
Eurographics Symposium on Geometry Processing (2004)
R. Scopigno, D. Zorin, (Editors)

Geometric Texture Synthesis by Example

Pravin Bhat1, Stephen Ingram2, Greg Turk2

1 Microsoft Corporation2 Georgia Institute of Technology

Abstract

Patterns on real-world objects are often due to variations in geometry across the surface. Height fields and other
common parametric methods cannot synthesize many forms of geometric surface texture such as thorns, scales,
and bark. We present an example-based technique for synthesizing a variety of geometric textures on a model’s
surface. The applied textures can be from models specifically created for this purpose, or may be drawn from
user-specified regions of an example model. We extend existing neighborhood-based texture synthesis algorithms
to operate on volumetric models. Similar to image analogies [11], given a training pair of unfiltered and filtered
source models and an unfiltered destination model (all volumetric grids), we synthesize a filtered fourth model that
exhibits the desired geometric texture. The user defines vector fields to specify the direction of texture anisotropy on
the source and destination models. The vector field defines a coordinate frame on the destination object’s surface
that is used to sample the voxel density values in the neighborhood near a given voxel, which then gives a feature
vector that is matched to the neighborhoods in the source model. Destination voxels are visited in an order that is
dictated by the vector field. We show geometric synthesis results on a variety of models using textures such as pits,
grooves, thru-holes and thorns.

1. Introduction

The majority of three-dimensional objects in the world ex-
hibit some form of texture, especially those found in nature.
Examples include the animal surfaces like fur or feathers,
and plant surfaces like needles, thorns or veins. Texture can
be added to an object in two ways, withcolor textureandge-
ometry texture. Color textureis added by setting an object’s
surface colors, andgeometry textureis added by altering an
object’s surface geometry. The method that we present in
this paper creates geometry texture using an example-based
synthesis technique.

We present a method of sampling geometric texture di-
rectly from a model and synthesizing the geometry in three-
dimensional space. This method is inspired primarily by the
aforementioned two-dimensional texture-synthesis methods,
especially [11], and the texture synthesis on surfaces method
described in [22, 26, 27, 28, 21]. These methods compare
pixel neighborhoods between source and target images, per-
forming a closest-match search among a collection of neigh-
borhoods in the input texture. Instead of using 2D images
for texture input, we use volumetric models, building neigh-
borhoods from surrounding voxel values. We have modified
the method of voxel neighborhood construction to be relative

to a voxel’s local three-dimensional coordinate frame rather
than from a globally defined frame. The model’s normal field
and a user-specified vector field define this coordinate frame.

By performing the search based on local voxel neighbor-
hoods, we are less restricted than previous methods of geo-
metric texture synthesis. This is because our geometric tex-
ture is synthesized by matching a voxel-neighborhood with
geometric features in the search space, rather than to neigh-
borhoods of scalar values across a surface.

2. Related Work

Work related to geometric texture synthesis includes pro-
cedural methods, artistic tools, surface editing, planar and
surface-based texture synthesis. We review prior work in
each of these areas in the next four sub-sections.

2.1. Procedural Methods

Procedural methods use functions to define object proper-
ties. The technique of solid texture employs a 3D function
to produce texture properties for each relevant point in 3-
space. This idea was introduced independently by Perlin and
Peachey [17, 18] and defined the solid texture paradigm.
When coupled with bump mapping, a technique that alters

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

Figure 1: Bunny with spikes (left) and pits (right).

surface normals [4], or displacement mapping, which mod-
ifies actual surface geometry [5, 24], many geometric tex-
tures can accurately be synthesized. Perlin and Hoffert later
devised a volumetric technique called Hypertexture [19] that
procedurally alters a volumetric model’s 3D geometry in a
manner analogous to a solid texture. Fleischeret al. use a
procedural approach to distributing geometric features such
as scales and thorns on a 3D surface [8]. Legakiset al. use
rule-based feature creation to place brick and stone patterns
on architectural models [14].

2.2. Artistic Tools and Geometric Surface Editing

Artistic tools are subdivided into the genres of painting and
sculpting. Many methods have been introduced to provide a
user with interactive, manual control over a geometric sur-
face and its properties. Hanrahan and Haeberli [9] presented
an effective method for surface painting that provided an
artist with several painting modes, including a “geometry
painting” mode which involved surface height displacement.

There has been a recent boon of geometric surface sculpt-
ing tools, each with a distinct approach to surface editing.
Biermannet al. introduced direct surface cut and paste op-
erations with real-time interaction on multiresolution sur-
faces [3]. Zwickeret al. [29] created a system for interactive
editing of point-based surfaces, eliminating the need for tes-
sellation of 3D point-sampled geometries. Using level sets,
Musethet al. [15] introduced a series of surface operations
including smoothing, embossing, and cut-and-paste.

2.3. Example-Based Texture Synthesis

Example-based texture synthesis methods use 2D images of
texture as input and synthesize new texture over an area of

arbitrary size. A variety of schemes have been proposed to
solve this problem. Efros and Leung [7] introduced an influ-
ential method of example-based synthesis relying on a non-
parametric sampling of the input texture. In this method, new
pixel values are decided after querying the sample texture
and finding all similar pixel neighborhoods; a pixel value is
then chosen randomly from one of these neighborhoods.

Wei and Levoy introduced a method similar to [7] that
synthesized pixels in raster scan order, and used tree-
structured vector quantization (TSVQ) [25] to accelerate
the neighborhood search. To synthesize so-called “natural-
istic textures,” Ashikhmin [2] modified the Wei and Levoy
method to preserve texture coherence. Instead of searching
the entire space of neighborhoods in the sample image, the
search was restricted to those neighborhoods mapped to the
query neighborhood. Herztmannet al. combined both [25]
and [2] in an algorithm called Image Analogies [11], which
used training data “analogies” to mimic image-processing
techniques like super-resolution and artistic filters. Hertz-
mannet al.applied a similar technique to modifying the style
of line drawings to match a given style [12], and Kalninset
al. applied similar ideas for the creation of stylized lines for
rendering 3D models as line drawings [13].

The method that we propose is a voxel-space extension
of Image Analogies, therefore we provide a more detailed
explanation of this algorithm in section 3.

2.4. Surface-Based Synthesis Methods

All of the texture synthesis methods described in the previ-
ous subsection were designed to produce a patch of texture
in the plane. Mapping a planar region to a model surface
introduces the problems of texture seams, texture stretch,

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

and specifying the texture orientation. Several methods have
been proposed to synthesize textures directly on a model’s
surface. Wei and Levoy extended their synthesis method
onto surfaces by building neighborhoods from a local pa-
rameterization of surface mesh vertices [26]. Ying [27] uses
charts to map a model’s surface to the plane and iterate
over this map. Both [26] and [27] used displacement map-
ping to alter the geometry of a surface. Zhang uses texton
masks to create spatially-varying textures on surfaces [28].
Tong et al. use example-based synthesis to create bidirec-
tional texture functions on surfaces [21]. Soleret al. use a
patch-based approach to perform texture synthesis on sur-
faces [20]. Our technique draws upon ideas from Turk’s sur-
face based synthesis [22]. This method synthesizes colors
on a uniform mesh hierarchy, building pixel neighborhoods
from surrounding mesh vertices. Synthesis is ordered ac-
cording to a sweep distance determined by a user-defined
vector field. The texture results are seamless and they are
oriented according to the specified vector field.

3. Image Analogies Extended to Volumes

Our method of performing geometry synthesis based on
voxel models is an extension of the Image Analogies algo-
rithm [11]. Because this method is central to our own work,
we review their method below. We then describe a na¨ıve gen-
eralization of this approach to 3D, and discuss the limitations
of this method. Section 4 then describes how to overcome
these limitations.

3.1. Review of Image Analogies

Images Analogies is an algorithm that learns analogies in
image space. For example, the method might be given a pho-
tographA and a blurred version of the same photo, calledA0.
The goal of the algorithm is to “learn” the relationship be-
tweenA and A0, and to apply that relationship to another
image. Given a different photoB, the method produces a
blurred version ofB0 based on the analogy withA andA0.
The analogy isB is to B0 asA is to A0. Other analogies that
can be learned include embossing, super-resolution, painting
styles, and pen-and-ink drawing techniques.

Input to the algorithm consists of a target imageB and a
training pair that includes a source imageA and the filtered
version of the source imageA0. Given these inputs, the al-
gorithm creates the filtered version of the target imageB0

such that the filter most resembles the transformation from
A to A0. The algorithm achieves this through constrained tex-
ture synthesis, where imagesA andB serve as a guide to the
textures inA0 that B0 selectively samples from. The learn-
ing in this algorithm is done by searching for similar pixel
neighborhoods in the various images. The algorithm begins
by creating a search space of feature vectors. Each feature
vector consists of a full-square (non-causal) neighborhood
of the given pixel inA and a half-square (causal) neighbor-
hood of the corresponding pixel inA0. Synthesis is carried
out in a raster-scan order, replacing every pixel inB0 with
the pixel inA0 that was found to have the most similar feature
vector. The reason for using a half-square neighborhood for

Figure 2: A cylinder pair without and with grooves (top) are
used to modify a seahorse model to have grooves (bottom).

pixels inA0 andB0 is that the pixels below the current pixel
of B0 have not yet been visited, and therefore they should not
be used in neighborhood matching.

There are several additional issues that should be ad-
dressed to get high quality results for Image Analogies. This
issues include image pyramids, fast search techniques, co-
herence between adjacent pixels, and histogram matching.
For details about these issues, we refer the reader to the orig-
inal Image Analogies paper [11].

3.2. Naı̈ve Volume Analogies

The goal of our work is to produce 3D models instead of
2D images. To this end we work with voxel data, which is
the most straightforward generalization of shape description
when moving from 2D to 3D. We represent the interior of a
3D objects with a voxel density of one, and exterior voxels
are given a density of zero. Voxels close to the object’s sur-
face have densities that may be intermediate between these
extremes. Given this shape representation, the Image Analo-
gies algorithm should be able to learn analogies in volumet-
ric space by making the following changes:

� Voxels play the role of pixels, and voxel neighborhoods
are collections of nearby voxels.

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

Figure 3: Coordinate frames on a model.

� The voxels are visited in order from the top volume slice
to the bottom volume slice, and row by row within each
slice.

� A non-causal neighborhood consists of a cube of voxels
surrounding a given voxel.

� A causal neighborhood is made up of a half-cube of voxels
from the slices above the given voxel, and possibly some
voxels in the same slice as the current voxel.

Our implementation of these modifications shows that the
Image Analogies technique does indeed learn certain kinds
of three dimensional filters (analogies). In our experience,
these filters must be isotropic and must be uniformly ap-
plied across the training pairA andA0. An example of such a
successful 3D dimensional analogy is volumetric blur. This
naı̈ve approach to volumetric analogies fails, however, when
a given filter (such as a surface pattern) has a directional
preference. The principal reason why the adaptation fails for
such filters is because sampling a voxel neighborhood using
the globalXYZaxes assumes that the texture at every voxel
is aligned with the world coordinate system. In reality this is
seldom the case. Most textures on a surface have continually
changing local orientation which may or may not be aligned
with the coordinate axes. In the next section we describe an
approach that handles this important issue.

4. Geometry Synthesis by Example

The key to synthesizing a geometric pattern on a surface is
to recognize that many patterns have a preferential direc-
tion. Examples of such oriented patterns include scales on a
lizard, bark on a tree, and grooves on corrugated cardboard.
To properly place such patterns on an object we must use the
direction of the input surface pattern, and we must also spec-
ify the direction of the pattern on the surface to be modified.
As an example, consider putting grooves on a seahorse. The
input analogy will be a cylinderA and a grooved cylinderA0

(Figure 2, top row). We also need an input modelB for the
seahorse (Figure 2, bottom left). We wish to create a grooved
seahorseB0 (see Figure 2, bottom right). In addition to the
voxels forA, A0 andB, we also need the pattern orientation
(the direction of the grooves) forA0. We specify this orienta-
tion as a vector field within the volumeA. Finally, we specify
the desired orientation of this pattern on the seahorse, which

is another vector field that is defined on the surface of the
seahorse. Both of the vector field are extended throughout
their volumes, and we will discuss this issue in detail later.

Figure 3 shows a vector field on the surface of a bunny
model. The directionT is a tangent vector that points in the
direction that we wish the pattern to follow. Each point on
the surface has such a tangent vector that has been specified
by the user. When this tangent direction is taken together
with the surface normalN and a second tangentB (perpen-
dicular toT andN), this describes a coordinate frame at a
given position on the surface.All of our voxel neighborhoods
will be locally aligned with such local coordinate frames.We
must also remember that voxels away from the surface must
also have a coordinate frame, since all voxels in the volume
B0 must be visited.

Our geometry synthesis algorithm visits all of the vox-
els of B0, creates a feature vector from voxels inB andB0,
and finds the best matching feature vector fromA and A0.
The feature vectors fromB and B0 consist of voxel den-
sities near the voxel that is currently being visited. Voxels
from B should be taken from a full-cube neighborhood that
is aligned with the local coordinate frame. Figure 4 shows
two such full-cube neighborhoods. The neighborhood from
B0, on the other hand, should only include those voxels near
the current one that have already been visited. These will be
the voxels “behind” the current voxel, that is, the opposite of
the tangent directionT. Figure 5 shows two such half-cube
neighborhoods that contain only voxels in the direction of
�T.

In the next section we will examine the details that are
needed to make this approach concrete.

4.1. Volume Attributes

Before synthesis, we require the following attributes for a
model:

Volume data : A density map that provides the volumetric
representation of the given model.

Distance Field : Specifies each voxel’s distance to the near-
est surface voxel. The sign of the distance field signifies
whether the given voxel is interior or exterior to the sur-
face, with positive distance values denoting exterior vox-
els.

Local Coordinate Frame : Specifies a local coordinate
axis for every voxel such that the axis is consistently
aligned to the surface texture.

Sweep Distance Field: Specifies the order of visitation of
voxels in a volume such that the local coordinate frame
can always sample a causal (previously-visited) neighbor-
hood.

4.2. Feature Vector Creation and Search

With the neighborhood description and sweep distance in
hand, we can now examine the details of feature vector cre-
ation and synthesis. Here are the steps needed to make the
training feature vectors and to search for closest matches
during synthesis:

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

Figure 4: Full-cube neighborhood (non-causal), aligned to
the local coordinate frames.

� For each voxel inA0 (pre-process):

– Construct a feature vector by concatenating two sub-
feature vectors:

1. A causal neighborhood of the current voxel inA0,
sampled using the local coordinate frame.

2. A full cubic neighborhood of the corresponding
voxel in A sampled using the local coordinate
frame.

– Each such feature vector is added to a collection that
serves as training data for the synthesis part of the al-
gorithm. We store the training data in a data structure
that is designed for fast search: approximate-nearest-
neighbor search (ANN) [1].

� For each voxel inB0, visited in increasing order of sweep
distance (synthesis):

– If the absolute distance field value of the current voxel
is greater than the neighborhood size then set the out-
put voxel to EMPTY or OPAQUE depending on the
sign of the distance field value and continue on to the
next voxel. Culling these distant voxels speeds up the
method considerably.

– Construct a feature vector as described above using the
current neighborhoods inB0 andB with the coordinate
frame forB.

– Perform a search to find the feature vector in the train-
ing data most similar to the feature vector of the cur-
rent voxel. Distances between feature vectors are cal-
culated as the sum of squared differences between cor-
responding voxel densities.

– Replace the current voxel inB0 by the voxel inA0 found
to have the most similar feature vector based on the
search result.

4.3. Multiscale Synthesis

Like many related synthesis techniques, the quality of our re-
sults are significantly improved by using multiple passes at
increasingly finer resolution. We create Gaussian pyramids
of all our voxel data to allow for multiresolution synthesis
such thatA1 forms the highest resolution of the pyramid

Figure 5: Half-cube neighborhood (causal).

and A2, A3 and so on form successively lower resolutions
of the pyramid. All density-map Gaussian pyramid levels,
Xk+1, are created by low-pass filtering and downsampling
the density data inXk, the pyramid level directly below.

The multiscale synthesis proceeds from the coarsest reso-
lution to the finest, synthesizingB0 at each level in the Gaus-
sian pyramid. After a coarse level synthesis pass is complete,
the coarse densities are upsampled and used to initialize the
higher resolution volume. Each level in the pyramid is syn-
thesized in the manner described above with a slight change
in the construction of the feature vector. Specifically, a fea-
ture vector is constructed by concatenating four sub-feature
vectors:
� A causal neighborhood of the current voxel inX0

k.
� A full cubic neighborhood of the corresponding voxel in

Xk.
� A full cubic neighborhood of the low resolution voxel in

X0

k+1.
� A full cubic neighborhood of the low resolution voxel in

Xk+1.

For the results shown in this paper, we used a neighbor-
hood of 5�5� 5 to sample the fine resolution level and a
neighborhood of 3� 3� 3 to sample the coarse level. We
find that the quality of the synthesis is improved by conduct-
ing not one but two synthesis sweeps through the voxel data
at each pyramid level.

5. Attribute Calculations

In this section we describe the tools used to create the vol-
ume attributes that are needed for geometry synthesis.

5.1. Voxelization and Distance Fields

Many of the objects that we wish to modify are in the form
of a polygonal mesh, and therefore must be converted to a
voxel representation. There are numerous published meth-
ods that describe how to convert a polygonal mesh to voxels,
including [23, 10, 16]. We use the technique of Nooruddin
and Turk [16] that performs ray stabbing and checks the in-
side/outside parity of each ray at voxel centers.

We create the distance field during the voxelization pro-
cess using Danielsson’s algorithm [6] adapted to work in 3D.

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

Figure 6: Two versions of three intersecting tori. The model on the right has been hollowed out by the geometry synthesis.

Danielsson’s 2D algorithm is applied to each image slice in
the volume, calculating the distance field for every voxel in
that image using its six immediate neighbors, as the volume
is swept from the topmost to bottommost image slice and
then in the reverse direction.

5.2. Creating a Local Coordinate System

The surface vector field is created by having the user specify
a few direction vectors on the surface that are then diffused
across the surface using the vector field interpolation tech-
nique described by Turk [22]. This defines the localT axis
everywhere on the surface. The normal vectorN is calcu-
lated from the object’s geometry, and theB axis is the cross-
product ofT andN.

We propagate this local coordinate frame from the surface
voxels to the rest of the volume using a vector field interpo-
lation method similar to the one described in [22]. We initial-
ize the local coordinate frame of every voxel in the volume
to zero vectors with the exception of surface voxels whose
local coordinate frame we have already defined. We fix these
non-zero local coordinate axes, and then diffuse the coordi-
nate axes over the remaining volume. We repeat the fix-and-
diffuse step until all voxels have a non-zero local coordinate
frame. Propagating values out from a surface is a common

Figure 7: Source geometry (A0) for spikes, thru-holes and
pits.

operation in level set PDE techniques, and we could easily
have used one of these methods instead.

5.3. Frame-Aligned Neighborhood Samples

Given a coordinate frame(T;N;B) at a given voxel inB
andB0, we must be able to sample the voxel neighborhood
in order to compare it to neighborhoods inA and A0. The
basic idea is to move in the directions of(T;N;B) instead
of (x;y;z) to get neighboring voxel values. For non-causal
(full-cube) neighborhoods inB, we travel in step-sizes of
one voxel along each of the three local frame axes, both in
the positive and negative directions. For causal (half-cube)
neighborhoods inB0, we travel in both positive and nega-
tive directions forN and B, but only in the�T direction.
Stepping one voxel’s length along an arbitrary direction will
seldom take us to another voxel center, so we must interpo-
late voxel values. We use tri-linear interpolation of the eight
nearest voxels.

Note that using a frame-aligned causal neighborhood for
B0 at a particular voxel doesnot guarentee that each voxel
of the neighborhood has already been visited. Voxels on the
leading edge of the neighborhood may or may not have been
visited. Moreover, the user-defined vector field will have sin-
gularities such as a source. For this reason, we initialize the
voxels ofB0 with the values fromB at the coarsest pyramid
level, and we use upsampling to initializeB0 at the finer pyra-
mid levels.

5.4. Sweep Distance Field Creation

Once we have a local coordinate system for our volumes we
need to define an ordering to the voxels inB=B0 such that
the voxels visited in this order can always sample a causal
neighborhood using their local coordinate frame. We do this
by first defining a surface sweep distance field forB using

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

Figure 8: Octopus (left) and dilated version (right).

the technique described in [22]. This results in all surface
voxels along the user-defined surface orientation vector to
be assigned increasingly larger sweep distances. The sweep
distance is then propagated through the volume along the
local N-axis of the surface voxels. During synthesis we visit
voxels inB=B0 in increasing order of sweep distance.

6. Results

Two examples of geometric texture synthesis using a bunny
are shown in Figure 1. The left bunny has been given spiky
armor, while the right one has been pitted. Another exam-
ple of geometric surface textures are the grooves on the sea-
horse and bunny (Figures 2 and 11). Notice how the grooves
can closely match a complex, swirling vector field. Figure 7
shows the input geometric texture (A0) for many of our ex-
amples. For these three textures,A is a thick slab of voxels.
Figures 6 (right) and 10 demonstrate that when theA0 ge-
ometry is thin (part of a hollow object) and is aligned atop a
thick voxel slabA (which is solid), the synthesis can create
an entirely hollow object.

Our method is capable of performing geometric analogies
other than texture. For example, Figure 8 shows dilation (ex-
pansion) of an octopus’s surface. The input analogy was two
spheres, with sphereA smaller than sphereA0.

Figure 9 shows the creation of thorns on a sphere. Note
that a simple displacement in the normal direction could not
have produced these curving thorns.

Figure 9: Top row is input analogy, bottom row shows orig-
inal smooth sphere and resulting sphere with thorns.

Figure 10: Bunny with thru-holes, cut open to see the hollow
interior.

The sizes of the volumes we used were 102� 46� 227
for the seahorse, 158�200�197 for the bunny and 196�
200� 197 for the triple-torus. Our synthesis times varied
from slightly more than one hour for bunny grooves to nearly
six hours for the triple-torus with holes. Geometry synthesis
was calculated using a 3 GHz Pentium 4 processor. Syn-
thesis times obviously scale up with larger volume sizes,
but they also seem to be affected by the ease or difficulty
of searching the ANN (approximate nearest neighbor) data
structure to match a given feature vector. That is, geometry
that is more radically altered tends to take longer to produce.

All of the rendered images in this paper are direct volume
renderings of the volumetric results. If polygons are needed
for a particular application, isosurface extraction methods
can be used.

7. Conclusion and Future Work

We have presented a method that learns a geometric tex-
ture from one model and then copies this pattern to an-
other model. To do this we have extended the Image Analo-
gies algorithm into the volumetric domain. This approach
makes actual geometric changes to a model, not just changes
to appearance via surface normals or color. The method
can induce extreme geometric modifications that cannot
be achieved through offsets in the normal direction. The
changes can even in some cases alter the topology of the
surface (e.g. create a hollow surface or thru-holes).

There are several possibilities for future work. One is to
modify the sampling technique to account for the surface

c The Eurographics Association 2004.



Pravin Bhat, Stephen Ingram, Greg Turk / Geometric Texture Synthesis by Example

curvature. We believe that bending the voxel neighborhoods
based on the local curvature may improve the results further
since this might remove blind spots created by sharp changes
in the surface curvature. The technique might also benefit
from incorporating Ashikhmin style synthesis [2] to increase
the coherence of the texture results.

8. Acknowledgements

We are grateful to the anonymous reviewers for their sug-
gestions for improving our paper. We thank Gordon Kindl-
mann for his volume renderer, which was used to make our
final images. This research was funded in part by NSF grant
CCR-0204355 and a Microsoft Technical Scholarship.

References

[1] Arya S., Mount D. M., Netanyahu N. S., Silverman R.,
Wu A. Y., “An Optimal Algorithm for Approximate Near-
est Neighbor Searching in Fixed Dimensions,”Journal of
the ACM, 1998, pp.891–923. Source code available from
http://www.cs.umd.edu/ mount/ANN.

[2] Ashikhmin, M. 2001. “Synthesizing natural textures,”ACM
Symposium on Interactive 3D Graphics, March 2001, pp.
217–226.

[3] Biermann H., Boier-Martin I. M., Bernardini F., Zorin D.,
“Cut-and-Paste Editing of Multiresolution Surfaces Surfaces,”
Proceedings of SIGGRAPH 2002, pp. 312–321.

[4] Blinn, J. F. “Simulation of Wrinkled Surfaces,”Computer
Graphics (SIGGRAPH ’78 Proceedings), 1978 pp. 286–292.

[5] Cook R. L., “Shade Trees,”Computer Graphics (SIGGRAPH
’84 Proceedings), July 1984, pp. 223–231.

[6] Danielsson P., “Euclidean Distance Mapping,”Computer
Graphics and Image Processing, vol. 14, 1980, pp. 227–248.

[7] Efros A. and Leung T., “Texture Synthesis by Non-parametric
Sampling,” In International Conference on Computer Vision,
Vol. 2, September 1999, pp. 1033–1038.

[8] Fleischer K., Laidlaw D., Currin B., Barr A., “Cellular Tex-
ture Generation,”Proceedings Computer Graphics (ACM
SIGGRAPH), August 1995, pp. 239–248.

[9] Hanrahan P. and Haeberli P., “Direct WYSIWYG Paint-
ing and Texturing on 3d Shapes,” inProceedings Computer
Graphics (ACM SIGGRAPH), August 1990, vol. 24, pp. 215–
223.

Figure 11: Bunny with grooves.

[10] Huang, J., Yagel, R., Filippov, V., and Kurzion, Y., “An Accu-
rate Method for Voxelizing Polygonal Meshes,”Proceedings
of the Symposium on Volume Visualization, pp. 119-126, Oc-
tober 1989.

[11] Hertzmann A., Jacobs C. E., Oliver N., Curless B., Salesin
D. H., “Image analogies,”Proceedings of SIGGRAPH 2001,
August 2001, pp. 327–340.

[12] Hertzmann A., Oliver N., Curless B., Seitz S., “Curve analo-
gies,” Eurographics Workshop on Rendering, June 2002, pp.
233–245.

[13] Kalnins, Markosian, Meier, Kowalski, Lee, Davidson, Webb,
Hughes, Finkelstein, “WYSIWYS NPR: Drawing Strokes Di-
rectly on 3D Models,Proceedings of SIGGRAPH 2002, July
2002, pp. 755–762.

[14] Legakis J., Dorsey J., Gortler S., “Feature-Based Cellular Tex-
turing for Architectural Models,”Proceedings of SIGGRAPH
2001, August 2001, pp. 309–316.

[15] Museth K., Breen D. E., Whitaker R. T., Barr A. H., “Level
Set Surface Editing Operators,”Proceedings of SIGGRAPH
2002, 2002, pp. 330–338.

[16] Nooruddin F. S. and Turk G., “Simplification and Repair
of Polygonal Models Using Volumetric Techniques,”IEEE
Transactions on Visualization and Computer Graphics, April-
June 2003, pp. 191–205.

[17] Peachey D. R., “Solid Texturing of Complex Surfaces,”Com-
puter Graphics, (SIGGRAPH ’85), July 1985, pp. 279–286.

[18] Perlin K., “An image synthesizer,”Computer Graphics (SIG-
GRAPH ’85 Proceedings), 1985, pp. 287–296.

[19] Perlin K. and Hoffert E. M., “Hypertexture,” Computer
Graphics (SIGGRAPH 1989), 1989, pp. 253–262.

[20] Soler C., Cani M.-P., Angelidis A., “Hierarchical Pattern
Mapping,” Proceedings of SIGGRAPH 2002, July 2002, pp.
673–680.

[21] Tong X., Zhang J., Liu L., Wang X., Guo B., Shum H.-Y.,
“Synthesis of Bidirectional Texture Functions on Arbitrary
Surfaces,” Proceedings of SIGGRAPH 2002, July 2002, pp.
665–672.

[22] Turk G., “Texture synthesis on surfaces,”Proceedings of SIG-
GRAPH 2001August 2001, pp. 347–354.

[23] Wang, S. and Kaufman, A.E., “Volume Sampled Voxelization
of Geometric Primitives,”IEEE Visualization ’93, pp. 78-84,
October 1993.

[24] Wang L., Wang X., Tong X., Liu L., Guo B., Shum H.-Y.,
“View Dependent Displacement Mapping,”Proceedings of
SIGGRAPH 2003, August 2003, pp. 334–339.

[25] Wei L.-Y. and Levoy M., “Fast Texture Synthesis Using Tree-
structured Vector Quantization,”Proceedings of SIGGRAPH
2000, July 2000, pp. 479–488.

[26] Wei L.-Y. And Levoy M., “Texture synthesis over arbitrary
manifold surfaces,”Proceedings of SIGGRAPH 2001, August
2001, pp. 355–360.

[27] Ying L., Hertzmann A., Biermann H., AND Zorin D., “Tex-
ture and shape synthesis on surfaces,”Proceedings of 12th
Eurographics Workshop on Rendering, June 2001, pp. 301–
312.

[28] Zhang, J., Zhou, K., Velho, L., Guo, B. and Shum, H.-
Y., “Synthesis of Progressively-Variant Textures on Arbitrary
Surfaces,”Proceedings of SIGGRAPH 2003, pp. 295–302.

[29] Zwicker M., Pauly M., Knoll O., Gross M., “Pointshop 3D:
An Interactive System for Point-Based Surface Editing,”Pro-
ceedings of SIGGRAPH 2002, pp. 322–329

c The Eurographics Association 2004.


