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Figure 1: Water dripping off a bunny’s ear.

Abstract

We present a physically-based method to enforce contact angles at
the intersection of fluid free surfaces and solid objects, allowing us
to simulate a variety of small-scale fluid phenomena including wa-
ter drops on surfaces. The heart of this technique is a virtual surface
method, which modifies the level set distance field representing the
fluid surface in order to maintain an appropriate contact angle. The
surface tension that is calculated on the contact line between the
solid surface and liquid surface can then capture all interfacial ten-
sions, including liquid-solid, liquid-air and solid-air tensions. We
use a simple dynamic contact angle model to select contact angles
according to the solid material property, water history, and the fluid
front’s motion. Our algorithm robustly and accurately treats vari-
ous drop shape deformations, and handles both flat and curved solid
surfaces. Our results show that our algorithm is capable of real-
istically simulating several small-scale liquid phenomena such as
beading and flattened drops, stretched and separating drops, sus-
pended drops on curved surfaces, and capillary action.

CR Categories: I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism—Animation;

Keywords: physically based animation, liquid-solid interaction,
contact line/angle, virtual surface, water drop

1 Introduction

Although simulating fluids has been an active research topic in
graphics for a decade, much of the previous research has been
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mainly concerned with the liquid free surface motion. Solid sur-
faces have usually been treated as impermeable boundary condi-
tions and surface tensions between the liquid and a solid are usu-
ally ignored. This is quite reasonable for large-scale liquid simula-
tions. However if one wishes to synthesize small-scale liquid mo-
tions such as water drops flowing on a glass window, surface tension
effects become too strong to be neglected. Our work concentrates
on modeling the capillary solid coupling, with surface tensions ex-
erted by the solid object influencing the liquid motions according
to different physical parameters such as the force of gravity, the
surface tension coefficient, the viscosity coefficient and the affinity
between the liquid and the solid material.

Real fluids that come into contact with a solid object form a char-
acteristic angle with the surface of the object known as the contact
angle [de Gennes 1985]. The contact angle for so-called hydropho-
bic surfaces causes water to bead up, while a hydrophilic surface
allows a drop of water to spread out. We will use the term affinity
to describe the hydrophobicity or hydrophilicity of a surface. The
affinity between water and a surface affects not only the behavior
of a static drop of water, but also greatly influences the motion of a
moving drop. The fluid/solid interaction can also be seen to affect
the behavior of drop merging and splitting and the motion of water
rivulets.

The core of our algorithm is a virtual surface method, which allows
us to simulate small-scale behaviors of fluids with important contact
angle effects. Given a stable contact angle, this method estimates
the appropriate surface tension at the contact line between the solid
surface and liquid surface in a fluid solver. It implicitly constructs
a virtual surface penetrating into the solid surface, replacing the
original liquid-solid surface by the virtual surface, and estimates
surface tension using this newly created surface. Unlike some other
models that are focused on modeling axisymmetric water drops,
this method can handle arbitrary 3D liquid shapes by using implicit
signed distance functions to represent all surfaces. When the solid
surface is sufficiently smooth, our virtual surface method accurately
approximates the true surface tensions.

Water (or any other liquid) is effectively defined here by its vis-
cosity and its surface tension against the air. The dominant factor
distinguishing the water motion for drops of the same size is the
affinity between water and the solid material, as can be quantified
by the stable contact angle between the liquid-air and liquid-surface
interfaces. Here we use a simple dynamic contact angle model for



capillary solid coupling in terms of three contact angles: the reced-
ing contact angle, the wet advancing contact angle and the dry ad-
vancing contact angle. Our results indicate this model is sufficient
for simulating many small-scale fluid motions.

Our fluid solver represents and updates the liquid surface using the
particle level set method. Compared with other approaches such as
molecular particle dynamics or adaptive Lagrangian meshing, the
level set distance function can efficiently simulate a drop’s inter-
nal fluid dynamics and can easily handle drop breakup and coales-
cence. Since the liquid volume only occupies a small portion of
the whole domain in most small-scale liquid simulations, we use
a sparse, piecewise representation of the grid in the fluid solver to
save both computation time and memory.

2 Related Work

The related work that we cover comes from three different areas:
previous methods for synthesizing drop motions in graphics, com-
putational fluid dynamics and its application in liquid simulations,
and research on surface tension in physics.

In graphics, most previous water drop systems provide various
ways to model water drops efficiently but remain incapable of cap-
turing some of the physical drop motions that we observe in the
real world. Dorsey et al. [1996] used a particle system to synthe-
size drops and their effects on weathering appearance textures for
large solid models, assuming that each drop’s deformation is too
small to be noticeable. Kaneda et al. [1993; 1996; 1999] used a
particle system to simulate water drops flowing on a flat surface.
Flowing water drops are modeled in Fournier et al. [1998] by a
mass-spring system with surface tension and volume conservation
constraints. Though the mass-spring system allowed various effi-
cient simulations, it has difficulty handling the drop separating and
merging processes, especially when many drops interact in a large
scene. Yu et al. [1999] successfully modeled static droplet shapes
on flat surfaces using a metaball concept, and Tong et al. [2002]
later presented a volume-preserving approach to model water flows
using metaballs, but neither considered any surface tension effects
on the moving interface. Generally speaking, the above methods do
not consider interaction between the fluid dynamics internal to the
water drops and the surface tension at the liquid interfaces, making
it relatively difficult to simulate a wide range of drop deformation
and motion realistically and accurately.

Computational fluid dynamics has been successfully and practi-
cally applied to simulate fluid animation in graphics since Foster
and Metaxas [1996]. Shortly after that, the stable fluid method was
introduced by Stam [1999], in which the semi-Lagrangian method
is used to handle liquid velocity advection. In a series of papers,
Enright, Fedkiw and Foster [2001; 2002] used the level set method
to evolve liquid surfaces so that more complex liquid motions can
be simulated. They further showed how to combine the level set
method with particles (the so-called particle level set) to reduce vol-
ume loss and increase the surface accuracy. For a large viscosity,
the time step must be extremely small according to the CFL con-
dition when one solves the viscosity term using explicit schemes.
Stam [1999] showed the viscosity term can be solved with larger
time steps using the implicit Euler method, assuming a uniform
viscosity distribution. Recently Losasso et al. [2004] demonstrated
the use of an octree structure for surface evolution instead of a reg-
ular grid so that more surface details can be maintained. Surface
tensions in [Losasso et al. 2004] are used as first order Dirichlet
pressure boundary conditions on air boundary cells by estimating
mean curvatures from the surface’s signed distance function. The

second order pressure boundary condition scheme was presented
in [Enright et al. 2003].

In physics, chemistry and material science, researchers have per-
formed numerous experiments to understand the liquid-solid in-
terfacial tension and developed various simulation techniques for
treating the liquid-solid interactions. Korlie [1997] simulated a
liquid drop on a flat solid surface using quasi-molecular particles.
Feng et al. [2002] studied the drop impact and flattening process
using Lagrangian meshing by the finite element method. Bussman
et al. [1999] developed a volume tracking algorithm for the volume-
of-fluid method, and they successfully simulated single drop splash-
ing and impact on curved shapes in their later work, treating the
contact angle as an immediate boundary condition. Healy [1999]
used the 2D level set method and enforced the contact angle by
modifying the liquid-air surface immediately to simulate an ax-
isymmetric drop impact on a flat surface. Zhao et al. [1998] demon-
strated drop falling and depositing effect using a variational level
set evolution equation obtained by minimizing the surface tension
energy. Sussman et al. [1998] first proposed the virtual surface idea
for flat solid surfaces in 2D and in axisymmetric geometries to con-
strain contact angles. Renardy et al. [2001] later implemented the
same idea for the volume-of-fluid method, and their algorithm was
also limited to flat solid surfaces in 2D. To our knowledge, there
are still no previously published methods to model 3D interfacial
tensions for arbitrarily curved solid surfaces.

3 Algorithm Overview

Before we examine the capillary solid coupling problem, we first
describe our fluid solver and discuss how the virtual surface method
will be incorporated into it. Our fluid solver uses a finite difference
formulation on a rectilinear 3D grid. Fluid velocities are stored at
the faces of the grid cells. The fluid-air interface is represented by
a signed distance field which is moved using the particle level set
technique. The signed distance field φ for the fluid-air interface is
central to our approach because it is this field that is modified to
create the virtual surface.

Like many fluid simulation programs, we split the simulation pro-
cedure into a few main steps. In our case, the first four update the
velocity field while the last step updates the liquid surface using the
velocity field.

External forces such as gravity are first applied to update the veloc-
ity field. We then use the implicit Euler method to solve for viscous
momentum diffusion and the semi-Lagrangian method to calculate
the velocity advection. The final projection step solves a Poisson
equation to make the velocity field divergent free. In this step, we
use the calculated surface tension as the first-order boundary pres-
sure condition at air boundary cell for the Poisson equation. After
updating the velocity field, we extrapolate the velocity field using a
fast algorithm [Enright et al. 2002], we evolve the liquid surface us-
ing the particle level set method with the HJ-WENO scheme [Jiang
and Peng 2000], and we complete the signed distance function by
the fast marching algorithm [Tsitsiklis 1995; Sethian 1996].

The remainder of the paper is organized as follows. We first re-
view the background on surface tension in Section 4. In Section



5 we show how to construct the virtual surface and how to esti-
mate mean curvatures for curved solid surfaces in 3D. After this,
we present a dynamic contact angle model in Section 6 for choos-
ing the contact angle, which can be used to realistically synthesize
various small-scale liquid phenomena. Results and conclusions are
given in Sections 8 and 9.

4 Physical Background

Surface tension (interfacial tension) is an important factor in small-
scale liquid simulations. It is caused by unbalanced molecular
cohesive forces in the interfacial region where two phases meet
(liquid-air, liquid-solid or solid-air). There are two ways to analyze
the surface tension’s influence on the liquid motion. One is to use
the surface tension force imposed onto the liquid surface directly in
the incompressible Navier-Stokes equation (Eq. 1),

ut =−(u ·∇)u+ν∇(∇u)/ρ −∇P/ρ +(F− γκ ·N)/ρ ,
∇ ·u = 0 ,

(1)

where u is the velocity field, ν is the viscosity coefficient, ρ is
the liquid density, κ is the surface mean curvature, N is the liquid
surface normal vector, F is the external force and γ is the surface
tension coefficient. Surface tension can be similarly represented
in terms of the pressure difference across the surface, according to
Laplace’s Law,

∆Psur f = γ ·κ . (2)

where ∆Psur f is the pressure difference across the liquid surface.
Both representations describe surface tension as being linearly de-
pendent with respect to the surface mean curvature κ .
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Figure 2: Contact front in equilibrium

There are three different interfaces upon which surface tensions act
on the contact front where a liquid surface meets a solid object:
liquid-air, liquid-solid, and solid-air. According to Young’s relation
(Fig. 2) [de Gennes 1985], if the contact line at the intersection of
these three interfaces reaches equilibrium with no external forces,
then the surface tensions satisfy

γsa− (γla cosθs + γls) = 0 (3)

where θs(0 < θs < π) is the stable contact angle, and γls, γsa and γ =
γla are interfacial tension coefficients for the liquid-solid, solid-air
and liquid-air surfaces, respectively. Since it is difficult to measure
surface tension directly, the stable contact angle is a common term
used to quantify the affinity between a liquid and solid material.
When θs is small (say, close to zero), the solid surface is said to be
hydrophilic, and the liquid surface tends to spread flat. The solid
surface is called hydrophobic if θs is large, and the liquid tends to
bead up on the surface.

When external body forces act on the fluid, the actual equilibrium
contact angle between the solid surface and liquid surface may
slightly differ from θs. For example, the observed stable contact
angle can be smaller than θs when a drop sits on a table, as the

Symbols Definition
γ The surface tension
κ The mean curvature ∇(∇φ/|∇φ |)
φ The signed distance function to some surface
Ωs The solid surface
Ωl The liquid surface with φl , or simply φ

Ωla The liquid air surface with φla
Ωls The liquid solid surface with φls
Ωv The virtual surface with φv
Ωnew The new surface with φnew

Table 1: Some commonly used symbols

curvature at the contact line becomes slightly positive to hold the
pressure due to gravity.

The characteristics of the liquid motion depend greatly on the liq-
uid scale. Water moving in a large tank will behave in an entirely
different manner than a water droplet that is flowing on a table. A
number of different dimensionless numbers are commonly used to
characterize the relative scales of different forces. For instance, the
Bond number is defined as the ratio between typical gravitational
and surface tension forces, the Weber number describes the ratio
between inertial and surface tension forces, and the Capillary num-
ber describes the ratio of viscous and surface tension forces. For
our purposes here, it is sufficient to note that the capillary length
of the liquid-air interface for water under gravitational acceleration
is

√
γ/(ρg) ≈ 4mm. At scales orders of magnitude larger than

this, surface tension effects are difficult to discern; but flows on the
scales of a few capillary lengths (centimeters) typically have impor-
tant surface tension and contact angle effects.

5 Virtual Surface Extrapolation

Our virtual surface approach makes use of the signed distance field
φ that represents the liquid-air interface in order to simulate contact
angle effects. The virtual surface can accurately capture the effects
of each surface tension force on the contact line through a series of
steps. The virtual surface is extended into the solid at the desired
stable contact angle that would balance the surface tension forces on
the contact line as in Young’s relation (Eq. 3). If the actual surface
is not at the desired contact angle, the resulting kink has a non-
zero curvature. The appearance of this curvature in the pressure
boundary condition of the projection step yields the desired forces.

Our method modifies the original liquid surface Ωl around each
contact front cell independently so that the curvatures calculated
from the modified surface Ωnew correctly take all interfacial ten-
sions into account. The full liquid surface Ωl is the union of the
liquid-air surface Ωla and liquid-solid surface Ωls, with the full sur-
face defined implicitly in the distance field φ . By modifying φ , we
replace Ωls by a virtual surface Ωv. We then estimate the mean
curvature on this new surface and use the curvature as the surface
tension pressure (Eq. 2). Using original liquid surfaces to estimate
surface tensions directly without the virtual surface method is the
same as using π as the stable contact angle with the virtual surface
method, which would greatly limit the range of phenomena that
could be simulated.

We will now define the virtual surface. Let L(t) be the curved con-
tact line between the solid surface Ωs and the liquid surface Ωl
(Fig. 3). Let Ns(t) be the surface normal of the solid and let Nl(t)
be the liquid surface normal on L(t). The value t is a unit arc length
parameter (|L′(t)|= 1), and t is chosen so that as t increases, the po-
sition L(t) rotates counter-clockwise around the normal Ns(t). By
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Figure 3: The solid surface and liquid air surface

definition, Ns(t) and Nl(t) define a plane that is normal to the con-
tact line L(t). The angle between Ns(t) and Nl(t) defines the contact
angle between Ωs and Ωl . Our virtual surface begins along L(t) and
extends down into the solid at a specific angle dictated by the solid-
fluid affinity. Specifically, the virtual surface V (s, t) is defined to
be

V (s, t) = L(t)+ sR(t) ( f or s > 0) ,
R(t) = −sinθs ·Ns(t)− cosθs · (Ns(t)×L′(t)) . (4)

For a given t0, V (s, t0) is geometrically a ray shot from L(t0) in the
direction R(t0), and it has an angle of π

2 + θs with Ns(t) in L(t)’s
normal plane.

Let us examine the virtual surface in L(t)’s normal plane (Fig. 4a).
If the current angle θc equals the stable contact angle θs, then the
contact line should be stable in the normal plane by definition. This
is justified in the virtual surface method because the curvature κn
in the normal plane is zero when Ns and Nl coincide. When θc is
not equal to θs, using the mean curvature calculated by the virtual
surface method provides a new way to estimate dynamic surface
tensions on the contact line. Fig. 4b shows the receding case ( θc <
θs) and Fig. 4c shows the advancing case (θc > θs).
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(a) Stable front: θc = θs
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(c) Advancing front: θc > θs

Figure 4: The contact front in 2D.

The input φl (or simply φ ) to the virtual surface method is the orig-
inal distance function of the liquid surface Ωl , including Ωla and
Ωls. For open surfaces, such as Ωla and Ωls, we define Ω in a re-
gion if for any point P, its closest point is not on Ω’s boundary. We
then define the full closed liquid surface through φ as the minimum
defined value of φla (the distance to Ωla) and φls (the distance to
Ωls). This signed distance will then be modified to create a new
distance function φnew in which Ωls is replaced by the virtual sur-
face Ωv. All surfaces are represented by signed distance functions
with no explicit formulations here.

In the remainder of this section, we first show how the virtual sur-
face method works on contact front cells (φ = 0) in 2D and 3D for
a flat solid surface. We then describe how the method is naturally
extended to general boundary cells and curved solid surfaces. We
also assume the stable contact angle θs is unique in this section.
In Section 6, we will discuss how to choose the contact angle ac-
cording to different situations, including moving fluid surfaces and
pre-wetted solid surfaces.

5.1 Modifying Surfaces in 2D

In 2D, the contact front is a single point, and the virtual surface is
simply a ray extending from this contact point into the solid. We
create the virtual surface by modifying the distance field values of φ

to accurately reflect the distance between locations inside the solid
and the closest point on the virtual surface. We then merge the
virtual surface with the liquid-air surface, which is obtained from
the original liquid surface.

For a given contact point, we locally modify the liquid surface in a
small stencil of grid cells of φ , and these updated values will later
be used to estimate curvatures. Our first-order curvature estimation
scheme only requires the stencil size to be three nodes in each di-
mension. Our method can be easily extended, however, to handle
larger stencil boxes when higher order curvatures are demanded.

Y=1

Y=0

Y=-1

Liquid

Ωla

Ωs

Ωv

Air

Solid

θc
θs

Figure 5: The 2D stencil box. The empty dots are water nodes, and
the solid dots are air nodes. The Y=0 plane is the solid surface and
the Y direction is the solid surface normal. The solid line is the
liquid-air surface and the dashed line is the virtual surface.

Let C be a 3×3 stencil box centered at the contact front as shown in
Fig. 5. Without loss of generality, we assume the center C0,0 is at the
contact front (φ(0,0) = 0), C−1,0 is in water (φ(−1,0) < 0) and C1,0
is in air (φ(1,0) > 0). In order to compute the new distance func-
tion φnew, the first step is to calculate the virtual surface’s distance
function φv from each node on the Y=0 and Y=-1 planes inside
of the solid. Let ψ be the distance to the contact point from each
node on the Y=0 plane, then by definition we know ψ(0,0) = 0,
ψ(−1,0) =−h and ψ(1,0) = h where h is the node size. For nodes
on the Y=0 plane, φv is:

φv(x,0) =
{

ψ(x,0)sinθs xcosθs > 0
x
|x|h otherwise (5)

For nodes on Y=-1 plane, φv is:

φv(x,−1) =
{

[ψ(x,0)−hcosθs]sinθs xcosθs + sinθs > 0
x
|x| (ψ

2(x,0)+h2)1/2 otherwise
(6)

Given the virtual surface’s distance function φv defined above for all
nodes Y≤ 0, we combine φv with the liquid-air distance function φla
defined for all nodes Y≥ 0 to form a new distance function φnew.
We first determine φnew for Ωnew’s boundary nodes on each side,
then estimate φnew for the rest of the nodes using the fast marching



algorithm from the boundary nodes. For φv’s boundary nodes on the
Y=-1 plane, |φv| is less than h, which means Ωv is definitely closer
than Ωla. Therefore, for those nodes, the virtual surface’s boundary
nodes on the Y=-1 plane are also the new surface’s boundary nodes,
and φnew = φv. Similarly, the liquid surface’s boundary nodes on
the Y=1 plane are also the new surface’s boundary nodes: φnew =
φla = φl , since the liquid-solid surface is beneath the solid surface
Ωs : Y=0. We finally determine the new surface’s boundary nodes
on the Y=0 plane. C0,0 is definitely a boundary node for the new
surface, with φnew = 0 by definition. For other two nodes, if they
are air boundary nodes, we determine their values as:

φnew =
{

φla
φv

=
{

φl |φla|< |φv|
φv otherwise (7)

We can determine the values at air boundary nodes because the
liquid-solid surface is a thin surface beneath the solid plane, so φla
is still equal to φl for air-side nodes. Meanwhile, water boundary
nodes are so close to the liquid-solid surface that their φl may in
fact be equal to φls.

φv and φl can be further used to fix any numerical errors that occur
when estimating the new distances by the fast marching method. If
a node is on the Y=0 or the Y=-1 plane, we bound its value φnew
by φv. If an air node is on the Y=0 or the Y=1 plane, we bound
its value φnew by φl . Again, we do not consider φl for any water
nodes for the same reason described before: φl may not be equal
to φla, but equal to φls. Fig. 6 shows a simulation of 2D capillary
action using the 2D virtual surface method. The small contact angle
causes a column of water to be drawn up into the thin tube. Also
note the bending of the lower water surface.

Figure 6: 2D capillary action. Solid surfaces are all hydrophilic.

5.2 Modifying Surfaces in 3D

Figure 7: Stable drops sitting on the ground with different stable
contact angles θs. Due to gravity, the actual angle between the drop
surface and the ground is slightly smaller than θs.

The virtual surface method in 3D is similar to that in 2D: first cal-
culate the distance function φv to the virtual surface, then merge it
with the liquid-air surface by calculating φnew on the new surface’s
boundary nodes. The stencil box C is now a 3× 3× 3 cube that is
centered on the contact line (φl(0,0,0) = 0), and the Y -axis is the
constant solid normal direction.

The major difference for 3D is that the contact front in 3D is a
curve on the solid surface plane, which causes new difficulty in

determining the virtual surface’s distance function φv. Fortunately
we can show that if the contact line is sufficiently smooth and if
the stable contact angle θs is not extreme (small |cosθs|), this 3D
virtual surface’s shortest distance problem can be reduced to the 2D
φv’s shortest distance problem in L(t)’s normal plane. The solution
to this 2D case has already been given in Eq. 5 and 6. We include
the proof to a supporting claim in the appendix for the interested
reader. According to the 2D solution, it is not necessary to know the
exact position of the closest point L(t0) on L(t). We do, however,
need to know the shortest distance ψ from any node on the Y=0
plane to the contact line L(t). Here we will show how to recover ψ

from the original liquid surface’s distance function φl .

Figure 8: Two possible cases in estimating the distance ψ to the
contact line. The red dot is the contact front.

Let Cx1,0,z1 and Cx2,0,z2 be two neighboring boundary nodes of the
liquid surface such that φl(x1,0,z1) < 0 and φl(x2,0,z2) > 0. Also
let Cx1,1,z1 and Cx2,1,z2 be two nodes above them on the Y=1 plane.
There are two possible cases for estimating ψ according to different
liquid contact fronts (Fig. 8). In the left case, when the current angle
θc > π/2, assuming that the liquid surface is sufficiently smooth,
then ψ(x1,0,z1)

ψ(x2,0,z2) = φl(x1,0,z1)
φl(x2,0,z2) , and therefore,

ψ(x1,0,z1) = φl(x1,0,z1)
|φl(x1,0,z1)−φl(x2,0,z2)|h

ψ(x2,0,z2) = φl(x2,0,z2)
|φl(x1,0,z1)−φl(x2,0,z2)|h

(8)

where h is the node size. In the right case, when θc < π/2, we have
ψ(x1,0,z1) = φl(x2,0,z2)−h and ψ(x2,0,z2) = φl(x2,0,z2). Here
we classify the boundary pair to be the left case if φl(x2,0,z2) >
φl(x2,1,z2); otherwise the right case applies.

For each boundary pair, ψ is calculated as given above. If one node
is included in more than one boundary pair, the distance is chosen
to be the one with the smallest absolute value. After determining
ψ for all boundary nodes, we use the 2D fast marching method to
estimate ψ for the rest of the nodes on the Y=0 plane.

Once we have calculated the virtual surface distance function φv,
we determine the new surface’s boundary nodes in a similar man-
ner to the 2D case. Boundary nodes on the Y=± 1 planes can be
immediately determined by the virtual surface and liquid surface’s
boundary nodes. For air boundary nodes on the Y=0 plane, the
new distance is chosen using Eq. 7. The water boundary nodes are
ignored for the same reason as before. After that, φnew for non-
boundary nodes are estimated using the 3D fast marching method,
and they are further corrected using the known shortest distances to
the virtual surface and to the liquid surface respectively, again sim-
ilar to the 2D case. Fig. 7 shows the shapes of drops with different
stable contact angles.



5.3 Virtual Surfaces on Curved Solid Shapes

So far we have described how to modify the surface near the contact
front so that the surface tension can be estimated on a flat solid
surface. This results in maintaining a characteristic stable contact
angle. We will now discuss contact angles on curved solid surfaces.

For each air boundary cell in a level set grid, surface tension is cal-
culated as the boundary condition for the pressure projection step.
Since those air boundary cells may not be exactly on the contact
front, we cannot apply the virtual surface modification directly. One
straightforward way to resolve this would be to first find the closest
contact point to the air boundary cell, then use the surface tension
estimated at this position as a Dirichlet boundary condition. Unfor-
tunately, it is quite difficult to form a second order or higher bound-
ary condition scheme for those closest points not aligned with grid
cells at all. Further, finding the closest contact point depends heav-
ily on estimating the surface’s signed distance gradient correctly,
which is relatively unstable especially on highly curved surfaces.

Here we use a simple first order boundary condition scheme in our
method. We choose the stencil box to be centered at the air bound-
ary cell and the stencil node size to be the same as the grid cell size.
We determine the stencil box’s coordinate systems by surface nor-
mals: The stencil’s Y axis is the solid normal direction Y = Ns and
the stencil’s X axis is the orthogonalized liquid normal direction
X = Nl − (Ns ·N f )Ns. Then we sample the liquid distance func-
tion for each stencil node using linear interpolation, and subtract
φ(0,0,0) from each stencil node’s distance value. The actual liq-
uid surface represented by the stencil box is the liquid surface’s
iso-contour where the distance equals φl(0,0,0). We modify this
iso-surface represented in the stencil box and estimate the surface
tension for that air boundary cell even if it is not immediately on
the contact front. We then calculate the surface mean curvature for
the center node C0,0,0 in the stencil box by Eq. 9 from [Osher and
Fedkiw 2002]:

κ = (φ 2
x φyy−2φxφyφxy +φ 2

y φxx +φ 2
x φzz−2φxφzφxz +φ 2

z φxx
+φ 2

y φzz−2φyφzφyz +φ 2
z φyy)/|∇φ |3

(9)
where the first and second derivatives of φ are estimated using sec-
ond order finite difference formulae.

Since the stencil’s X direction is the orthogonalized liquid normal
direction and we have φl(0,0,0) = 0, node C0,−1,0 should be inside
of the liquid surface iso-contour. However, this may not be true
in some cases, such as when the liquid normal directions have not
been accurately estimated. In that case, we bound φl(0,−1,0) to be
always less than some maximum value ε = −10−6 so that the vir-
tual surface construction will not fail because of missing the contact
line when no nodes on the Y=0 plane satisfies φl < 0.

Although the distance to the virtual surface that is calculated by this
method is not exact, the value is still a good approximation to the
actual shortest distance, given a sufficiently smooth solid surface or
a small stencil size. Our calculations show that the virtual surface
method can estimate surface tensions robustly and accurately.

6 Dynamic Contact Angle Model

In the real world, a unique stable contact angle is not sufficient to
model fluid drop movements on solid surfaces. For instance, the
phenomenon called contact angle hysteresis [Schwartz and Garoff
1985], where a tiny drop is suspended on a vertical plane, cannot be
modeled with a single stable contact angle. This phenomenon re-
quires a dynamic contact angle model, and can indeed be captured

using two stable contact angles: a receding (minimum) stable con-
tact angle θ r

s and an advancing (maximum) stable contact angle θ a
s .

Any angle between θ r
s and θ a

s can be a valid stable contact angle
before the contact front starts to move.

Because it is sufficient to capture the effect of hysteresis, we use
a simple dynamic model with two stable contact angles set by the
contact front velocity in the liquid surface’s normal direction. In
the advancing case when the velocity is moving into previously dry
regions, we use the advancing contact angle θ a

s ; otherwise, we use
the receding contact angle θ r

s . If the contact line is static (the ve-
locity is below some threshold), we first calculate both boundary
pressures Pr and Pa using θ r

s and θ a
s , respectively. Since we assume

θ r
s ≤ θ a

s , Pr ≤ Pa and we then choose the actual pressure to be:

P =

 0, i f Pr ·Pa < 0
Pa, i f Pa < 0
Pr, i f Pr > 0

(10)

The actual values of the receding and advancing stable contact an-
gles depend on the properties of both the liquid and the solid. The
contact angles can also depend on the wetness of the solid surface.
If the solid surface has already been wet, liquid remaining on the
surface can help subsequent drops move more freely on the surface.
For such wettable solid surfaces, we maintain a wetting history map
for the grid in order to indicate which regions have already been
wetted. We then use a wetted advancing contact angle θ a

s−w smaller
than the dry advancing contact angle θ a

s−d . We do not discriminate
between the wet and the dry cases for the receding contact angle
since the receding angle moves into a wetted region in both cases.

7 The Sparse Grid Representations

In order to simulate complex drop interactions, the grid domains
that we use can become significantly larger than those in other liq-
uid simulations. A typical grid domain in our experiments can con-
tain 400×400×400 grid cells. Fortunately, the liquid volume only
occupies a small portion of the whole domain space. We use a
sparse grid representation in which the domain is first subdivided
into 8× 8× 8 box regions. If the region contains any liquid or if
it is close to the liquid surface, we activate this region and allocate
memory for it. Otherwise, the region is inactive and no computation
time or memory is used for the region.

8 Applications and Results

Figure 9: The circled drop follows a previous drop’s path.

We have integrated the virtual surface method into our fluid solver
and we have simulated several different small-scale liquid motion



scenarios. Typically each simulation takes 5-8 days to simulate on
one Pentium Xeon 2.8GHZ Workstation. Since the computation
domain space is huge, our simulations are still relatively time con-
suming even though our algorithm works efficiently.

For completeness, we discuss the simulation parameters used for
our simulations. For simplicity, we take constant time steps updat-
ing velocities every 2 ·10−4 second. The fluid in each of our simula-
tions here is taken to be water, as defined by its physical properties:
the surface tension between the liquid-air interface is γ = 73g/s2

(at room temperature) and the viscosity is ν = 0.01cm2/s. We
apply no-slip conditions on the solid surface. The only external
force used here is the acceleration due to gravity g = 980cm/s2.
The typical drop size in our simulation is from 2mm to 6mm. We
use a second order Runge-Kutta scheme to trace particles for both
the semi-Lagrangian method in the velocity advection step and for
the particle level set method. Our Poisson solver uses the pre-
conditioned conjugate gradient method with a modified incomplete
Cholesky decomposition preconditioner. Since the water drop’s ve-
locity varies greatly and the volume loss is severe only on high-
velocity surfaces, in the particle level set method, we choose the
particle number for each grid cell according its velocity magnitude
with a maximum of 32 particles per cell. Using the particle level
set method dramatically reduces volume loss during simulations.

When the grid cell size is not sufficiently small, surface tension es-
timations for small drops are less accurate and may cause instability
in drop motions. Fortunately, surface tensions on small drops can
be ignored since their visual effects are hardly noticeable. In our
experiment, we did not use surface tension if the water drop only
contains 27 grid cells or less.

We have created several animated scenes based on our method of
simulating fluid with interfacial tension. The first simulation con-
siders flat window panes with varying surface properties, showing
how the solid surface property and randomly added drops can influ-
ence the water drop’s flowing paths. In the beginning, water drops
are identically distributed on each pane. The left pane has θ a

s = 90◦
and θ r

s = 60◦. The middle pane is more hydrophilic in the wake
of the falling drop, with θ a

s = 90◦ and θ r
s = 30◦. In addition, we

use a maximum receding surface tension bound to enhance the hys-
teresis effect. The right pane has similar contact angles as the left
pane except that it also uses the wetting history and θ a

s−w = 60◦.
Compared with those on the left pane, the drops on the middle pane
leave longer trails because the receding contact angle is small and
the receding surface tension is limited. On the right pane, the solid
surface becomes wet after water drops flow on it, so that a water
drop is likely to follow the previous drop’s path (Fig. 9). These
three panes’ affinities to water are similar to those of plastic, glass
and marble, respectively.

The second and third simulations show a pipe and a bunny, with
water dripping onto these surfaces from a height of roughly 0.1
meter. The surface of the pipe is represented analytically, and a
distance field is used to represent the bunny. For these solid sur-
faces, θ a

s = 90◦ and θ r
s = 60◦. The tube is tilted at an angle of 10◦

from horizontal. Notice the behavior of drops on the tube’s bottom
and the bunny’s ears. Surface tension holds a drop from leaving
the solid surface until enough water accumulates so that the drop
becomes sufficiently large (Fig. 11 and 12). Often when the drop
leaves the surface, tiny satellite drops are formed when the thin con-
necting strand of water snaps.

The leaf in the fourth simulation is comprised of two planes span-
ning an angle of 120◦, and the leaf axis is tilted at an angle of 15◦.
Fig. 10 shows a sequence of a drop hitting the leaf and merging with
its neighbor. Notice that drops flatten when they first hit the leaf,
but then bead up due to the hydrophobic nature of the leaf. Also

note the manner in which separate water drops flow to the middle
of the leaf and join to form larger and longer rivulets (Fig. 12).

Figure 10: Drop impacts on a leaf. A flattened drop appears in the
upper-right image. Time advances left to right, then top to down.

To generate the rendered images, we construct triangle meshes for
the liquid surface using the marching cubes algorithm. Images were
synthesized using our rendering program based on the physically-
based ray tracer (pbrt) [Pharr and Humphreys 2004]. The en-
vironment maps are high dynamic range images from Paul De-
bevec’s Light Probe Image Gallery. The leaf texture image is from
Mayang’s free texture library (http://www.mayang.com/textures).

9 Conclusion and Future Work

In this paper, we have presented an algorithm to solve the capil-
lary solid coupling problem by modeling surface tensions between
the liquid and solid object. The virtual surface method replaces the
liquid-solid surface by a virtual surface beneath the solid surface so
that the estimated boundary pressure can represent all surface ten-
sions on the contact front. We use a dynamic contact angle model
to choose different stable contact angles according to the contact
front’s velocity and surface wetness. Our results show that the al-
gorithm is robust, accurate, and ready to be incorporated into level
set fluid solvers.



Figure 11: Water drops on a pipe.

Figure 12: Drops on a leaf (top) and on a bunny (bottom). These simulations show the formation of long rivulets.

Although we use a sparse grid representation for our simulations,
the memory and the computing times used for simulating small-
scale fluid phenomena are still large. We plan to concentrate much
of our future effort on further reducing these computational costs.
Related to this is the issue of maintaining fine details of the fluid
surface. Since the virtual surface method depends on sampling the
signed distance function represented by the grid cells, the grid do-
main needs to be sufficiently refined in order to keep surface details.
The octree structure [Losasso et al. 2004] might be useful for repre-
senting cells on the contact front. Another possible way to recover
the surface details might be to use the particles from the particle
level set method, possibly by reconstructing a point set surface.
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APPENDIX

CLAIM 1: Given any point P and its closest point L(t0) on L(t),
let V (s0, t0) be a point on Ωv so that P−V (s0, t0) is perpendicular
to R(t). If 1 + scosθs|L′′(t)| > 0 and Ns(t) is constant, V (s0, t0) is
a closest point to P.

PROOF: Let SD(t) and SD(s, t) be squared Euclidean distance
functions from P to L(t) and V (s, t) respectively. L(t0) is the
closest point to P, so: SD′(t0) = −2[P− L(t0)] · L′(t0) = 0 and
SD′′(t0) =−2[P−L(t0)] ·L′′(t0)+2 > 0. Let k(t) be a scalar func-
tion 1+ scosθs|L′′(t)|, we see:

∂V (s, t)/∂ t = L′(t)− scosθs(Ns×L′′(t)) = k(t)L′(t)

k(t) > 0 for all t is satisfied if L(t) is sufficiently smooth (|L′′(t)| is
small) and if |cosθs| is small enough. Geometrically, this means the
virtual surface has no self-intersections so that V (s0, t0) and L(t0)
share the same tangent direction L′(t). For SD(s, t), we get:

∂SD(s0,t0)
∂ s = −2[P−V (s0, t0)] ·R(t0) = 0

∂SD(s0,t0)
∂ t = −2k(t0)[P−V (s0, t0)] ·L′(t0) = 0

∂ 2SD(s0,t0)
∂ s2 = 2|R(t0)|2 > 0

∂ 2SD(s0,t0)
∂ s∂ t = 2k(t0)R(t0) ·L′(t0) = 0

∂ 2SD(s0,t0)
∂ t2 = −2[k(t0)(P−V (s0, t0)) ·L′(t0)]′

= −2k(t0)[(P−V (s0, t0)) ·L′(t0)]′
= k(t0)(SD′′(t0)−2ssinθsNs ·L′′(t0)

−2scosθs((Ns×L′(t0)) ·L′′(t0)−|L′′(t0)|))
= k(t0)SD′′(t0) > 0

since (Ns×L′(t)) ·L′′(t) = |L′′(t)|. So V (s0, t0) is a local minimum
of SD(s, t).

CLAIM 2: If L(t0) is the closest contact point to Cx,0,z, then L(t0)
is also the closest contact point to Cx,−1,z.

PROOF: The node Cx,−1,z’s position is: Cx,−1,z = Cx,0,z − hNs,
where Ns is the Y direction in this case. Let SD0(t) and SD−1(t) be
the squared distances to two nodes respectively, SD−1(t) satisfies:

SD′
−1(t) = SD′

0(t)+hNs ·L′(t0) = 0
SD′′

−1(t) = −2(Cx,−1,z−L(t0)) ·L′′(t0)+2(L′(t0)) ·L′(t0)
= SD′′

0(t0)+2hNs ·L′′(t0) = SD′′
0(t0) > 0

Therefore, L(t0) is also the closest contact point to Cx,−1,z.


