
Melting and Flowing

Mark Carlson, Peter J. Mucha, R. Brooks Van Horn III, Greg Turk

Georgia Institute of Technology

Abstract

We present a fast and stable system for animating materials that
melt, flow, and solidify. Examples of real-world materials that
exhibit these phenomena include melting candles, lava flow, the
hardening of cement, icicle formation, and limestone deposition.
We animate such phenomena by physical simulation of fluids – in
particular the incompressible viscous Navier-Stokes equations with
free surfaces, treating solid and nearly-solid materials as very high
viscosity fluids. The computational method is a modification of
the Marker-and-Cell (MAC) algorithm in order to rapidly simulate
fluids with variable and arbitrarily high viscosity. This allows the
viscosity of the material to change in space and time according to
variation in temperature, water content, or any other spatial vari-
able, allowing different locations in the same continuous material
to exhibit states ranging from the absolute rigidity or slight bending
of hardened wax to the splashing and sloshing of water. We create
detailed polygonal models of the fluid by splatting particles into a
volumetric grid and we render these models using ray tracing with
sub-surface scattering. We demonstrate the method with examples
of several viscous materials including melting wax and sand drip
castles.

Keywords: melting, solidifying, animation, computational fluid
dynamics.

1 Introduction

A major goal in animation research is to simulate the behavior of
real-world materials, including such phenomena as draping cloth,
breaking glass, and flowing and splashing liquids. The goals of
the work presented in this paper are twofold: first, we develop a
method for quickly simulating highly viscous liquids with free sur-
faces; second, we use this capability to animate materials that melt,
flow, and harden.

The viscosity of a fluid describes how quickly the variations in
the velocity of the fluid are damped out. We find viscous fluids ev-
erywhere: toothpaste, hand lotion, yogurt, ketchup, tar, wet cement,
and glue are just a few examples. The computer graphics literature
contains several methods of simulating fluids with relatively low
viscosity. Absent, to our knowledge, is a method for simulating
high viscosity liquids. The method that we present fills this gap
in computer animation, allowing us to simulate material that varies
in both space and time from absolutely rigid (treated as very high
viscosity) to freely flowing (low viscosity). We have modified the
Marker-and-Cell method from the computational fluid dynamics lit-
erature to incorporate an implicit scheme for calculating the diffu-
sion component of the equations for viscous fluids. This implicit

Figure 1: Melting wax.

approach allows us to take large time-steps even when the viscosity
of the fluid is extreme.

Many materials exhibit variable viscosity depending on proper-
ties such as temperature and water content. Being able to simulate
a wide range of viscosities allows us to achieve our second goal,
which is to simulate materials that melt, flow, and harden. Many
natural materials exhibit these properties, including wax, glass, ce-
ment, wet sand, stone (lava), and water (ice). We add several ca-
pabilities to the MAC method in order to animate such phenomena.
First, we allow the viscosity of the animated material to vary from
one position to the next, and we change the material equations of
motion to address this variability. Second, we tie material proper-
ties such as temperature or water content to the viscosity in order
to allow melting and hardening. We simulate heat diffusion, heat
sources and heat sinks for the animation of material such as molten
wax. Third, we extract surface models from the simulation by splat-
ting particles into a high resolution volume and we then create poly-
gons from this volume. Finally, we use ray tracing with subsurface
scattering to render these materials.

The overarching theme of our work is that many materials that
melt, flow and harden can be viewedalwaysas a fluid, even when
in solid form. This prevents us from ever having to set arbitrary
thresholds when deciding whether a material should be treated as
a solid or as a liquid. The methods that we use to implement this
idea borrow from several techniques that have been published in
the computer graphics and the computational fluid dynamics liter-
ature. We believe that our main contribution is in bringing these
separate threads together and in demonstrating that a system built
from these components can produce believable animation of melt-
ing and solidifying materials. Since the components of our system
are based on well-understood numerical techniques, we anticipate
that others will easily be able to replicate our results.



2 Previous Work

Animation of fluids have been approached in a number of ways in
the computer graphics literature. We use the termfluids to encom-
pass the motion of gases such as air (including simulating smoke),
and liquids such as water.

Several graphics researchers studied the large-scale motion of
water in waves [Fournier86; Peachy86]. These methods used el-
evation maps of the terrain underneath the water, and the line of
waves were bent according to the variations in wave speed that the
elevation profile induces. The simulation of breaking waves occurs
at a particular sea floor elevation and wave velocity.

Kass and Miller took a different approach to the simulation of
fluids [Kass90]. Like most of the earlier approaches, they used a
height field to model water. In contrast to other methods, however,
they used a partial differential equations formulation for the motion
of the water. Their PDE’s govern the amount of fluid that passes
between columns of water. O’Brien and Hodgins used a hybrid
height field and particle-based representation to simulate splashing
water [O’Brien95].

Several groups of researchers have used physically-based par-
ticle models to represent fluids. Miller and Pearce create solids,
deforming objects and fluids by tuning the manner in which parti-
cles interacted with one another [Miller89]. Their particle forces
are similar to Lennard-Jones forces: particles very close together
repel one another, but at moderate distances they are attracted to
each other, with the attraction falling off with greater distances.
Tonnesen, in addition to calculating inter-particle forces, uses a dis-
crete approximation to the general heat transfer equation in order to
modify a particle’s behavior according to its thermal energy [Ton-
nesen91]. A similar approach is used by Terzopoulos et al., but
they also allow pairs of particles to be explicitly attached to one an-
other for modeling deformable objects [Terzopoulos89]. Desbrun
and Gascuel also use Lennard-Jones style particle forces to create
soft materials, but they maintain an explicit blending graph and per-
form particle size calculations in order to preserve volume [Des-
brun95]. Stora et al. use particles and an approach to force calcula-
tions calledsmoothed particle hydrodynamicsin order to simulate
the flow of lava [Stora99]. Their simulator models heat diffusion
and variable viscosity, and they demonstrate animations that use up
to 3,000 particles.

The most recent trend in the animation of liquid is to discretize
the fluid into compact cells, rather than into columns of water, and
then use PDE’s to drive the motion of fluid between cells. This is
the finite differences approach, and it is a commonly used method in
the computational fluid dynamics literature. This approach is more
computationally expensive than column-of-fluid PDE’s, but has the
advantage that it captures subtle motion effects that the other meth-
ods described above do not. The first use of this CFD approach for
graphics was by Foster and Metaxis. In a series of several papers,
they demonstrated how the Marker-and-Cell approach of Harlow
and Welch [Harlow65] could be used to animate water [Foster96],
animate smoke [Foster97a], and could be augmented to control the
behavior of animated fluids [Foster97b]. A major strength of their
method is that liquid is no longer constrained to be a height field,
as demonstrated by their animations of pouring and splashing.

Witting demonstrated a system in which computational fluid dy-
namics was used in an animation environment [Witting99]. His
system allows animators to create and control 2D effects such as
water swirling and smoke rising. Witting uses a set of governing
equations that includes heat diffusion and thermal buoyancy, and
he uses a fourth-order Runge-Kutta finite differencing scheme for
solving the equations. Yngve et al. demonstrated the animation of
explosions using CFD based on the equations for compressible, vis-
cous flow [Yngve00]. Their method takes care to properly model
the shocks along blast wave fronts, and also models the interaction
between the fluids and solid objects.

Stam uses a semi-Lagrangian method for fluid convection and an
implicit integrator for diffusion so that large time steps can be used
for animating smoke with no internal boundaries [Stam99]. He also

uses a projection method to satisfy the zero divergence condition.
Fedkiw and Stam improved upon this method using vortex confine-
ment to allow vortices to swirl indefinitely, and by using clamped
cubic interpolation to prevent the dissipation of fine features [Fed-
kiw01]. Their improved technique allows solid boundaries, moving
or stationary, but assumes a zero viscosity fluid [Fedkiw01]. Foster
and Fedkiw recently re-visited the Marker-and-Cell method, and
improved upon it in several ways [Foster01]. First, they replaced
the forward Euler convection calculations with a semi-Lagrangian
approach for greater stability. Second, and perhaps more important,
they introduced use of the level set approach to computer graphics
for the purpose of fluid simulations. Their level set approach results
in considerably more finely resolved details on the liquid’s surface.

We note that the CFD literature contains literally thousands of
papers on simulating fluids, and there are a number of approaches
such as spectral methods and finite elements that are virtually un-
tried in computer graphics. The factors that guide researchers in se-
lecting fluid simulation methods include: ease of programming, low
computational overhead, controllability, the incorporation of obsta-
cles, and (in the case of water and other liquids) the representation
of free surfaces. Spectral methods do not easily represent complex
boundaries or free surfaces, and finite element methods are compu-
tationally expensive. These factors are probably important for the
prevalence of finite differences methods used for computer graph-
ics. The Marker-and-Cell method is a finite difference approach;
we describe it now and then later examine how it may be modified
to handle high viscosity fluids.

3 MAC Method Overview

In this section we describe the equations for fluid motion and de-
scribe the MAC method of fluid simulation. In Sections 4 and 5 we
will describe our modifications to this basic approach.

Our goal is to simulate incompressible, viscous fluids, and the
equations that govern such fluids are the Navier-Stokes equations.
In the following equations the vector-valued variableu represents
the velocity of the fluid, and it may be a 2D or 3D vector depending
on the dimensionality of our simulations. Pressure will be repre-
sented byp, the density of the fluid isρ (which we always take to
be 1), and the kinematic viscosity isv. Here are the Navier-Stokes
equations:

∇ �u = 0 (1)

∂u
∂t

=�(u �∇)u +∇ � (ν∇u)� 1
ρ

∇p+ f: (2)

Equation 1 states that the velocity field has zero divergence ev-
erywhere. This simply means that in any small region of fluid, the
amount of fluid entering the region is exactly equal to the amount
leaving the region. This is conservation of mass for incompress-
ible fluids. Equation 2 describes conservation of momentum, and
it has several components. Reading from left to right, it states that
the instantaneous change in velocity of the fluid at a given position
is the sum of four terms: convection, diffusion, pressure and body
forces. The convection term accounts for the direction in which the
surrounding fluid pushes a small region of fluid. The momentum
diffusion term describes how quickly the fluid damps out variation
in the velocity surrounding a given point. The parameterν is the
measure of kinematic viscosity of the fluid, and the higher its value,
the faster the velocity variations are damped. For constant viscos-
ity, the ν factors out yielding the more familiarν∇2u momentum
diffusion form. The third term describes how a small parcel of fluid
is pushed in a direction from high to low pressure. The final termf
contains the external forces (calledbody forces) such as gravity that
act on the fluid.

The Marker-and-Cell method of simulating fluids with free sur-
faces was originally described by Harlow and Welch in 1965 [Har-
low65]. This method allows fluids to be equally well simulated in



2D and 3D, but for clarity of exposition we will assume a 2D en-
vironment. Since the MAC approach is described well in several
other publications [Welch66; Foster96; Griebel98], we will only
give an overview of the method and refer the interested reader to
these other publications for details. There are two major com-
ponents to the MAC method: the cells in which fluid velocity is
tracked, and a large collection of particles in the fluid that serve to
mark which cells are filled with fluid near the surface (the air/fluid
interface). One time-step in a fluid simulation is calculated in sev-
eral stages. First, the velocity values in the fluid-filled cells are up-
dated according to a forward Euler integration step based on Equa-
tion 2. The velocities in the cells are then modified to enforce the
zero divergence condition of Equation 1. Next, the particles are
moved according to the velocity field. Finally, each cell is marked
as being fluid-filled or empty according to whether a given cell con-
tains particles. These steps are repeated for each time-step of the
simulation.

The cells of the simulation space are uniformly sized rectangu-
lar cells, and for simplicity we will assume square cells with side
lengthsh. Two variables are recorded for each cell, the velocity and
the pressure. The velocityu = (u;v) is stored in astaggered grid,
in which thex component of the velocity,u, is stored at the vertical
boundaries between cells, and they velocity component,v, is stored
at the horizontal boundaries. The 3D case is similar, in which the
three velocity components are stored at the faces of a cell. The pres-
surep is calculated and stored at the cell centers. The velocity and
pressure are the only values that need be stored with the grid for the
basic method, although later we will describe per-cell temperature
(which then governs viscosity).

To update the velocity after one time-step, the new velocities
ui; j and vi; j at each position in the grid are calculated according
to a finite difference approximation of Equation 2. As an example
of these finite difference calculations for 2D animation, consider a
simplification of Equation 2 that only accounts for the momentum
diffusion term with constant viscosity:

∂u
∂t

= ν∇2u: (3)

The newx component of the velocity at edge(i; j), calledui; j , after
a time-step∆t can be calculated using the central differencing as
follows:

unew
i; j = ui; j +

ν∆t

h2 (�4ui; j +ui�1; j +ui+1; j +ui; j�1+ui; j+1) (4)

The above equation assumes that we are dealing with constant vis-
cosity (a restriction that we will relax in Section 5.2). It makes
use of the standard central differencing template for the Laplacian
∇2u of u at the edge(i; j), which is the sum of the four adjacent
valuesui�1; j�1 minus four times the velocity at the edgeui; j . For
3D animations, calculating the Laplacian requires the velocities at
the six neighboring locations. A similar expression is used to up-
date they component of the velocityvi; j . Note that as the prod-
uct (ν∆t=h2) increases, the influence of the diffusion term over the
time step grows stronger, and this has implications for the stability
of the solver for viscous fluids, a point which we will return to later.
The other terms of Equation 2 are incorporated into this finite dif-
ference formulation similarly, and their exact forms may be found
in [Welch66; Foster96; Griebel98].

After we have updated the velocities according to these finite
difference approximations of Equation 2, the velocities do not nec-
essarily satisfy the zero divergence requirements of Equation 1. We
need to find another velocity field that is close to the current one,
but that also satisfies the divergence-free condition. One way of
doing this is known as relaxation, and this is the method used in
the original work of Harlow and Welch [Harlow65] as well as oth-
ers [Foster96]. We take a different approach, and make use of the
Helmholtz-Hodges decomposition that states any vector field can
be expressed as the sum of a divergence-free vector field and the

gradient of a scalar field. We find this scalar field (which is in fact
the pressure gradient) and subtract it from the velocity field to make
the result divergence-free. A nice discussion of this in the graph-
ics literature is by Stam [Stam99], and we follow the approach he
gives closely. Finding the pressure can be done by solving a Poisson
equation. This linear equation can be solved iteratively by precon-
ditioned conjugate gradient methods [Golub96; Barrett94].

Once the velocity field has been made divergence-free, the par-
ticles are updated. Particle positions are floating-point coordinates
p = (px; py), and an individual particle may lie anywhere within a
cell. A particle’s position is updated by determining the velocityu
at the particle location (using bilinear interpolation for each veloc-
ity component) and then pushing the particle forward according to
simple Euler integration:pnew= p+∆tu. Note that more elaborate
integration schemes such as fourth-order Runga-Kutta are possible,
but we have found this to be unnecessary.

Recall that it is the purpose of the particles to mark which cells
contain fluid, and ultimately this information is stored as a per-cell
empty/surface/full flag. This flag is determined for each cell after
all of the particles have been advected. If a previously empty cell
acquires a particle, the velocities at the cell’s boundaries acquire
the velocity of the particle. In practice, it is only necessary to popu-
late cells with particles near the air/fluid interface, although careless
addition or removal of particles can result in visible artifacts. The
positions of the particles near the surface give a highly resolved
shape to the free surface, much more detailed than the cells alone.
This allows the MAC method to create detailed fluid surfaces while
using a relatively coarse cell grid.

4 High Viscosity Solver

The MAC method as described above is well-suited to simulating
fluids with relatively low viscosity. This approach has become a
favorite for computer graphics because of its ability to capture not
only surface ripples and waves but full 3D splashes. Unfortunately,
as it stands, the MAC method cannot simulate high viscosity flu-
ids without introducing prohibitively many time steps. In order for
the algorithm to remain stable, the method must respect a Courant-
Friedrichs-Lewy (CFL) condition [Press93] describing the maxi-
mum speed with which information can be advected in one time
step from a cell to its neighbors. Additionally, the explicit imple-
mentation of the MAC method must also obey a stability criterion
imposed to prevent numerical instability in the calculation of the
momentum diffusion contribution; at high viscosities, this second
stability criterion for explicit solvers becomes more stringent than
the CFL condition.

When the viscosityν becomes large, the viscous diffusive part
of the time evolution becomes stiff. The finite difference approxi-
mation to this contribution, as described for a simple forward Euler
step in Equation 4, has eigenvalues between(1�4dν∆t=h2) and 1,
in d dimensions, as indicated by a straightforward von Neumann
stability analysis [Press93]. Thus, to prevent numerical instability,
the time step must remain small enough such thatν∆t=h2 < 1

2d ,
which can become prohibitively small for large viscosityν. Sim-
ilarly, since there are no so-called “A-stable” explicit schemes,
higher-order explicit time steps (e.g., fourth-order Runge-Kutta)
meet with similarly prohibitive stability criteria at large viscosi-
ties, at only marginally different threshold values [Trefethen96].
Lowering the time-step size is one possible fix to this problem, but
this quickly leads to prohibitively large number of time steps: even
moderately viscous fluids with a viscosity of 10 require that 6000
time-steps be taken using forward Euler integration to simulate one
second of fluid motion.1 The required time-steps goes up linearly
with viscosity – a viscosity of 100 would require 60,000 time-steps.
The approach that we describe below allows fluids with 100 viscos-
ity to be simulated using 30 time-steps per second, so long as the

1For all the viscosities we quote we use a cell sizeh = 0:1, and our
kinematic viscosity has units ofspace2=time.



Figure 2: Pouring viscous liquid into a container with complex boundaries. Top row is after 1.6 seconds, bottom row is after 10 seconds.
From left to right, the fluid viscosities are 0.1, 1, 10, and 100.

CFL condition is also obeyed.
Our solution to the problem of highly viscous fluids requires two

changes to the MAC method. First, we replace the forward Euler
integrator for diffusion with an implicit Euler step. This implicit
integration is stable at arbitrarily high viscosities; but has the detri-
mental effect of slowing the motion of isolated fluid in free flight.
To correct for this, our second modification is to re-introduce the
bulk components to the velocity of fluid that is in flight. Such free-
flight fluid may arise from splashing or dripping. We now describe
each of these two modifications in more detail.

4.1 Operator Splitting

To replace the diffusion component of Equation 2 with an implicit
integration method, we first have to separate the diffusion term from
the calculation of convection and body forces. We do this using a
standard approach known asoperator splitting([Press93], section
19.3). The idea of operator splitting is to separate the right-hand
components of a PDE (like Equation 2) into multiple terms, and
to calculate these terms in sequence, independently of one another.
Thus, if each individual numerical procedure is stable, the sequence
of calculations for successive terms is also stable. Ignoring the pres-
sure term, which is implemented at the end of a velocity update to
maintain incompressible divergence-free fluid motion, the standard
forward Euler version of Equation 2 can be written as:

unew= u+convection(u)+di f f usion(u)+body(u): (5)

If we perform partial operator splitting, separating out the diffusion
term, we get:

utemp= u+convection(u)+body(u): (6)

unew= utemp+di f f usion(utemp): (7)

There is only one change between Equations 6 and 7 and Equa-
tion 5. The change is that the diffusion of Equation 7 is calculated
based on an intermediate valueutempof the velocity instead of the
original velocityu. This is an important difference, however, be-
cause it allows us to use methods other than forward Euler to calcu-
late the contribution of diffusion. In particular, we use an implicit
Euler scheme, which is stable even for high viscosities.

In order to re-formulate the diffusion calculation, here is the cen-
tral difference diffusion equation (Equation 4) in matrix form:

2
6664

...
unew

i; j
...

3
7775=

2
6664

...
ui; j

...

3
7775+

ν∆t
h2

2
6664

...
1 : : : 1 �4 1 : : : 1

...

3
7775

2
666666666666666664

...
ui; j�1

...
ui�1; j
ui; j

ui+1; j

...
ui; j+1

...

3
777777777777777775

(8)
This can be written more compactly in matrix notation:

Unew= U+DU (9)

In Equation 9, the termU is a vector that contains the velocities of
each cell in the grid. The matrixD is the product of the viscosity
constant, the time-step, and the Laplacian operator.

4.2 Boundary and Continuity Conditions

For cells that contain fluid and are adjacent only to other fluid cells,
equation 9 holds. However, fluid cells that are adjacent to walls or
for fluid cells at the fluid/air boundary must be treated specially.

As in [Foster96], we allow any of the cells of the grid to be ob-
stacles that fluid will not enter. In particular, the six sides of the
simulation grid are treated as solid walls. To avoid fluid entering
such cells, we set the velocity of boundary faces to zero. We allow
the animator to choose between free-slip and no-slip conditions for
the velocity tangential to these cells. See [Griebel98] for details.

At the faces of cells on the fluid/air boundary, a different kind of
condition must be satisfied, that of keeping the velocity inside the
cell divergence-free. Each surface cell may have anywhere from
one to six faces that are adjacent to air, and each case is treated
in order to maintain the divergence-free property. These cases are
enumerated in [Foster96; Griebel98] for two dimensions and their
extension to 3D is straightforward.

In order to make use of a fast solver for Equation 11 such as pre-
conditioned conjugate gradient, we desire a matrixD that is sym-
metric. In creating this matrix, we must also take care to incorporate
all of our boundary conditions. Recalling that the vectorU contains
the velocities at the cell faces, we will describe how we can create
such a symmetric matrix.

When setting up the matrix equation, we only include rows in
the matrixD and entries in the vectorUnew for cell faces that have
fluid in both cells that share the face. Thus the faces of the cells



containing or next to air are not represented in the equation. This
makes the matrix much smaller then if we were to include every
face in the grid. Even though the matrix does not include entries
for surface cell faces (air on one side), faces that have an entry in
Unew will need the velocity values at those faces. We add these
values into theU vector because otherwise they would cause non-
symmetries. In fact, after setting our boundary conditions we can
hold constant any value that does not have an entry into the diagonal
of the matrix. This allows us to move all the known values over to
theU vector and our matrix becomes symmetric.

4.3 Matrix Solver

Now that we have set up the matrix equation, let us examine the is-
sue of what solver to use. As mentioned earlier, high viscosity fluid
would require very small time steps if we use forward Euler inte-
gration. The diffusion step can be made stable even with large time
steps by reformulating it using implicit backwards Euler integration
(though any L-stable [Lambert91] method would be appropriate):

Unew=U+DUnew (10)

If we define a new matrixA = I �D, the above equation can be
re-written as follows:

AUnew=U (11)

The above Equation 11 can now be solved using standard matrix
techniques. After incorporating the boundary conditions described
above (Section 4.2), we arrive at a matrixA that is positive defi-
nite, symmetric, and banded. With a large range of viscosities, the
condition number of the resulting matrix prevents an effective di-
rect solve, and we solve the equation iteratively using the conjugate
gradient method with a Jacobi preconditioner [Barrett94].

Neither operator splitting nor implicit integration are new to
computer graphics. Stam [Stam99] used the operator splitting tech-
nique so that he could use a semi-Lagrangian method for calculat-
ing the convection term of the Navier-Stokes equation, thus making
this component of the simulator stable even with very large time-
steps. Moreover, Stam uses an implicit Euler integration scheme
for calculating diffusion, just as we use method for solving the dif-
fusion term. He used an FFT-based solver for diffusion, and thus
the particular solver that he used will not be useful for problems
with more complex boundary conditions. In particular, because we
wish to capture complex fluid/air interfaces, his velocity diffusion
solver cannot be used for our problem domain. Foster et al. used
the semi-Lagrangian calculations of convection to make the MAC
method stable at large time-steps [Foster01]. They must artificially
decrease the fluid’s viscosity, however, in order to keep the solver
stable. We cannot use this approach since we use very high viscosi-
ties to model rigid solid materials. Our own work can be viewed
as a marriage of a stable implicit Euler integration for diffusion (in-
troduced to computer graphics by Stam for smoke) and the MAC
method for representing liquid boundaries (brought to graphics by
Foster and Metaxis). Because of the needs of representing complex
boundary conditions, the particular implicit solver that we use to
handle diffusion is different than any that we know of in computer
graphics.

4.4 Fluid in Free Flight

At very high viscosities, the implicit calculation of the viscous dis-
sipation effects over a time step has the detrimental effect of artifi-
cially slowing the motion of fluid that is in free flight. This artificial
dissipation originates because the integrations representing the in-
verse ofA in Equation 11 become numerically ill-conditioned as the
viscosity increases. Within this limit, any constant velocity added
to a solution will yield an analytically acceptable new solution. At
high viscosities the iterative conjugate gradient solution with Ja-
cobi preconditioning converge to a solution with zero momentum.
Therefore, an isolated splash of viscous fluid moving with a high
velocity can, after one time step, have no velocity at all.

We prevent this non-physical behavior by identifying the con-
nected regions of fluid that are in free flight and re-introduce the
momentum that the diffusion solver removes. Specifically, we iden-
tify isolated fluid regions (surrounded by empty cells) and we deter-
mine the bulk motion of these fluid cells immediately prior to calcu-
lating velocity changes due to the momentum diffusion term. The
viscous effects, which cannot change such freely-flying motion, are
then calculated as described above, after which the bulk motion of
the free-flight regions are added back in. The falling fluid in Fig-
ure 2 and the drops of sand shown in the video for the drip sand
castle (still frame in Figure 4) are two examples in which this ve-
locity re-introduction was necessary. In principle, this bulk motion
should include both translational and rotational momenta. We have
found, however, that using just the translational part of rigid body
motion is sufficient for obtaining realistic-looking results in the an-
imations described here. Adding a full six-degree-of-freedom rigid
body simulator would be straightforward, should it be necessary for
a particular animation sequence.

5 Heat and Viscosity

In order to simulate materials that melt and harden, it is necessary
to vary the viscosity according to properties of the material. In par-
ticular, we simulate the temperature changes of the material and
we vary the viscosity according to this temperature. Several other
graphics researchers have incorporated thermal diffusion and the re-
sulting changes to viscosity into their material models, usually with
a particle-based approach [Miller89; Tonnesen91; Terzopoulos89;
Stora99]. Incorporating these effects into the MAC framework is
straightforward, and we give details of how to do so now.

5.1 Heat Equation

The change in heat is governed by an equation that is very similar
to the second Navier-Stokes equation that we saw earlier. The heat
diffusion equation that gives the change in temperatureT is:

∂T
∂t

= k∇2T� (u �∇)T: (12)

This equation has two right-hand terms: the diffusion of heat and
heat convection. The parameterk is called thethermal diffusion
constant, and it takes on a small value for those materials that we
simulate. Just as with Equation 2, we use operator splitting to solve
for changes in temperature. We first use upwind differencing to
determine an intermediate temperature due to convection. Then we
use an implicit solver that operates on these intermediate values to
account for thermal diffusion. We could use the same conjugate
gradient solver for heat diffusion as we did for velocity diffusion,
but because the thermal diffusion constantk is small we have the
luxury of taking a different approach.

To solve for thermal diffusion we perform what is in fact another
example of operator splitting. We set up three different matrix equa-
tions, each having the form:

2
6664

...
Tnew

i; j;k
...

3
7775=

2
6664

...
Ti; j;k

...

3
7775+

k∆t
h2

2
6664

...
: : : 1 �2 1 : : :

...

3
7775

2
6666664

...
Ti�1; j;k
Ti; j;k

Ti+1; j;k
...

3
7777775

(13)
Each of these three equations is set up to calculate diffusion only in
a single direction, eitherx, y, or z. By solving them in sequence and
passing each one’s results to the next, we are performing three-way
operator splitting. This time, however, instead of splitting one large
PDE into separate ones, we are splitting the 3D Laplacian operator
into three separate one-dimensional Laplacian operators. This will
not yield the same exact answer as the full 3D Laplacian, but it
gives a close approximation.



Our matrix is symmetric and positive-definite, and tri-diagonal
solvers for such matrices are fast. In particular, doing so is sub-
stantially faster than using the conjugate gradient solver that we
used to solve Equation 11. If our thermal diffusion constantk had
been large, we would have been obliged to use the slower conjugate
gradient solver to get accurate results. When we solved for veloc-
ity diffusion, the analogous material parameter was the viscosityν,
which can be quite high, so we had to use the computationally more
expensive solver.

Operator splitting by dimensions is a common technique, and
some of the more popular such methods are called alternating-
direction implicit (ADI) methods [Press93; Morton94]. We actually
use a closely related technique called the locally one-dimensional
(LOD) method [Morton94] that is stable in 3D, but ADI techniques
that are stable in 3D such as Douglas-Rachford would also be suit-
able for this task.

5.2 Variable Viscosity from Temperature

Once we have calculated temperature at each cell in the simulation
we can use this temperature to determine the material’s viscosity.
We use a particularly simple relationship between temperature and
viscosity: if the temperature is substantially below or above the
melting point of the material, we leave the viscosity at a constant
value. Within a temperature transition zone, we vary the viscos-
ity as either a linear or quadratic function of temperature. Many
materials, including wax, have a rapid transition from high to low
viscosity when the material is heated to the melting point. Thus
for our simulations of wax we make this transition zone quite nar-
row. This means that our materials remain rigid if they are cooler
than the melting point, and then quickly liquefy at the appropriate
temperature. So far as the solver goes, however, we could use al-
most any relationship between temperature and viscosity that we
want. The key to simulating the proper behavior based on viscosity
that changes spatially is to use the variable viscosity version of the
diffusion term, and we now turn to this issue.

To understand the changes needed to allow variable viscosity, we
return to the velocity diffusion equation. For expository purposes
we will write these equations for a forward Euler integrator, and
the appropriate changes to an implicit form are to be understood.
Recall Equation 4 for the momentum diffusion contribution in 2D
with constant viscosity:

unew
i; j = ui; j +

ν∆t
h2 (�4ui; j +ui�1; j +ui+1; j +ui; j�1+ui; j+1) (14)

This equation assumes that viscosityν is the same at all cells, so
that this parameter may be placed outside the parenthesis. When
viscosity varies across the fluid, viscosity should be considered a
property of the boundaries that separate pairs of adjacent cells. Let
νi�1=2; j represent the viscosity between cell(i�1; j) and cell(i; j),
andνi; j�1=2 will be viscosity between cell(i; j �1) and cell(i; j).
The correct finite difference formulation, including variable viscos-
ity [Press93], becomes:

unew
i; j = ui; j +

∆t

h2

0
BB@

νi�1=2; j (ui�1; j �ui; j )+

νi+1=2; j (ui+1; j �ui; j )+

νi; j�1=2(ui; j�1�ui; j )+

νi; j+1=2(ui; j+1�ui; j )

1
CCA (15)

In the above equation each viscosity for the boundary between cells
is paired with the difference in velocity between the cells. The re-
sulting matrix equation stays symmetric, and after we make the ap-
propriate changes to an implicit form we can use the same matrix
solver as before.

The above viscosities at cell boundaries may be obtained by av-
eraging the viscosities from the two cells separated by the boundary,
since the material property controlling viscosity (e.g. temperature)
is identified with the cells themselves, not the boundaries. When
animating objects that melt, we get poor results when we use an

Figure 3: Melting bunny.



Figure 4: Drip sand castle.

arithmetic average between pairs of viscosities of adjacent cells.
The reason for this is that melted material that is dripping down the
side of a rigid object will slow down more quickly because arith-
metic viscosity averaging is dominated by the very large viscosity
of the solid material. Rather than resort to higher grid resolutions,
we found that a simple change alleviates this problem: if we use the
geometric average instead of the arithmetic average when combin-
ing the viscosities of adjacent cells, the lower viscosity dominates
and the material continues to flow down the object’s side. Thus we
advocate usingνi; j+1=2 =

pνi; j νi; j+1 to average the viscositiesνi; j
andνi; j+1 of adjacent cells.

6 Model Creation by Particle Splatting

A vital component of a fluid animation system is to produce 3D
models that are suitable for high-quality rendering. As noted by
previous researchers, the grid of cells used with the MAC method is
not fine enough to produce smooth surfaces for rendering [Foster96;
Foster01]. Foster et al. recognized, however, that the particle posi-
tions contain high resolution information about the location of the
fluid’s surface. They make use of a level set in order to more finely
resolve the air/fluid interface, and their method produces wonder-
fully detailed models [Foster01]. Their level set is calculated using
information both from the particle positions and the cell velocities.
We, too, make use of particle positions in order to create detailed
3D surfaces, but we take quite a different approach.

We begin by noting that particle advection is quite inexpensive
computationally compared to the velocity solver, so we can afford
to keep a fairly dense collection of particles at the surface cells.
Recall as well that no particles are kept for cells that are far from
the fluid surface. Our approach is to create a volumetric model of
the fluid that is four times higher resolution in each spatial dimen-
sion than the velocity grid. Thus each parent cellC(i; j ;k) of the
velocity grid corresponds to 64 daughter voxels in the volumetric
modelV(i; j ;k) that we are creating. We adopt the convention that
V(i; j ;k) = 1 represents a fluid filled voxel, a valueV(i; j ;k) = 0 is
empty, and intermediate values are used at the air/fluid interface.

We make use of the status of cells inC to create the high reso-
lution volumetric model. If a cell inC is entirely filled with fluid,
all 64 of its daughter cells are given a value of 1. If a cellC is
on the surface of the fluid, we turn to the particles for higher res-
olution information. Specifically, we “splat” each particle into the
high resolution volumeV. For splatting into a 3D grid, we use the
three-dimensional version of a tent function (a separable filter) that
has a width of 2.5 voxels and with a maximum value of 1. In order
to avoid aliasing, it is important to use sub-voxel precision about
the location of the particle during splatting. After splatting all of
the particles, we clamp all voxels to a value of 1. When all of the
cells (both full and surface) have been processed, we low-pass filter

the volumetric grid to smooth away small gaps due to irregularity in
particle density. Finally, to create a model for rendering we use an
iso-surface extraction method to create polygons from the volume
grid. Previous researchers have proposed creating an implicit sur-
face with a Gaussian radial basis function centered at each particle.
The splatting and low-pass filtering operations have much the same
effect as this, but with a lower computational cost. Since the fluids
in our animations move relatively slowly we have found our splat-
ting approach to be quite satisfactory. For higher velocity fluids in
which the particle distribution is likely to vary greatly, the level-set
approach [Foster01] would produce significantly better results.

We can reverse this process of creating models from simulation
data. If we have a particular 3D polygon model that we wish to
input to our simulator, we scan convert the model into a voxel grid.
It is important that the interior of the model in the voxel grid is
filled, not empty. We then sweep through this volume, identifying
those groups of 4� 4� 4 voxels that are entirely filled. We then
make another sweep, writing out each voxel as a particle position.
We do not create a particle, however, if the voxel is part of a 64-
voxel block that is entirely inside the model. In addition we write
out an identifier for each partially or entirely filled 64-voxel block,
and these become the fluid cells in the simulation. The bunny of
Figure 3 is a model that was brought into the simulator and melted.

7 Rendering

Once the particle and cell data have been used to create a polyg-
onal model of the fluid, we are prepared for rendering. All of the
rendered images in this paper were created using a ray tracer that
handles translucent materials. Some of the most common viscous
fluids are semi-transparent and much of their appearance is due to
sub-surface scattering of light. We were inspired by the beautiful
images of Jensen et al. from their model of sub-surface scattering in
translucent materials [Jensen01]. We follow their approach closely,
and we refer the interested reader to their paper for details. We use
this method of computing sub-surface scattering to render images
of wax. Figures 1 and 3 are images created using this approach.

8 Results

We have used our fluid simulator to create several animations of
viscous fluid and materials that melt or harden. Examples can be
seen in the figures and the color plates. Figure 1 shows a block of
wax that is being melted by a heat source near its upper right cor-
ner. Figure 3 shows a similar wax-like simulation, but this time the
model is the Stanford Bunny. This example demonstrates that our
models may be given detailed geometry. Note that in a single time-
step during this animation, one portion is entirely liquid (near the
head) while an adjacent part is solid (the tail). Our solver gracefully
handles such variations in viscosity.

The snapshots in Figure 2 demonstrate the behavior of fluid over
a wide range of viscosity. Each column represents a different vis-
cosity, from left to right: 0.1, 1, 10 and 100. Fluid has been thrown
from above into a complex free-slip container that already holds a
shallow pool of fluid. (The container walls are not rendered.) This
example not only shows the difference between fluids with varying
viscosity, but also demonstrates splashing and high velocity fluids.

Figure 4 shows an example of model creation. When very wet
sand is dripped down onto the ground by a child at the beach, the
drips of sand pile up to form sand castles. To simulate this, a user
indicated locations and times for viscous spheres of sand to drop
onto a ground plane. Because of the high viscosity, the simulated
drops of sand do not melt together to form a large pool, but instead
they pile up and retain their individual shapes.

Because the implicit integrator for velocity diffusion is stable
even with large time steps, our simulation times are fast. Table 1
shows simulation times for entire animation sequences. The melt-
ing bunny, for example, required about .55 seconds per frame of
simulation time. This is dramatically faster than what a forward
Euler technique would allow.



Animation frame simulation viscosity grid
count time size

Green Liquid 1 300 145 0.1 32�32�32
Green Liquid 2 300 104 1 32�32�32
Green Liquid 3 300 94 10 32�32�32
Green Liquid 4 300 94 100 32�32�32
Toothpaste 330 108 10,000 42�33�18
Bunny Melt 600 330 0.1 - 10,000 35�28�38
Drip Sand 750 397 50,000 48�48�48

Table 1: Simulation times (in seconds) are for entire animations,
not for each frame. Simulations were run on a 2.0 GHz Pentium 4.

9 Conclusion and Future Work

We have presented a technique for simulating and rendering mate-
rials that vary in viscosity from absolute rigidity to water-like. One
possible way of doing so would be to have an arbitrary threshold
between liquid and solid, and to treat these two cases individually.
Instead, our approach is to model the range of material behaviors as
variations in the viscosity of the material. We feel that this unified
treatment of materials is the main contribution of our work to com-
puter animation. The changes needed to implement this approach
are straightforward to make to a MAC method fluid simulator, and
because of this we believe that others will have no trouble using our
approach. Here are the key ideas that we use in our system:

� Stable integration of diffusion for highly viscous fluids

� Re-introduction of damped out free-flight velocity

� Simulation of heat diffusion that is coupled with viscosity

� Creation of detailed models for rendering by particle splatting

Our approach allows us to rapidly animate liquids that are con-
siderably more viscous than previously published graphics methods
have allowed. By coupling the viscosity of a material to its temper-
ature, we can animate objects that heat up, melt, flow, and harden.

There are several topics that we are interested in pursuing in the
future. One near-term topic is the texturing of models as they de-
form and flow. The sand texture of Figure 4 does not move with
the surface, and we seek a method of making the texture “stick” to
the model. Another extension would be to use the level-set method
of [Foster01] instead of particle splatting to define the surface of
the fluid. Their method will produce higher quality results than
splatting for splashing fluids. To allow large time-steps for fast
moving fluid, it would also be necessary to use another method for
the convection term such as the semi-Langrangian approach given
in [Stam99; Foster01]. Both the level-set method and the semi-
Langrangian convection calculations deal with aspects of fluid sim-
ulation that can be decoupled from the diffusion of high viscosity
fluids, so such modifications should be straightforward. A more
long-term research question is how to allow the cracking of mate-
rial that has melted and then hardened, perhaps through the inclu-
sion of surface tension or viscoelastic forces. Many materials such
as mud and lava crack while they harden, and it would be wonderful
to animate this process.

References
Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V.

Eijkhout, R. Pozo, C. Romine and H. Van der Vorst,Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition, SIAM Press, Philadelphia, PA, 1994.

Desbrun, Mathieu, Marie-Paule Gascuel, “Animating Soft Substances with
Implicit Surfaces”, Computer Graphics Proceedings, Annual Confer-
ence Series (SIGGRAPH 95), August 1995, pp. 287–290.

Fedkiw, Ronald, Jos Stam and Henrik Wann Jensen, “Visual Simulation
of Smoke,”Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 2001), August 2001, pp. 15–22.

Fournier, Alain and William T. Reeves, “A Simple Model of Ocean Waves,”
Computer Graphics, Vol. 20, No. 4, (SIGGRAPH 86), August 1986, pp.
75–84.

Foster, Nick and Dimitri Metaxis, “Realistic Animation of Liquids,”Graph-
ical Models and Image Processing, Vol. 58, No. 5, 1996, pp. 471–483.

Foster, Nick and Dimitri Metaxis, “Modeling the Motion of a Hot, Turbu-
lent Gas,”Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 97), August 1997, pp. 181–188.

Foster, Nick and Dimitri Metaxis, “Controlling Fluid Animation,”Com-
puter Graphics International ’97, Kinepolis, Belgium, June 23-27, 1997,
pp. 178–188.

Foster, Nick and Ronald Fedkiw, “Practical Animation of Liquids,”Com-
puter Graphics Proceedings, Annual Conference Series (SIGGRAPH
2001), August 2001, pp. 23–30.

Griebel, M., T. Dornseifer and T. Neunhoeffer,Numerical Simulation in
Fluid Dynamics, a Practical Introduction, SIAM Press, Philadelphia,
PA, 1998.

Golub, Gene H. and Charles F. Van Loan,Matrix Computations, Johns Hop-
kins University Press, Baltimore, Maryland, 1996.

Harlow, F. H. and J. E. Welch, “Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with a Free Surface,”The Physics
of Fluids, Vol. 8, 1965, pp. 2182–2189.

Jensen, Henrik Wann, Stephen R. Marschner, Marc Levoy and Pat Han-
rahan, “A Practical Model for Subsurface Light Transport,”Computer
Graphics Proceedings, Annual Conference Series (SIGGRAPH 2001),
August 2001, pp. 511–518.

Kass, Michael and Gavin Miller, “Rapid, Stable Fluid Dynamics for Com-
puter Graphics,”Computer Graphics, Vol. 24, No. 4 (SIGGRAPH 90),
August 1990, pp. 49–57.

Lambert, J. D.,Numerical Methods for Ordinary Differential Systems, John
Wiley & Sons Ltd., West Sussex, 1991.

Miller, Gavin and A. Pearce, “Globular Dynamics: A Connected Particle
System for Animating Viscous Fluids,”Computers and Graphics, Vol.
13, 1989, pp. 305–309.

Morton, K. W. and D. F. Mayers (editors),Numerical Solution of Partial
Differential Equations, Cambridge University Press, 1994.

O’Brien, James and Jessica Hodgins, “Dynamic Simulation of Splashing
Fluids,” Computer Animation 95, 1995, pp. 198–205.

Peachy, Darwyn, “Modeling Waves and Surf,”Computer Graphics, Vol. 20,
No. 4, (SIGGRAPH 86), August 1986, pp. 65–74.

Press, William H., Brian P. Flannery, Saul A. Teukolsky and William T. Vet-
terling, Numerical Recipes in C: The Art of Scientific Computing, Cam-
bridge University Press, Cambridge, 1993.

Stam, Jos, “Stable Fluids,”Computer Graphics Proceedings, Annual Con-
ference Series (SIGGRAPH 99), August 1999, pp. 121–128.

Stora, Dan, Pierre-Olivier Agliati, Marie-Paule Cani, Fabrice Neyret and
Jean-Dominique Gascuel”, “Animating Lava Flows”,Graphics Interface
’99, Kingston, Ontario, Canada, June 1999, pp. 203–210.

Terzopoulos, Dimitri, John Platt and Kurt Fleischer, “Heating and Melting
Deformable Models (From Goop to Glop),”Graphics Interface ’89, June
1989, pp. 219–226.

Tonnesen, D., “Modeling Liquids and Solids using Thermal Particles”,
Graphics Interface ’91, Calgary, Canada, June 1991, pp. 255–262.

Trefethen, Lloyd N.,Finite Difference and Spectral Methods for Ordinary
and Partial Differential Equations, unpublished text, 1996, available at
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html.

Welch, J. Eddie, Francis H. Harlow, John P. Shannon and Bart J. Daly, “The
MAC Method: A Computational Technique for Solving Viscous, Incom-
pressible, Transient Fluid-Flow Problems Involving Free Surfaces,” Los
Alamos Scientific Laboratory of the University of California, Technical
Report LA-3425, March 1966, 146 pages.

Witting, Patrick, “Computational Fluid Dynamics in a Traditional Anima-
tion Environment,”Computer Graphics Proceedings, Annual Confer-
ence Series (SIGGRAPH 99), August 1999, pp. 129–136.

Yngve, Gary, James O’Brien and Jessica Hodgins, “Animating Explo-
sions,” Computer Graphics Proceedings, Annual Conference Series
(SIGGRAPH 2000), July 2000, pp. 29–36.



Figure 5: Melting wax.

Figure 6: Splashing fluid.

Figure 7: Drip sand castle. Figure 8: Melting bunny.


