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Abstract

We introduce a method for efficiently animating a wide range of
deformable materials. We combine a high resolution surface mesh
with a tetrahedral finite element simulator that makes use of fre-
quent re-meshing. This combination allows for fast and detailed
simulations of complex elastic and plastic behavior. We signifi-
cantly expand the range of physical parameters that can be simu-
lated with a single technique, and the results are free from common
artifacts such as volume-loss, smoothing, popping, and the absence
of thin features like strands and sheets. Our decision to couple a
high resolution surface with low-resolution physics leads to effi-
cient simulation and detailed surface features, and our approach
to creating the tetrahedral mesh leads to an order-of-magnitude
speedup over previous techniques in the time spent re-meshing. We
compute masses, collisions, and surface tension forces on the scale
of the fine mesh, which helps avoid visual artifacts due to the dif-
fering mesh resolutions. The result is a method that can simulate
a large array of different material behaviors with high resolution
features in a short amount of time.

Keywords: Deformable models, viscoelastic behavior, finite el-
ement method, computational fluid dynamics, free-form deforma-
tion, explicit surface.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation.

1 Introduction

Physics-based animation is responsible for many impressively real-
istic special effects. In recent years, the quality of these effects has
greatly improved due to the increased sophistication of numerical
techniques for physical simulation. Particular attention has been
given to the animation of deformable materials because they are far
too complex to animate by hand. In fact, they are often too complex
to simulate on a computer without making several approximations
and reducing the size of the problem. One of the tasks of computer
graphics researchers is to recognize which types of approximations
we can make without introducing visually disturbing artifacts.

Embedded techniques for animating deformable bodies are popular
because they give the illusion of highly detailed physics with rel-
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Figure 1: A stiff plastic Stanford Bunny is forced through a small
pressing machine that squishes it into several thin sheets. This re-
sult was generated in 30 minutes.

atively simple computations. Unfortunately, the nature of embed-
ded deformations limits the scope of realistic material behaviors to
those that will not significantly alter the original embedding. We
present a technique for removing this obstacle and greatly enhanc-
ing the range of materials that can be simulated with embedded
deformations.

The heart of our method is a finite element method (FEM) for sim-
ulating elasticity and plasticity. We represent the surface of our ob-
ject with a triangle mesh and embed it into the mesh of tetrahedral
elements. Though embedded methods have existed in the literature
for years, no research has combined such a technique with frequent
recomputation of the coarse control mesh. By re-meshing our un-
derlying FEM mesh whenever simulation quality degrades, we re-
move several of the barriers preventing embedded mesh techniques
from simulating highly plastic behavior. In figure 2, we display
a simplified map of the types of materials useful to computer ani-
mators. Materials with limited plasticity, like ceramic and rubber,
can be modeled with existing embedded FEM techniques, but ex-
tremely plastic behaviors like those of water and toothpaste are not
possible due to the fixed topology of the control mesh. In this paper,
we combine an FEM-driven embedded surface mesh with fast and
robust re-meshing, allowing for efficient and stable simulation of
behaviors previously unattainable by embedded mesh techniques.
In addition, the embedded nature of our method preserves signifi-
cantly more surface details than existing methods for animating vis-
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Figure 2: Current FEM methods with an embedded surface mesh
only simulate a limited range of materials because ill-conditioned
basis functions result from large plastic flow. Our method recom-
putes basis functions by re-meshing throughout the simulation, al-
lowing us to simulate a much greater range of materials.

coelastic flow, and it remains stable when simulating thin features
that have eluded previous techniques. Figure 1 shows an example.

We calculate the continuum mechanics forces on an underlying
FEM mesh, taking advantage of our knowledge of the detailed sur-
face whenever possible. We then calculate other forces on the sur-
face mesh, including those from collision resolution and surface
tension. Finally, we couple these forces together to animate the
surface through time. With an embedded surface, we are free to
use a non-conforming FEM mesh. We use the Delaunay tetrahe-
dralization of an un-warped body-centered cubic (BCC) lattice that
we exploit for much faster mesh creation and point location queries.
We sidestep inaccuracies from this low resolution mesh by carefully
computing nodal masses whenever necessary. The main contribu-
tions of this paper are as follows:

Embedded surface mesh: Our combination of an embedded mesh
and a model for large plastic flow with frequent re-meshing pre-
serves surface features while avoiding common visual artifacts such
as popping, smoothing, and volume loss.

Accurate sub-element mass computation: We compute nodal
masses at the resolution of the surface mesh, which is essential for
plausible animation of high-resolution surface details.

Efficient re-meshing: Our remeshing technique is an order of mag-
nitude faster than previous approaches and we reduce the time spent
transferring data between meshes by exploiting mesh structure.

High resolution surface tension: We compute surface tension
forces on the finely-detailed surface mesh and couple them with
the coarser finite element mesh.

Large range of materials: This method efficiently simulates
nearly-rigid bricks, dripping slime, and splashing liquid without the
need to change numerical solvers or simulation techniques.

Resolution of thin features: We can plausibly animate thin sheets
and strands of material without lowering the resolution of the simu-
lation. We have not seen such a combination of detailed results and
fast simulation times elsewhere in the community.

2 Related Work

The computer graphics literature is rich with physical simulation
techniques. Terzopolous et al. [1988a; 1988b; 1989], pioneered the
idea of using deformable models in computer graphics. O’Brien
and Hodgins [1999] used a finite element method to animate elas-
ticity and brittle fracture. Later, they added a limited amount of
plasticity to the model to produce ductile fracture [O’Brien et al.
2002]. Müller et al. [2002] introduced a co-rotational formulation

for stable FEM animation, and Müller and Gross [2004] added plas-
ticity and fracture to the model. Irving et al. [2004] made FEM sim-
ulations more stable by allowing for invertible elements, and Irving
et al. [2007] enforced an incompressibility condition.

One way to present the illusion of a faster, more detailed simulation
is to embed a detailed surface into a coarse control mesh. Seder-
berg and Parry [1986] introduced this idea of free-form deformation
(FFD), and Faloutsos et al. [1997] introduced dynamic FFD for an-
imation. The work of Capell et al. [2002a; 2002b] is closer to ours.
They used a coarse FEM mesh to control a fine surface mesh, which
gives the illusion of a high-resolution elastic simulation. Müller et
al. [2004b] embedded a surface mesh into a finite element simula-
tion to simulate fracture in real time. Molino et al. [2004] applied
FFD to the crack front of a fracture simulation, skirting around the
stability problem that arises with small or poorly-shaped elements.
Sifakis et al. [2007a] improved upon this method by allowing ar-
bitrary cuts within an element. Sifakis et al. [2007b] developed a
method that embedded a high-resolution point-sampled surface in
a coarse finite element mesh. Like us, they performed collision de-
tection and response using the high-resolution surface. However,
they applied forces to the embedded particle directly and updated
the finite element mesh using soft bindings. In our approach, we
apply collision response forces directly to the finite element mesh,
corresponding to their hard bindings.

In addition to embedding a surface into a finite element simulation,
Müller et al. [2005] showed elastic behavior can be driven through
shape matching. Recently, Rivers and James [2007] made this idea
even more efficient, and Botsch et al. [2007] applied this idea to
shape modeling. Galoppo et al. [2006] used deformation textures
to simulate high resolution surface detail with a simplified interior
model. The work of Batty et al. [2007] is similar to ours in that
they simulate complex phenomena on a coarse grid by calculating
sub-grid cell accurate details.

Meshless methods are an interesting alternative to finite elements.
Müller et al. [2004a] applied a meshless method to elastic and plas-
tic simulations, and Pauly et al. [2005] showed that these methods
are excellent for computing crack fronts in fracture simulations.
Keiser et al. [2005] simulated both liquid and solid material with
a meshless method.

Our paper addresses the simulation of elasticity, plasticity, and vis-
cosity. Clavet et al. [2005] produced elastic and plastic behaviors
with a particle simulation. Goktekin et al. [2004] added elasticity
to an Eulerian viscous fluid simulation to produce viscoelastic flu-
ids. Losasso et al. [2006] extended this model by accounting for
rotation of elastic terms. In our simulations, we use the method of
Bargteil et al. [2007], who added large plastic flow to a finite el-
ement simulation by recomputing basis functions as they become
ill-conditioned.

Surface tracking is also relevant to our work. By embedding a tri-
angle mesh into a finite element simulation, we have opted for ex-
plicit surface tracking. Reynolds [1992] used explicit surface track-
ing by embedded a high resolution surface into a complex flow
field. Brochu [2006] implemented a fluid simulation with an ex-
plicit surface driven by a boundary element method, and Jiao [2007]
developed an advection scheme for explicit surfaces. Enright et
al. [2005] combined explicit particles and an implicit level set to
create the particle level set technique, and Bargteil et al. [2006] up-
dated an explicit surface mesh through time using an implicit repre-
sentation. Mullen et al. [2007] developed an advection scheme for
Eulerian fluid that allows them to conserve volume.

Our work also involves generating FEM meshes. The meshing tech-
nique by Alliez et al. [2005] employs iterative optimization to con-
form to a surface mesh. Molino et al. [2003] used a BCC lattice and
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Figure 3: Material parameters for a dropped cube, demonstrating a range of behaviors ranging from rigid to fluid-like. Each image is taken
from a separate animation with different material parameters. µ is stiffness, β is viscosity, PY is yield stress, and ν is flow rate.

a physics-based optimization strategy to enforce mesh conformity.
Recently, Labelle and Shewchuk [2007] also used a BCC lattice and
placed guaranteed bounds on the quality of the resulting finite ele-
ments. Chentanez et al. [2007] use this technique to animate liquid.
We use a BCC lattice as well, but we do not force it to conform to
our surface mesh. The high quality of the shapes of our tetrahedra
allow us to run stable simulations with large time steps. Please see
Shewchuk [2002] for more information on the correlation between
tetrahedral shapes and the accuracy and stability of finite elements.

3 Physical Model

To produce our animations of elastic and plastic phenomena, we use
the elasticity model of Irving et al. [2004] and the plasticity model
of Bargteil et al. [2007]. This plasticity model incorporates creep
and work hardening:

F̂p = (F̂∗)γ , (1)

γ(P, PY , ν, α,K) = min

(
ν(||P|| − PY −Kα)

||P|| , 1

)
(2)

where F̂p is the diagonalized plastic deformation tensor, F̂∗ is the
volume-conserving portion of the diagonalized deformation tensor,
P is the stress tensor, PY is the plastic yield point, ν is the flow
rate, K is a hardening parameter, and α is a scalar representing the
accumulated plastic stress. See Bargteil et al. [2007] and Irving et
al. [2004] for more details.

Following Bargteil et al., we allow for arbitrarily large plastic flow
by re-meshing whenever the finite element basis functions become
ill-conditioned. After creating a new FEM mesh, we copy all old
simulation variables to the new, well-conditioned mesh through in-
terpolation and averaging. Unlike previous work we employ an ex-
plicit surface mesh, avoiding problems such as volume loss and lim-
ited surface detail. We also use a non-conforming tetrahedral FEM
mesh based on a BCC lattice (that is, the boundary of the finite ele-
ment mesh does not precisely align with the material interface). To
advance our simulations forward through time, we use a variable
time step Newmark integrator, as in Bridson et al. [2003].

4 Embedded Surface Mesh

Our method significantly differs from previous work in the treat-
ment of the surface details of an object. Instead of using the bound-
ary of the FEM mesh as the exterior surface of our simulated ma-
terial, we provide a separate explicit mesh for the surface. We use
this surface mesh for rendering as well as for collision dynamics,
but all of the elasticity and plasticity computations come from the
finite element simulation.

For each vertex in the surface mesh, we find the tetrahedral element
that completely encloses it, and we assign the vertex to that tetrahe-
dron. From this point on, we can express the surface vertex position
x as a linear combination of the position of tetrahedral vertices xi
using barycentric coordinates bi:

x = b1x1 + b2x2 + b3x3 + b4x4. (3)

This way, when the finite element calculations distort the parent
tetrahedron, the surface mesh will distort as well. We can also ex-
press the velocity and forces on this surface vertex as a linear com-
bination of the velocities and forces of the parent element’s vertices
using these same barycentric coordinates.

For collisions with objects in the environment, we use a projected-
vertex approach [Irving et al. 2004]. However, instead of computing
collisions with FEM nodes, we compute collisions with respect to
the embedded surface vertices. If a vertex is involved in a collision,
we project the vertex onto the obstacle’s surface by moving the en-
tire element such that the collision is resolved. To do this, we define
distribution weights for each surface vertex:

wi =
bi

b21 + b22 + b23 + b24
, i = 1, 2, 3, 4 (4)

where wi is the distribution weight corresponding to node i of the
parent tetrahedron, and bi is its corresponding barycentric coordi-
nate. Using these distribution weights, we distribute the position
change to each of the nodes of the tetrahedron via the equation
xi = xi + wi∆x. Similarly, we add velocity impulses in the pres-
ence of friction with vi = vi + wi∆v. To avoid competing col-
lisions within an element, we only apply the collision resolution to
the deepest penetrating vertex in each element. For self collisions
and collisions with other deformable bodies, we use the model of
Bridson et al. [2002]. We apply impulses to each surface vertex
using the distribution weights as described above.

In simulations with large plastic flow, sometimes the surface tri-
angles stretch to be distractingly large, or shrink to the point that
they are unnoticeably small. To maintain a quality surface mesh,
we subdivide long edges at the midpoint and bisect the two incident
triangles. We also perform a simple edge collapse operation if any
edge in the mesh is too short. If volume preservation is of utmost
importance, one might decide to implement a more sophisticated
scheme like that of Lindstrom and Turk [1999].

Lastly, our embedded scheme allows several additional optimiza-
tions: because each surface vertex is guaranteed to lie within its
parent element, the tetrahedral FEM mesh doubles as a collection
of bounding volumes that can greatly speed up collision detection.
As the position of a surface vertex is given by the barycentric coor-
dinates within a tetrahedron, there is no need to update the position
of a surface vertex unless it is participating in a collision or we are



Figure 4: A high resolution surface mesh (blue) embedded into
a low resolution adaptive BCC lattice (gold). We show the cross
section of the FEM mesh in the bottom row.

rendering the surface. If there is no collision with the bounding
tetrahedron, there is no need to update any of the surface vertices
within it. This idea is especially useful when there are hundreds of
surface vertices per element, as in figure 4.

5 Re-meshing

We use a tetrahedral mesh constructed from a BCC lattice [Molino
et al. 2003; Labelle and Shewchuk 2007] for our finite element
computations. To create the tetrahedralization, we first voxelize
our surface mesh onto two offset regular cubic grids. Any voxeliza-
tion algorithm will suffice; we chose to scan convert the surface
mesh by sorting triangles by their x- and y- bounding boxes, cast-
ing rays parallel to the z-axis, and counting triangle intersections up
to each grid point. This voxelization method is analogous to poly-
gon rasterization, as noted by Nooruddin and Turk [2003]. During
voxelization, we classify each lattice node as internal or external
with respect to the surface mesh. Finally, we create any BCC tetra-
hedra that touches an internal node or overlaps any geometry in the
surface mesh. For added efficiency, we use graded BCC tetrahedra
on an octree as in Labelle and Shewchuk [2007].

We embed our surface mesh into the volumetric tetrahedral mesh,
so we do not spend any computational effort modifying our BCC
mesh to conform to the surface. Consequently, we do not need
to perform any iso-surface evaluations. We never move any BCC
nodes and we only briefly deal with the surface, yielding a highly
efficient meshing algorithm. As Labelle and Shewchuk [2007]
state, although their technique is already quite fast, the mesh gen-
eration step of their algorithm took 1% of the total time, while the
rest was spent on isosurface evaluation. Based on their timings, us-
ing a nonconforming mesh (as we do) is roughly one hundred times
faster than the state of the art in conformal meshing.

After re-meshing, we transfer FEM simulation data from the old
tetrahedral mesh to the new one. In our simulations, this data con-
sists of a deformation gradient tensor F and a scalar accumulated
stress α stored at each element, and a velocity vector v stored at
each node. To assign data to each element in the new mesh, we
compute the average of the data from each overlapping tetrahedron
in the old mesh, weighted by the amount of overlap in volume. To
transfer node-based data, we first find which tetrahedron in the old

mesh encapsulates the node, then use barycentric interpolation to
find the new data. Boundary nodes present a slight complication—
we do not use a conforming tetrahedral mesh, so some new simu-
lation nodes will lie outside of the old simulation mesh. Barycen-
tric interpolation is not possible here because there is no bounding
tetrahedron. Instead, we find the closest element to the node and
use barycentric extrapolation. Extrapolation is valid in this case
because it preserves the velocity of the embedded surface vertices.
We do not do anything special for new elements that only partially
overlap the old tetrahedral mesh; a weighted average of overlapping
tetrahedra is sufficient for these edge cases.

For the efficient transfer of data between arbitrary meshes, we could
use a kd-tree for point location and a hierarchical system of bound-
ing boxes for tetrahedral-overlap queries. Fortunately, we do not
need to resort to any of these data structures for efficient transfer of
variables after a re-mesh because we can take advantage of the BCC
lattice structure of our new undeformed mesh. We perform point lo-
cation in logarithmic time using a BCC octree (constant time for a
uniform lattice), and we save memory by never allocating any aux-
iliary data structures. We transfer per-node variables by iterating
through each tetrahedron in the old deformed mesh and perform-
ing a fast lookup into the undeformed BCC lattice of the new mesh
to find out which nodes in the new mesh overlap the tetrahedron’s
bounding box. For each node from the new mesh that is inside of
this tetrahedron, we transfer data using barycentric interpolation.
Per-element variable transfer is just as efficient: for each tetrahe-
dron in the old mesh, we can quickly find all new tetrahedra that
overlap its bounding box by taking advantage of the undeformed
lattice structure of the new mesh. We compute the volume of over-
lap between these new tetrahedra and the old one, and use that vol-
ume for the weighted average in the per-element data transfer.

This immense savings in time spent re-meshing might be viewed
as unimportant because we only re-mesh sporadically throughout
the simulation. After all, Bargteil et al. [2007] reported that they
only spent 13% of the simulation time re-meshing. However, re-
meshing is nearly free in our case, so we can afford to re-mesh
quite frequently, allowing us to simulate phenomena with a much
higher flow rate ν in the same amount of time.

6 Exact Mass Computation

We use a lumped mass formulation in our finite element simulation,
as described in O’Brien and Hodgins [1999]. This entails comput-
ing the mass contribution of each element, then distributing that

xcm
xcm

Figure 5: Sub-element mass computation: The blue strip of ma-
terial is clipped to the element, and then masses are distributed to
nodes at the element corners, resulting in a linear density function
represented in beige. Naive lumped mass calculations give a uni-
form density across the element and an incorrect center of mass
xcm (left). Our method computes the correct center of mass and
density distribution (right).



Figure 6: A viscoelastic armadillo drips through a straining device, resulting in several thin strands of slime. Because we compute nodal
masses at sub-element resolution, our method maintains physical plausibility in the presence of these small features. This result was simulated
at 30 seconds per frame

mass to the nodes of the FEM mesh by assigning one quarter of
the element’s mass to each of its nodes. One problem with blindly
applying this strategy to our simulation with an embedded mesh is
that the mass per element no longer accurately reflects the actual
amount of mass we may wish to represent. This is especially prob-
lematic with coarse FEM meshes or thin strands of surface material.
For example, in the left side of figure 5, a thin strip of material only
covers part of the element. By using a naive lumped mass formu-
lation and ignoring the surface mesh, the center of mass actually
exists outside of the material, and the total mass in the element
grossly overestimates the amount of mass occupied by the surface
mesh. This leads to sudden unexpected movements if the center of
mass varies significantly after a tetrahedral re-mesh, and the error
in total mass unphysically injects momentum into the system dur-
ing significant plastic flows. A slightly inaccurate mass and inertial
moment may not be visually disturbing by themselves, but they may
cause noticeable artifacts if we continually recompute inconsistent
physical properties on different FEM meshes through time.

Our goal is to calculate mass distributions per element that accu-
rately reflect the properties of the surface mesh. If we ensure that
they are correct on a per-element level, then the physical properties
of the overall object will be equal before and after a re-mesh event.
Our strategy for computing correct nodal masses is to first compute
the exact mass and center of mass occupied by the material in each
element, then distribute the mass from the exact center of mass of
the material within that element. This will ensure that the mass and
moment of the element match the mass and moment of the material
within it. Interestingly, Batty et al. [2007] used a similar technique
in a much different context to achieve sub-grid accurate coupling in
an Eulerian fluid simulation.

We compute the mass within an element by clipping the surface
mesh to the tetrahedral element, then computing the mass m and
center of mass xcm of the resulting closed polyhedron. Our im-
plementation uses the method by Lien et al. [1984] to compute the
volume V of the clipped surface mesh. We then compensate for the
elastic deformation by dividing by the determinant of the deforma-
tion gradient F.

m =
ρV

|F| (5)

where ρ is the material density. After we have obtained m and
xcm, we compute barycentric coordinates b1,2,3,4 and distribution
weightsw1,2,3,4 for xcm, and distributem to each node of the tetra-
hedron via mi = mi + wim.

Unfortunately, just as poorly-shaped tetrahedral elements can intro-
duce stability problems, so can small nodal masses. The exact nodal
mass computation is ideal for accurate simulations, but proves im-
practical in the presence of thin features, where masses per node
may be near zero. We implemented a minimum node mass mmin

as a tunable simulation parameter. Each time we re-mesh, we com-
pute the exact mass for every FEM node and then clamp any un-
acceptably small mass to mmin. This allows the user to strike a
balance between accuracy and simulation speed. We have found
that overestimations of mass were not noticeable for largely elas-
tic simulations, but large plastic flows leading to thin sheets and
strands required more accurate masses. In our most fluid-like sim-
ulations, we set mmin to be 5% of the mass that would be normally
given to a node surrounded by fully-massive elements.

7 High Resolution Surface Tension

We occasionally wish to compute surface tension forces as well as
elastic and plastic forces. We leverage the work by Brochu [2006]
to compute momentum-conserving surface tension forces on the
high resolution surface. Brochu used triangles as the simulation
primitives, while we use vertices, so we distribute per-triangle
forces by dividing the force equally among the three vertices of
each triangle. The force on a triangle from a neighboring face is a
vector in the plane of the neighbor and normal to the shared edge,
proportional to the edge length and the surface tension coefficient.
So the total surface tension force on each triangle is:

fT =

3∑
i=1

σ(ni × ei) (6)

where σ is the surface tension coefficient, ni is the normal of the
neighboring triangle i and ei is a vector representing the shared
edge between this triangle and this neighbor, with the edge vectors
pointing clockwise around the triangle. The surface tension force
on each vertex is one third of the total force from all surrounding
triangles:

ftension =
1

3

n∑
j=1

fT,j (7)

where j iterates through each of the vertex’s incident triangles.
Once we have a per-vertex surface tension force ftension, we dis-
tribute these forces to the FEM nodes using distribution weights



Figure 7: Surface tension smoothly changes the shape of a rectan-
gular block.

(fi = fi + wiftension). This suffices to produce a plausible surface
tension simulation on the FEM mesh.

These coarse surface tension forces do not change sharp features
within an element. To smooth out local features, we use ex-
plicit Laplacian smoothing with a scale-dependent umbrella opera-
tor [Desbrun et al. 1999]. At each time step, we apply this smooth-
ing and scale it back by a multiple of the surface tension coefficient
and the time step size. We used this technique to generate the ani-
mation in figure 7.

8 Algorithm Overview

Our algorithm is summed up by the pseudo-code in figure 8. The
timestep begins by calculating all of the forces on each FEM node
due to elasticity, plasticity, gravity, and surface tension. Then the
velocities and positions of the nodes are updated via time integra-
tion. If we wish to simulate surface tension, we then apply geomet-
ric smoothing and recompute barycentric coordinates of the surface
vertices. Then we handle collisions and update surface vertices to
account for any changes in position. At the end of the timestep,
we decide whether we should re-mesh. A re-mesh event can be
triggered by ill-conditioned element basis functions or a significant
change in the size or shape of an element. We also force a re-mesh
if geometric smoothing has caused a surface vertex to move signif-
icantly outside of its parent element. The simulations in this paper

Calculate forces (elastic/plastic, gravity,
surface tension)

Integrate FEM nodes
If SurfaceTension
Smooth the surface
Recompute barycentric coordinates

Update surface vertex positions
Collision detection and resolution
Update surface vertex positions
If RemeshNeeded
Subdivide large surface triangles
Collapse short surface edges
Create new FEM mesh
Recompute barycentric coordinates
Transfer variables to new mesh
Re-calculate mass in FEM nodes

Figure 8: Pseudo-code for one timestep

re-meshed if any element tripled its condition number since the last
re-mesh event, or if any barycentric coordinate dropped below -0.2.

Once we have decided to re-mesh, we first operate on the surface
mesh by subdividing large triangles or decimating small ones. Then
we create a new mesh using the procedure in section 5. Finally,
we recompute barycentric coordinates, transfer simulation variables
from the old mesh to the new one, and re-calculate FEM masses.

For the sake of clarity, we did not incorporate any optimizations
into figure 8 (such as delaying surface vertex updates as long as
possible), and we did not discuss special collision treatment during
time integration. For example, our algorithm uses the integrator
of Irving et al. [2004], which interweaves collision handling and
velocity integration.

9 Results

Figure 4 shows a coarse finite element mesh of 20k tetrahedra used
in conjunction with an extremely fine surface mesh of 360k trian-
gles, illustrating how a complex surface works with a nonconformal
FEM mesh. In figure 1, we smashed a 70k triangle bunny model
into a ream of thin material. The total simulation time was 30 min-
utes. We chose this example to show how our method can efficiently
simulate conditions that would push other techniques to their lim-
its. The armadillo in figure 6 started with 8k elements and 71k sur-
face triangles, finished with 11k elements and 113k triangles, and
simulated at 30 seconds per frame. Notice how our method pre-
serves the detailed ridges on the armadillo’s face, legs, and back,
and notice the thin strands of goo as pieces of his legs slowly drip
off. The thinnest strand in the simulation is more than one hundred
times smaller than the FEM resolution. Figure 9 shows a simulation
of two different colored hands colliding with each other. The dis-
tinct meshes stick together but do not merge, illustrating how this
method can be used to animate immiscible fluids. Figure 3 shows
the range of material parameters capable with this technique. By
varying the viscosity, plastic yield, flow rate, and elastic stiffness,
we were able to generate rigid bricks, thick viscous ooze, jiggly
gelatin, gooey jelly, and splashing fluid. On average, each of the
examples in figure 3 took an hour and a half to simulate, while the
most extreme fluid example (figure 3, far right) simulated for about
10 hours. It began with 7.5k elements and 12k triangles, and ended
with 60k elements and over 600k triangles. We used NVIDIA’s
Gelato to render our animations. Ambient occlusion was utilized in
all animations except for figures 4 and 6.

Though we are proud of the quality and speed of our simulations,



our method could greatly benefit from a GPU implementation and a
fully implicit integrator. These additions could speed up some mod-
erately complex examples to real time. We can already run some
coarse examples at interactive rates on our unoptimized research
code. Alternatively, we believe that a professionally-implemented
version of this method could generate detailed production-quality
results in tens of minutes.

10 Discussion

We have presented a method for animating a large range of differ-
ent material parameters with relatively quick simulation times. We
designed our method to handle exceptionally thin features without
becoming unstable. Our system can even address the thin sheet
problem that arises in many fluid simulation techniques. Because
the plasticity model forces our tetrahedra to locally preserve vol-
ume, volume is approximately conserved even for extremely thin
features embedded in the FEM mesh. Figure 3, far right, shows an
example of a low-viscosity fluid that has thin sheets everywhere,
yet 95% of the volume was retained by the end of the simulation.
A grid-based level set method would fail to resolve any of these
features, resulting in an aggressive deletion of material. This small
amount of volume loss is largely due to our nonconservative edge-
collapse operations. Simulations that do not need to collapse small
edges typically retain more than 99% of their volume. If volume
conservation were especially important, we could enforce incom-
pressibility in our elasticity simulation [Irving et al. 2007].

We have found several benefits to using an explicit embedded sur-
face mesh in our simulations. During the simulation of extreme
plastic deformation, we must recompute the FEM mesh often in or-
der to maintain stable basis functions. Without our explicit mesh,
temporal continuity across re-meshing events would pose a prob-
lem: visible surface smoothing and popping can occur when chang-
ing from one conforming FEM mesh to another, which is annoying
at best and catastrophic for collision handling at worst. In contrast,
our embedded surface mesh remains C0 continuous with respect to
time.

Our re-meshing algorithm executes quickly, but it also allows large
simulation time steps. Because the size of the time step is dictated
by the worst element in the mesh [Shewchuk 2002], and because
every element in our mesh starts in the exact same nearly-optimal
shape, we are not limited by a single poorly-shaped tetrahedron.
Of course this changes if we decrease the mass of the nodes for
improved accuracy, but we have presented the idea of a minimum
nodal mass as an intuitive control knob for balancing speed and
physical realism.

The biggest limitation of our system is the lack of changes in topol-
ogy. We can simulate immiscible materials (figure 9), but we can-
not yet simulate several objects merging together. In the future, we
would like to continue the work started by Brochu [2006] in im-
plementing splitting and merging behaviors with an explicit fluid
mesh.

To conclude, our method is efficient and it is capable of simulating
a wide variety of materials. With our embedded surface mesh, we
can add an arbitrary amount of detail and compute high resolution
surface tension forces without increasing FEM resolution. We have
also presented an efficient re-meshing algorithm that yields near-
perfect tetrahedra, priming the simulation for speed. Our method is
also capable of animating surface details like thin sheets and strands
that are impossible with other techniques.

Figure 9: Two gooey hands stick together in mid flight.
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