluded 

rays is determined. In growth rules, exposure to the sun's tra- 
jectory will be called sun_exposure, which ranges in value 
between 0 and 1. 

To confine growth of a plant species to regions of the environ- 

ment having the appropriate exposure to light we may specify 
minimum and maximum values for exposure expressed as a 
blend of sun_exposure and sky_exposure. For example, the 
illumination constraint from the growth rules for the vines of 
Figure 5 

light { 

blend sun=0.8  sky=0.2 
exposure rain=0.3 m a x = l . 0  
boost 1.8 

} 

confines growth to regions of the environment  with between 
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30 and 100 percent of full exposure, and exposure is measured 

as an 80%/20% weighted average of sun_exposure and 
sky_exposure. The "blend" ratio is a way of specifying the 

relative importance of sun_exposure and sky_exposure which 
depends on mean climatic conditions (e.g., degree of cloud 

cover) and the illumination requirements of a particular 
species. In the scene of Figure 5 the sun's trajectory is 

inclined at 20 degrees from vertical, "behind" the wall with a 
window, so vine growth is confined to the brighter regions of 
the wall as expected. 

Figures 6A-6F were rendered from the voxel representation of 
the scene. Panels A and B, showing sun_exposure and 

sky_exposure respectively, were produced by estimating expo- 
sure at each occupied voxel by casting rays as previously 
described. Note that the image of sun_exposure is not a "sha- 
dow matte" corresponding to shadows cast by the sun in a 
fixed position, but rather a time exposure indicating average 

exposure to direct sunlight in the course of a day. Panel C 
shows the region of the environment above the illumination 

threshold for the vines, which corresponds nicely with the 
actual growth pattern. 

Of course growth processes don' t  need to know about illumi- 
nation in the whole environment; they determine illumination 
at spedfie sites in voxel space as needed to evaluate illumlna- 

tion constraints. For example, as the vines grew, sunexposure 

and sky_exposure were deterniined at one location for each 
growing tendril at each iteration, and growth at a particular 

tendril stopped whenever illumination fell below the threshold. 

The "boost" parameter in the constraint affects rate of growth, 
average number of leaves per segment, and leaf size. For 
example, a simple linear relationship between exposure and 
scale produced leaves having full exposure (1.0) that were 1.8 

times the scale of leaves having the minimum exposure (0.3). 
Accordingly, leaves are larger and more numerous at the top 

of the wall where illumination is high than on the wall's verti- 
cal faces. Of course this crude intuitive model for modulating 
growth would benefit from empirical study. 

Figures 6A and 6B were created to show that the method for 
estimating illumination is accurate enough to evaluate illumina- 

tion constraints. They also suggest that estimating illumination 

in this manner may have application to surface shading. A 
detailed discussion of rendering issues is beyond the scope of 
this paper, but a few observations are in order. 

$. Estimating Diffuse Reflection 

Estimating illumination by ray casting on a voxel by voxel 

basis as previously described is essentially a radiosity approach 

which estimates diffuse reflection [7], and interreflection of 
light among objects in the environment can be simulated by 
making multiple passes through the voxel data. In producing 
Figures 6A and 6B a ray sample was black if the ray was 
occluded, otherwise white. On a second pass through the 

voxel data, occluded rays can be assigned the gray level of the 

intersected voxel (instead of black), improving accuracy, and 
subsequent passes further refine the image. The same strategy 

can be applied to color rendering if color information is stored 
at each voxel. A "first pass" color rendering of the scene 

(Panel F) has been simulated by blending a shadow matte 
(Panel D) with the image of sky exposure (Panel B) to approxi- 
mate overall illumination, and matting an image of surface 
color (Panel E) through this image. 

Figures 6A-6F were produced with a conventional polygon 
renderer by drawing a cube for each occupied voxel in the 
scene. Alternatively, colors associated with occupied voxels 

can be applied to a polygonal model by dicing each polygon to 

the voxel grid and assigning each fragment the color of the 
corresponding voxel. Figures 5 and 9A were produced in this 
manner.  

F igure  4: Growth  rules  for  vines of F igure  5 

/* 17 seed locations (at base of walt, inside and outside the courtyard) */ 

seed 0.50 -0.89 0.56 

seed 0.35 -0.89 0.56 

seed 0.56 -0.89 -0.60 

/* skeleton parameters */ 

raadom_~ee { 

length 2.4/* limb length in "voxel wldr_hs" */ 

breach_ age_/ange 13/* 1, 2, or 3 iterations before branching (picked at random) */ 

branch..angle 60/* (degrees) */ 

vertical_bias .08/* slight bias to grow upward */ 

no_of~:rials_max 300/* try 300 randomly perturbed trials before giving up *1 

no_of~:rials_min 150 P try 150 trials before picking best proximity fit */ 

seekprox 1.5/* pick tr/al with avg. proximity closest to 1.5 "voxel widths" */ 

maxprox 3.0/* reject trials with avg. proximity greater than 3.0 "voxel widths" */ 

} 

/* illumination */ 

ught{ 

blend sunl0.8 sky-0.2/* blend of sunexposur¢ arid sky_exposure */ 

~posure rain-0.3 m,ax-l.0/* nodes with less than 30% expo. become inactive */ 

boost 1.8/* fuU exposure nodes grow 1.8 times faster than 30% exposure nodes */ 
} 

/* leaf element */ 

dement { 

number of_triaLs 30/* attempt placement 30 times before giving up */ 

expected..frequency 1.5/* try to place 1.5 leaves per branch segment */ 

model {/* coordinates of 2 polygons in leaf model */ 

polygon (0,.32,.04),(-.23,.1..3,-.01),(..36,.4.4,-.11),(-.24,.76,-.11),(0,.99,-.06) 

polygon (0,.32,.04),(0,.99,-.06),(.28,.76,..1.3),(.41,.45,..13),(.25,.13:.02) 
} 

} 
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In making these images, voxel colors were obtained by multi- 
plying surface color, shown in Panel E, by sky_exposure, like 
Panel B but estimated by casting 100 rays from each occupied 
voxel toward randomly selected points on the sky hemisphere. 
Using random ray directions overcomes quantization caused by 
shooting the same fixed pattern of rays at each voxel 
(apparent in Panels A and B) but introduces noise, most evi- 
dent in Figure 5 in the salt and pepper texturing of the wall. 
Noise can be reduced by using Cook's  stochastic sampling 
method of picking ray directions at random, but rejecting 
directions that are within some small angular displacement of a 
previously selected direction to avoid clustering of samples [4]. 
Of course shooting more  rays also reduces noise. 

'89, Boston, 31 July-4 August, 1989 

If conventional volume rendering techniques are applied, 
jagged edges can be avoided by storing an alpha value at each 
voxel indicating the fraction of a voxel 's volume that is occu- 
pied by intersecting objects. Then ray marching f rom the 
eyepoint through voxel space, accumulating opacity along each 
ray, would produce images free of aliasing, provided that the 
limit on spatial frequencies imposed by the sampling theorem 
is observed [5] (actually, this requirement  is not met by the 
voxel environment of Figure 6). 

As presently implemented,  ray samples shot from a voxel are 
weighted equally without regard  to direction, which fails to 
simulate Lambert ian reflection as the radiosity model  dictates 
[7]. Proper  simulation of Lambert ian reflection requires esti- 
mation of a "surface normal" at each voxel. 

Estimating diffuse reflection by ray casting may prove to be 
more  practical than a conventional radiosity approach for com- 
plex scenes. If a voxel environment is represented as a 3D 
array, the computational cost of ray casting at a voxel is pro- 
port ional  to the linear resolution of voxel space and otherwise 
independent of scene complexity. 8o, for example,  doubling 
the x, y, and z resolution of voxel space, which allows 

representing an environment of eight times the complexity, 
would increase the cost per voxel of estimating diffuse reflec- 
tion by a factor of two, and the total cost of estimating diffuse 
reflection for the scene by a factor of sixteen. In general,  a 

K-fold i n u l a s e  in complexity increases running t ime by a fac- 
tor of K . With octree representat ion of the environment,  
complexity characteristics for some environments are consider- 
ably better. However,  this analysis assumes constant t ime for 
voxel access which becomes less feasible as storage require- 
ments increase. 

With a conventional radiosi ty2approach , estimating illumina- 
tion for N patches is an O(N ) computation [3~, so a K-fold 
increase in scene complexity produces an O(K ) increase in 
running time. 

As is apparent  from the preceding discussion, the author 's  
experience with this approach to rendering voxel environments 
is very limited. Presently,  the method should be considered a 
curiosity deserving of further study due to its favorable com- 
plexity characteristics. 

Figure 5. 

This image was created by estimating diffuse 
reflection at occupied voxels and then dicing the 
polygonal model  of the scene to the voxel grid, 
assigning each f ragment  the color of the 
corresponding voxel. There are approximately 
27,000 polygons in the scene and image genera- 
~.ion took roughly 30 hours on a sun4. The color 
table is nonlinear,  making dark areas appear 
brighter. 
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6A. sun_exposure 6B. sky_exposure 

Il lumination threshold 
for vines 

6C. 
6D. Shadow matte 

6E. Surface color 

Figure 6. 

6F. Simulated "first pass" 
color rendering 

This environment was represented as a 165x150x195 voxel space, initialized by tiling with a polygonal 
model of the wall and groundplane. A growth program produced the configuration of paving tiles in 

addition to the vegetation. Images were created with a conventional polygon renderer by drawing a 
cube for each occupied voxel in the scene. 
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6. Simulating Heliotropism 

'89, Boston, 31 July-4 August, 1989 

Heliotropism (sun seeking) can be simulated by constructing a 
latitude-longitude illumination table at each node of a plant 

skeleton at each iteration and biasing growth in the direction 

of the "brightest spot" in the table. To build a table we cast 
rays originating from the node in the directions of the 

azimuths and elevations in the table. Obstructed rays are 
represented by black table entries, unobstructed rays with 

white. 

Once a table has been constructed, the direction of the bright- 
est spot can be estimated by low-pass filtering the table and 
looking for the greatest value. Applying a technique which 
has been used to make diffuse illumination tables for environ- 
ment mapping, the table can be filtered by convolving with a 

Lambert 's law cosine function, a kernel covering one hemi- 

sphere of the environment  [12],[8]. 

The process is illustrated in the example of Figure 7 where a 
single tendril grows directly toward the brightest spot in the 

sky, beginning from a point sheltered from direct sunlight. At 
each of five iterations a latitude-longitude illumination table of 
the environment is constructed from the "viewpoint" of the 

tendril's tip (Column A). This table is matted with a table 
representing background illumination (mean brightness of the 

sky at latitude-longitude coordinates), shown at bottom left, to 
produce the tables of Column B. These tables are then low- 

pass filtered to estimate the brightest spot in the sky, marked 
with a cross. 

sun's trajectory A B 

Figure 8. 

The efficiency of ray casting in voxel space makes simulation 

of heliotropism practical in complex environments.  In growth 

rules, heliotropism is expressed as a bias, ranging in value 

between 0 and 1, 0 meaning none and 1 meaning that growing 
limbs point directly toward the brightest spot in the sky as in 
the example of Figure 7 (the numerical value applies to simple 

linear interpolation of direction vectors). 

The two clusters of plants shown in Figure 8 were grown from 
identical growth rules, except that the cluster on the right 
included a bias for heliotropism which was expressed as fol- 
lows: 

light { 

blend sun=O.O s k y = l . 0  

exposure min=0.0  m a x = l . 0  
seeksun_bias 0.25 

While the plant on the right obviously looks more natural, no 
claim is made that heliotropism produces such pronounced 
effects in nature. But the example does suggest that this sim- 

ple intuitive approach to simulating heliotropism can enhance 
realism. As a second example, the growth rules for the 
flowering plants of Figure 5 included a similar bias for 

heliotropism which accounts for their tendency to grow away 
from the wall and toward open space. 

t82 

Figure 7. 

Illustration of heliotropism: tendril sheltered by 
cube with one side open grows towards "bright- 
est spot" in the sky at each of five iterations, 
growing out open side and upward toward apex 

of sun's trajectory. 

Summarizing the discussion of light, methods have been 
presented to confine development of plants to regions of the 

environment with suitable illumination, to modulate growth by 

available illumination, and to bias growth in the direction of 
brightest light. Of course reaction to light is a complex 

phenomenon that varies from species to species. Although 

rules based on intuitively obvious relationships such as the 
ones given in this paper may produce reasonable looking 

results, simulation that is true to nature requires rules based 
on empirical study. In any case, voxel representation provides 
a convenient and efficient way of sensing illumination in the 

environment. 
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7. Stochastic Detailing of Geometric Models 

Thus far, the discussion has focused on simulation. A second 
application of voxel space automata, which may be described 

as "stochastic detailing," involves producing a detailed model 
from a 3D "rough sketch" of underlying geometry. Given a 
simple model which has been placed in voxel space by tiling, 
we may produce a detailed counterpart by tracking features of 

the model and adding predefined geometric elements to the 
environment according to rules based on geometric constraints 

or other conditions. 

Various techniques enhance the method's versatility. Different 
growth rules may be applied to different regions of the model 
by partitioning the underlying model into discrete regions, 
associating a set of growth rules with each region, and then 

selecting among rule sets as growth proceeds depending on 

which region of the underlying model is in closest proximity. 

Regions of an underlying model may also be used to represent 
different material properties. In the scene of Figure 5, for 

example, paving tiles are one region and the associated rule set 
did not permit plant growth. 

Another mechanism for switching among rule sets involves 
specifying multiple rule sets, and if a "primary" rule set is not 
satisfied in a given situation, switching to a "secondary" rule 

set, and so forth. 

As an illustration of these techniques, the model of Figure 9C 

served as a crude template for the model of Figure 9A, shown 
without foliage in Figure 9B. A set of growth rules was asso- 

ciated with each of several regions of the underlying model, 
and in this way the character of different regions of the model 

was independently controlled: limbs near the gables were 

biased to grow away from the apices of the arches, limbs near 
the edge of the roof were biased to grow down a few iterations 
and then stop, and so forth. 

9A 

Figure  9. 

Above: Model from "Organic Architecture" [9], ani- 

mation of growth in a 300x300x300 voxel space from 
the Siggraph '88 Film Show. Panel C shows the crude 

model that the growth program tracked and Panel B 

shows the model without foliage. 

Panel A was produced by applying voxel color assign- 
ments to the polygonal model, which consists of 
roughly 650,000 polygons. This "first pass" rendering 
took about 35 hours on a sun4 (voxel resolution: 

180x150x180). 

9C 

9B 
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Pr imary  and secondary  ru le  sets were  employed  to t rack lines 

del ineat ing the  "rail ing" in the  under ly ing  model .  To m a k e  the 

skeleton b ranch  w h e r e  l ines in the  under ly ing  mode l  f o r k e d  

and n o w h e r e  else,  a p r imary  ru le  set a t t empted  to b r a n c h  

everywhere ,  subject  to a proximity  const ra in t ,  succeeding only 

in the  n e i g h b o r h o o d  of a fork .  W h e n  b ranch ing  failed, a 

secondary  rule set a t t empted  to place a single l imb segment  

subject  to a p roximi ty  const ra in t ,  o f ten  succeeding,  al lowing 

growth  to cont inue .  This  s t ra tegy produced  full de l ineat ion of 

the  rai l ing t racery,  as is a p p a r e n t  in F igure  9B. 

'89, 8oston, 31 July-4 August, 1989 

The essential  m e t h o d  of ru le -based  stochastic g rowth  in voxel  

space is m o r e  genera l  than  the  examples  p r e sen t ed  suggest .  

M o d e  of p ropaga t ion  need  no t  be  a r a n d o m  walk;  a l te rnat ives  

include some  f o r m  of "dif fus ion"  - g iven  successful p lacement  

of an e lement ,  new sites for  potent ia l  g rowth  in the  ne ighbor -  

hood  can be  chosen  according to a d is t r ibut ion  funct ion.  T h e  

conf igura t ion  of paving  tiles in F igure  5 was p roduced  f r o m  

three  pr imi t ive  e lements  with  this p ropaga t ion  mode ,  subject  

to const ra in ts  on  proximi ty  and  intersect ion.  This  M o n t e  

Carlo approach  to a r rang ing  pr imi t ive  e lements  in close prox-  

imity while  avoid ing  in te rsec t ion  may  p r o v e  to have  wide 

applicat ion in assembl ing  complex  models  f r o m  r a n d o m l y  

a r r anged  e lements .  

8. Conc lus ion  

At  a rb i t ra ry  locat ions in voxel  space, the  local e n v i r o n m e n t  

can be  easily and  efficiently scanned  and  the  global  envi ron-  
men t  can be  easily and  efficiently sampled.  These  p roper t i e s  

m a k e  voxel  r e p r e s e n t a t i o n  usefu l  for  g rowth  processes  that  

sense and  react  to an e n v i r o n m e n t .  
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