
A Non-Photorealistic Rendering Framework with Temporal Coherence for

Augmented Reality

Jiajian Chen∗ Greg Turk† Blair MacIntyre‡

School of Interactive Computing
Georgia Institute of Technology

ABSTRACT

Many augmented reality (AR) applications require a seamless
blending of real and virtual content as key to increased
immersion and improved user experiences. Photorealistic and non-
photorealistic rendering (NPR) are two ways to achieve this goal.
Compared with photorealistic rendering, NPR stylizes both the real
and virtual content and makes them indistinguishable. Maintaining
temporal coherence is a key challenge in NPR. We propose a
NPR framework with support for temporal coherence by leveraging
model-space information. Our systems targets painterly rendering
styles of NPR. There are three major steps in this rendering
framework for creating coherent results: tensor field creation,
brush anchor placement, and brush stroke reshaping. To achieve
temporal coherence for the final rendered results, we propose a
new projection-based surface sampling algorithm which generates
anchor points on model surfaces. The 2D projections of these
samples are uniformly distributed in image space for optimal brush
stroke placement. We also propose a general method for averaging
various properties of brush stroke textures, such as their skeletons
and colors, to further improve the temporal coherence. We apply
these methods to both static and animated models to create a
painterly rendering style for AR. Compared with existing image
space algorithms our method renders AR with NPR effects with a
high degree of coherence.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, Augmented, and
Virtual Realities; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality

1 INTRODUCTION

A seamless blending of real and virtual worlds is often seen
key to increased immersion and improved user experiences for
AR. Photorealistic and non-photorealistic rendering (NPR) are
two ways to achieve this goal. Non-photorealistic rendering
creates an abstract version of both the real and virtual world by
stylization, with the goal of making them indistinguishable. NPR
hides unnecessary and overwhelming details of the world, and
reveals and emphasizes important information of the scene. This
can be particularly useful in some applications such as technical
illustrations (e.g., AR/VR aided machine repair, or virtual medical
surgery training), and certain AR games with artistic stylization.

A major challenge for NPR is maintaining temporal coherence.
Rendered results are temporally coherent when each frame
smoothly and seamlessly transitions to the next one without visual
flickering and artifacts that distract the eye from smoothness. For
example, temporal coherence is maintained in brush based NPR

∗e-mail:johnchen@cc.gatech.edu
†e-mail:turk@cc.gatech.edu
‡e-mail:blair@cc.gatech.edu

if the brush stroke located at a certain point in the image frame
smoothly transitions to a corresponding point in the next one,
without any jumping or flickering.

NPR algorithms with coherence are useful for both general
computer graphics and AR/VR. A large number of NPR algorithms
have been proposed to improve temporal coherence. While some
of these algorithms use the geometric information of the models to
maintain coherence, others analyze the whole video sequences with
computer vision techniques to obtain better coherence.

Early NPR techniques for AR/VR simply rendered each AR
frame independently and did not consider temporal coherence at
all. The resulting videos usually appear to flicker and are visually
distracting. Although many NPR algorithms with coherence have
been proposed in the general graphics area, the characteristics of
AR make it difficult to directly apply these existing algorithms in
the AR domain. AR applications must run at interactive frame
rates, cannot look ahead to future video frames, and have only
limited information about the scene. The framework presented here
satisfies the second and third conditions, but does not currently run
at interactive frame frames. We discuss how this could be solved at
the end of the paper.

The remainder of this paper is organized as follows. First, we
review NPR algorithms with coherence in both the general graphics
and AR/VR areas. Second, we propose an NPR framework with
support for coherence using model-space information and describe
its important components. Finally we show results and discuss the
pros and cons of our rendering framework.

2 RELATED WORK

Image and video NPR has been attracting researchers’ attention
in the computer graphics community for decades. Gooch et al.’s
book gives a comprehensive overview of NPR algorithms [10].
There are a large number of NPR algorithms for both still images
and videos in the general graphics and the AR/VR literature. The
most applicable approaches related to our work are video NPR and
interactive NPR, in which coherence is a key problem. Based on
the type of input data and the solutions for maintaining temporal
coherence of the rendered results, we divide the existing algorithms
in the video and interactive NPR literature into two main categories:
algorithms in image space, and algorithms in model space.

In image space approaches the input is a sequence of camera
images (i.e., video) or computer-synthesized images. We have
only limited knowledge of the geometric structure of the scene.
In contrast, we have the full 3D geometry of the scene as input
in model space approaches. Various methods for maintaining
temporal coherence have been studied in these two categories.
Researchers also have proposed methods that use both the
information from the images and the models to improve temporal
coherence. Because the main contribution of our work is for
rendering the 3D models, we will concentrate on model space
algorithms in this review.

151

IEEE International Symposium on Mixed and Augmented Reality 2012
Science and Technology Proceedings
5 - 8 November 2012, Atlanta, Georgia
978-1-4673-4662-7/12/$31.00 ©2012 IEEE

2.1 NPR with Coherence in Model Space

We are focused on the NPR algorithms that can maintain temporal
coherence for rendered animated 3D scenes. In the model
space category, there are several major types of algorithms
for maintaining coherence: particle based algorithms, pre-built
non-photorealistic textures, and geometry analysis and brush
parameterization based algorithms.

Barbara Meier first presented an influential particle based NPR
system that achieves high quality temporal coherence for animated
3D scenes [28]. She formally identified the “shower door” effect
(i.e., the rendered scene appears as if it were being viewed through
textured glass) as a major challenge for achieving frame-to-frame
coherence in animations. The undesired shower door effect is
present in NPR algorithms because the brush textures are fixed to
the view plane not to the animated surfaces at the 3D models. Her
algorithm overcomes this problem by distributing brush anchors on
surfaces and placing brush stroke textures at these anchors in the
screen.

Meier’s inspiring algorithm has been adapted and extended by
many researchers to create various NPR effects with coherence for
rendering 3D models. Kowalski et al. extended Meier’s work
and used stroke based procedural textures, called “graftals”, to
render fur, grass and trees without full geometry [24]. The key
for maintaining temporal coherence in their approach is placing
graftals with controlled screen-space density that matches the
aesthetic requirements of stylization, and sticking them to surfaces
in the scene. Markosian et al. proposed to place static graftals
on surfaces during the modeling phase and did not redistribute
the graftals at each frame [27]. Combing the work of Meier and
Kowalski, Kaplan et al. proposed an interactive NPR system for
model rendering with better coherence support [22]. All of these
approaches are applied to complete video sequences and leverage
the ability to look ahead in time past the current frame.

Pre-built non-photorealistic textures can also be used in a pure
model space approach when the 3D geometry is given. These
approaches create stylized NPR textures offline and map the
textures to object surfaces. Some researchers such as Horry
et al. [19], Wood et al. [36], and Buck et al. [3] have built
hybrid NPR/IBR (i.e., image based rendering) systems where hand-
drawn art was re-rendered for different views. These IBR based
approaches directly use images created by artists to stylize the
scenes for producing various rendering effects. Following the spirit
of these IBR systems, Klein et al. used a variant of the mip-map
texture called an “Art Map” to render a virtual environment with
coherence [23]. In a preprocessing stage, they capture photos of a
real or synthetic environment, map the photos to a coarse model
of the environment, and run a series of NPR filters to generate
textures. At runtime, the system re-renders the NPR textures over
the geometry of the coarse model, and it adds dark lines that
emphasize creases and silhouettes. Praun et al. presented a finer
“Tonal Art Map” to extend Klein’s method [30]. Their algorithm
renders hatching strokes over surfaces.

In addition to the particle based algorithms and pre-built textures,
there are still a large volume of papers that are dedicated to
rendering 3D models with NPR styles with coherence. The
algorithms for maintaining frame to frame coherence in some of
these approaches are mainly based on analysis and parameterization
of brushes and object geometry. For example, Kalnins et al.
implemented the WYSIWYG NPR system [21]. Their system
can produce a sketch and hatching style for models with the user
input. Their algorithm parameterizes silhouette and crease lines to
maintain coherence. Recently, Lu et al. proposed an algorithm
to stylize 3D models together with background videos. They
introduced the idea of geometry reprojection to generate geometric
flow to help guide the movement of brush strokes [26].

2.2 Point Sampling on Surfaces

Generating 3D anchors on model surfaces is a key step for
the particle based NPR algorithms, since their 2D projections
are the locations for brush placement in the rendering stage.
A more general version of this problem, point sampling on
arbitrary surfaces that satisfies a certain distribution, is an important
research area in computer graphics. It can benefit many graphics
applications, such as texture mapping [32], non-photorealistic
rendering [28], remeshing [31, 1], and point-based graphics
rendering [12].

One popular basic solution for generating 3D samples on
surfaces is to randomly generate 3D samples on triangles using
barycentric coordinates in a manifold mesh. The probability of
generating a new 3D sample point on a triangle is proportional to
the ratio of the triangle area and the total mesh area. This solution
can be applied to arbitrary surfaces.

Although the samples usually do not satisfy the exact spatial
uniformity, this method provides a good initial sample set that can
be refined by more complex sampling algorithms [2].

The quality of many sampling algorithms is often measured
by the blue noise distribution. A sample set with the blue noise
distribution means it has a uniform and unbiased distribution in
the spatial domain, and it does not have low frequency noise and
structured bias in the frequency domain. Blue noise sampling on
surfaces are particularly interesting in graphics graphics. Pastor
et al. proposed a point hierarchy structure for blue noise surface
sampling [29]. Alliez et al. [1] and Li et al. [25] presented sampling
methods with parameterizations. However these algorithms need
to pre-generate data sets offline before the sampling process.
Wei proposed a parallel dart throwing technique for blue noise
sampling [34]. Wei’s approaches inspired Bowers et al., who
presented a parallel Poisson disk sampling scheme that uses the
GPU to sample surfaces at interactive frame rates [2].

The algorithms for generating 3D samples, such as the basic
sampling by triangle areas, and more advanced blue noise sampling
as we discussed above, can be used for creating 3D anchors in brush
based NPR. These existing algorithms produce samples on model
surfaces that are evenly distributed in the spatial domain. However,
we often need brush anchors that are evenly distributed in image
space for the purpose of brush stroke placement in the rendering
stage. Also, most of these blue noise sampling algorithms are
slow and unsuitable for real-time applications. In other words, 3D
anchors generated by these existing algorithms are usable, but not
very suitable for brush based NPR in AR. To solve this problem,
we propose an algorithm for generating 3D samples on surfaces
whose projections are uniformly distributed in the screen space for
a optimal brush stroke placement.

2.3 Challenge of Coherence for AR NRP

NPR is an important approach to blend video with computer
generated graphics content. It can be used in many kinds of AR
applications, and therefore has attracted researchers’ attention in
the AR/VR community. Quite a few NPR algorithms have been
proposed and studied.

Perhaps the earliest work in AR NPR was done by Fischer et
al. in 2005 [8, 9]. They argued that stylizing both the virtual and
real content is an important alternative to photo-realism for creating
user immersion in AR. They presented several NPR styles, such as
a cartoon style, for AR applications. They leveraged the power of
the GPU to detect strong edges in AR frames, and blended colors to
create a cartoon-like stylization for AR. They used GLSL to achieve
interactive frame rates.

Haller et al. compared photorealistic rendering and NPR for
AR [13, 15]. He also presented a sketch style rendering for AR [14].
Their algorithms directly apply the NPR methods designed for still

152

images to image sequences in video. As a result the final rendered
videos appear to flicker.

In our previous work, we presented a watercolor-like rendering
style for AR [5]. Our algorithm uses the Voronoi diagram to tile AR
frames in GLSL shaders to achieve a watercolor effect in interactive
frame rates. Our algorithm also re-tiles Voronoi cells along strong
edges at each frame to provide a certain degree of coherence for
the rendered AR video. We also presented a painterly rendering
algorithm in image space [6]. Our algorithm keeps coherence by
detecting matched feature points between frames and warping the
brush anchors with the feature triangles.

There are several differences between NPR for AR and NPR for
video and 3D models. First, AR applications usually require near
real-time performance. Second, we do not have any information
beyond the current frame in AR. Third, we usually do not have
detailed information about the scene geometry in the video. Fourth,
we do have complete information about the virtual content, and
partial spatial information of the scene from tracking. These unique
characteristics of AR imply that existing video NPR techniques
cannot be easily applied in the AR domain.

In this paper we propose a general NPR framework with
support for coherence in model space for AR. We demonstrate
this framework by creating a painterly rendering style for AR.
Our algorithm generates 3D brush stroke anchors on surfaces, and
dynamically changes the anchor density from frame to frame to
maintain temporal coherence. We also present a general method
of reshaping brush stroke textures between two frames. We choose
the painterly rendering style in our system for demonstration, but
the framework of maintaining temporal coherence can be extended
to create other NPR styles (e.g., a sketch style AR for technical
illustration by using hatching textures).

3 OVERVIEW OF NPR FRAMEWORK

The flowchart of our NPR framework in model space is shown in
Figure 1 below.

Figure 1: Flowchart of our NPR framework for AR.

We create a painterly rendering style for AR in our NPR
framework. In brush-based NPR, the key for maintaining temporal
coherence is to keep brush stroke textures smoothly transitioning
from frame to frame. There are three major steps in our framework.
First we create tensor fields on AR frames to guide the orientation
of the brush strokes. The tensor values are interpolated by a tensor
pyramid structure.

Second, to achieve a high degree of temporal coherence for the
final rendered results, we distribute 3D brush anchors on the model
surfaces. We update the 3D anchor list to maintain their density

in screen from frame to frame. The 3D anchors are uniformly
distributed in image space with our sampling algorithm, which is
suitable for brush texture placement in NPR.

Third, we also keep the appearance of brush strokes coherent by
averaging their properties between frames. The major properties of
a single brush stroke include its skeleton and color. The algorithm
in our method can smoothly blend curly brush strokes with a cubic
B-spline representation. The second and third steps are the key for
maintaining temporal coherence in our framework.

Finally we stylize the AR frame by placing brush strokes at
the anchors on the screen. We will discuss the details of tensor
field creation, brush anchor generation on surfaces, and property
averaging of curly brush strokes in the following sections.

4 TENSOR FIELD CREATION

4.1 Background

We need the orientation of each pixel to guide our brush stroke
directions. We create a tensor field instead of a vector field to obtain
this pixel orientation. A major advantage of a tensor field over
a vector field is that it allows sign ambiguity by a half turn [37].
We use the image gradient operator to compute the magnitude P
and orientation θ of a pixel [6]. Once the edge magnitude P and
orientation θ of a pixel are computed, this pixel’s tensor field M is
defined as follows:

M = P

[

cos2θ sin2θ

sin2θ −cos2θ

]

(1)

The eigenvector of this matrix M’s major eigenvalue gives the
orientation θ for this pixel. As mentioned above, this representation
allows for sign ambiguity. Tensor fields are commonly used in
scientific visualization [37] and video processing [20]. Some
researchers also use tensor fields for different applications, such as
street modeling [4].

As an alternative, we could define the following 2×1 vector:

v =
[

P θ
]T

(2)

at each edge pixel. Furthermore, we could omit the magnitude
component P and use only the angle θ at each edge pixel to create
a scalar field, since the direction information is all that is needed
by our algorithm. However, both the vector field and the scalar
field of angles are directional, while the tensor field representation
supports sign ambiguity, a major advantage of the tensor field. As
a result, the linear interpolation of the vector field and the scalar
field may result in singularities as intermediate values pass through
zero. It is possible to avoid this problem by always capping the
angle θ to the range [−π,π] when we interpolate the values in
the vector field. However this is not an elegant solution, with the
resulting algorithm needing conditional statements to compute the
new angle. On the other hand, the full tensor field representation
allows us to interpolate new tensor values simply and elegantly, as
a linear combination of tensor values. We can also apply filters
(such as a Gaussian filter) to the tensor values by convoluting the
filter kernel and the tensor values directly, without worrying about
the sign ambiguity of the angle θ . This benefit becomes more
important as we construct and use the tensor pyramid later in this
section.

In the next section we will discuss how to treat those areas with
weak orientations (far from edges).

4.2 Tensor Field Pyramid

Global radial basis interpolation can give the tensor values for non-
edge pixels, but this interpolation is computationally expensive
because it needs to loop through all strong edge pixels. Instead, we
adopted our previous algorithm and use a tensor pyramid structure
to compute the tensor values for an AR frame [6]. Our idea is

153

inspired by the method of interpolating sparse lumigraph data from
Gortler et al. [11]. First we divide the original video frame to grid-
based regions, and compute the weighted average tensor values in
the regions that contain strong edge pixels. Second, we apply a
low-pass Gaussian filter to the tensor values, and then sub-sample
the grid to create a new tensor field at a higher level. We repeat
the second step until we have reached the top level of the tensor
pyramid.

Once the pyramid is created, we can look up a tensor value for
any pixel in a frame. During the painting, if we need a tensor field of
a pixel, first we check to see if it already has a tensor value assigned
at the bottom level of the tensor pyramid (i.e., it is an edge pixel).
If it does, we just use its value, otherwise we go up in the tensor
field pyramid, and check if the corresponding region containing this
pixel has a tensor value in this level, continuing until a value is
found.

Since many NPR algorithms need direction information at the
pixels, our tensor pyramid method can be easily extended to these
algorithms. Tensor field creation in the CPU is computationally
expensive, but it can be effectively accelerated by GPU based
parallel computing techniques, such as CUDA or Stream.

5 BRUSH ANCHOR GENERATION ON SURFACES

A key for keeping coherence in brush stroke based NPR is finding
the correspondence of the brush stroke anchors and placing the
brush strokes at these anchor positions. Placing brush anchors on
a model’s surface is a special case of the point sampling problem.
Point sampling of a 3D model is an important topic in computer
graphics. A widely-used algorithm is to generate samples on the
triangles of a manifold surface using barycentric coordinates, as
we described in the related work section. This approach randomly
picks a triangle each time to create a new sample in it, with the
probability proportional to the ratio of the triangle area and the
total mesh area. This algorithm can produce random samples on the
model surfaces but the projection of these samples are not evenly
distributed in image space. Hence these samples are not ideal for
brush based NPR algorithms. Also, the number of surface samples
given by this algorithm is fixed. In NPR algorithms we often need
to maintain the density of anchors in each region for placing brush
strokes. For example, we need to add or remove anchors when
the camera is moving close to or far away from the models we are
painting.

To solve the problem we create an anchor list and update the list
based on the density of their 2D projections on screen. Our new
algorithm for brush anchor placement makes use of an image-space
grid and back-projection onto the 3D model’s surface. The size of
grid cells in our paper is 8× 8 pixels. For the first frame we pick
jittered centers of grid cells in screen space and back-project them
onto the model surface to obtain the initial 3D anchor list.

In the following frames, we dynamically add and remove 3D
anchors in each frame to maintain the density of 2D projections of
the 3D anchors in our list. If certain areas have too many anchors,
we simply remove 3D anchors whose projections are inside the
area. We keep updating the current anchor list from frame to frame.

After these 3D anchors are projected to the screen for a frame,
it is still possible that certain areas are not covered by any anchors.
Hence no brush strokes will be placed in these area and it will cause
“holes” as a result. To solve this problem, we propose an algorithm
to dynamically add new 3D anchors to our anchor list. These new
3D anchors are generated at each frame by back-projecting 2D
points from image space into the model surface. The pseudo code
of this algorithm is listed as follows.

1 Compute the 2D projection of each 3D anchor in the

current anchor list

2 Update the number of anchors in each grid

3 for every grid in the screen

4 {

5 if (the number of anchors in this grid <=

lower_threshold)

6 {

7 Randomly pick a point P inside this grid;

8 Back-project P to 3D model surfaces, and

find the corresponding 3D location Q

on mesh for P;

9 Add Q to current anchor list;

10 }

11 }

Please note that the back-projection of a point from 2D screen to
a 3D mesh is a non-trivial problem, given the fact that the projection
matrix returned by the AR tracker contains components for camera
calibration. It is difficult to use the regular OpenGL routine to
compute the intersection of the eye ray with mesh with this non-
standard perspective matrix. To avoid this problem, we propose a
much simpler and clearer way for the back-projection. The pseudo
code of our back-projection is shown below.

1 Render the mesh with only color. The color value

of a triangle is the index of it in the mesh.

2 // return a 3D anchor from mesh for a given grid

3 Back_Projection(grid index, mesh)

4 {

5 Randomly pick P inside grid, get the pixel

color at P;

6 Decode the color to index i;

7 Generate a random 3D point Q in i-th triangle

in mesh;

8 while (projection of Q is not inside the grid)

9 {

10 Generate a random 3D point Q in i-th

triangle in mesh;

11 }

12 return Q;

13 }

In this back-projection routine we generate the random 3D point
Q with barycentric coordinates (x,y,z) uniformly distributed in the
i-th triangle as follows:

u,v = Uni f [0,1] (3)

x = 1−
√

u (4)

y =
√

u(1− v) (5)

z =
√

uv (6)

Although our trial-and-error method has a loop, it is very
efficient in most cases. Models we are working with usually
have a large number of triangles. The projection area of a single
triangle is usually very small in most camera scenarios. Hence we
usually get a new anchor Q in only one trial in our testing. The
back-projection method also by-passes the problem of computing
intersections between the eye ray and triangles with a complex non-
regular OpenGL perspective matrix.

This algorithm can be easily generalized for both static models
and animated models. For static models, we store 3D positions of
each anchor in the 3D anchor list. We use the color polygon ID
to find the triangle index in the mesh, and then generate a new 3D
anchor using barycentric coordinates. We update the 3D anchor list
from frame to frame. For models with rigid body animation, the
process is similar. We just need to apply the corresponding world
view matrix to each anchor when we compute the 2D projection at
each frame.

For models that are animated using mesh skinning, we store the
triangle index and the barycentric coordinates of each anchor in

154

the 3D anchor list. To compute the projection of a 3D anchor at a
certain frame, we need to compute the position of the three vertices
in the triangle based on the corresponding bone transformation and
bone weight matrix. We then compute the new 3D location of this
anchor in the current frame using its barycentric coordinates inside
this triangle, and finally compute its 2D projection on the screen.
In the back-projection process, we first find the triangle index using
color polygon ID, then generate a new anchor in the triangle and
store its index and barycentric coordinates to the anchor list.

Figure 2 shows an alien spaceship, which is a static model, with
over 7,000 anchors. The purple dots are the new anchors added for
the current frame. The blue dots are existing anchors that are visible
for the current frame in the current anchor list. Note that there are
only a small number of purple anchors that are newly added to each
frame, and most of anchors are blue ones after only a few “warm-
up” frames. Also, newly added anchors are usually at the boundary
of the model. This means that we achieve a satisfactory anchor
density quickly in this algorithm. This is exactly what we want for
obtaining a stable anchor list for coherent painting.

Figure 2: Brush anchor visualization for a static alien spaceship
model. Four screens are created at frame 0, 20, 40, 60 from a video
at 30 fps.

Figure 3 shows a running super hero model with skinning
animation with over 1,000 anchors. Note that anchors stick to the
model surface during the animation and that they are updated from
frame to frame to maintain proper density on the screen.

This algorithm can also be applied to generate an arbitrary
number of point samplings on any 3D models. Compared to
the original point sampling algorithm based on triangle areas,
and other more complex point sampling algorithms (e.g., blue
noise sampling), our algorithm has several advantages. First, it
generates 3D samples whose projections are evenly distributed in
2D image space. Other sampling algorithms produce samples that
are uniformly distributed over a model’s surface. As a result, their
2D projections on the screen can be sparse or overly dense at
different regions. In our sampling algorithm, the 2D projections
are immediately ready for later use in brush stroke placement. This
is a desired feature for many NPR algorithms. Second, it is easier
to add or remove anchors to maintain a proper density of brush
stroke anchors on the 2D screen, since we adjust the 3D anchor list
based on the density of their 2D projections from frame to frame.
Third, it is possible to implement and speed up this algorithm with
GPU based parallelization techniques such as CUDA. Our sampling
algorithm is straightforward to parallelize, since the generation of
an anchor in each region is independent of other anchors.

Figure 3: Brush anchor visualization for the running super hero
model with skinning animation. Four screens are created at frame
0, 20, 40, 60 from a video at 30 fps.

Given the complete geometric information of the scene, our
anchor generation algorithm generates perfectly coherent brush
anchors from frame to frame that are also uniformly distributed in
image space. As a result, this method provides a higher degree
of coherence for brush strokes, compared to the anchor warping
methods that are based on optical flow [16] or geometric flow [26].

6 COHERENT CURLY BRUSH STROKES

In this section, we describe how we render long, curly brush
strokes. Moreover, we introduce a new method of maintaining the
appearance of a stroke across frames as its path and color changes.

6.1 Brush Rendering

We create long curly brush strokes by elongating the brush skeleton
in the tensor field direction. We also use bump mapping to
simulate the lighting of textured brush strokes that is present in
real world paintings. The algorithm is adapted and improved from
our previous work [6]. The basic brush elongation algorithm has
also been used in the work of Hertzmann et al. and Hays et
al. [17, 18, 16]. The difference is that we choose cut-off angles
as the stop condition for creating curly brush strokes with multiple
segments. Hertzmann et al. use only the color difference as the stop
condition for creating brush strokes. Hays et al. allow only straight
brush strokes with a single segment.

6.2 Brush Shape Coherence

In order to keep temporal coherence we move the anchor points
of brush strokes from the previous frame to the current frame.
However, repainting a brush stroke at the corresponding anchor
points at the current frame sometimes produces bad coherent
results. The shape of a textured brush stroke in the final painting
is given by its skeleton, which is a sequence of control points.
The computation of brush stroke control points is decided by the
local tensor field and the color difference of regions around the
anchor. The shape of a curly brush stroke in two frames can vary
significantly, even if its anchor points are coherent. Hence it is also
necessary to change the shape of a brush stroke in the current frame
to make it similar to the previous one. In additional to the shape of
a brush stroke skeleton, we also need to add constraints to cap the
change of a brush stroke color between two consecutive frames.

Our assumption is that a coherent brush stroke in two
consecutive frames should have similar shapes and colors that

155

do not vary too much. We propose an algorithm to average
the properties of two corresponding brush strokes, including their
shapes and colors, between the current frame and the previous
frame. We maintain a history list of properties of brush strokes
at each 3D anchor in our algorithm. At each new frame, we first
compute the new properties of a brush stroke (e.g., averaged color
and skeleton control points) based on the information on the current
frame. We then interpolate the new properties with the previous
properties in the history list of this brush stroke. We use the
interpolated results to paint the brush, and update the history list.

The interpolation of colors of two corresponding brush strokes
can be computed in many ways. We choose the following weighted
average function to produce satisfactory results:

1 mycolor_3d new_color = (1 - alpha) * current_color

+ alpha * previous_color;

We ran several experiments to pick the optimal value for the
coefficient alpha. Choosing alpha as 0.95 gives coherent results
for the brush stroke skeleton and color in general.

The interpolation of brush stroke control points is more complex.
Given two sequences of control points, we first solve the basic case,
in which the two sequences have an equal number of control points.
We start from the first control point in the current frame. For each
new segment, we average the direction from two brush strokes, and
then elongate the brush stroke skeleton to the new ending point.
Since the length of each segment is equal in our algorithm, we also
need to normalize the direction at each step. We continue doing this
until we reach the end of both sequences. In this paper we choose
an alpha value of 0.95 to average the direction for each segment to
create the new control point sequence.

Based on this basic case, we then need to consider the scenarios
in which the two sequences have different numbers of control
points. If the size of the brush in the current frame is smaller
than it in the previous frame, we can still use the routine above
to compute the new average brush skeleton by using only part of
the control points at the beginning of the previous one. If the size
of the brush in the current frame is large than it in the previous
frame, we do not have the information (e.g., control points) beyond
the last segment from the previous frame to match it in the current
frame. One possible solution to solve this problem is to use only the
information of the control points in the current frame to continue the
brush skeleton elongation. However this solution is not ideal.

We propose a general solution to deal with the problem of
averaging two sequences of control points in all types of scenarios.
We force the elongation of each brush to the same number of
control points at each frame for the purpose of interpolation, but
we use only the valid part of the averaged brush control points for
painting textures in each frame. There are several advantages to this
solution. First, it avoids the problem of lack of information during
interpolation. Second, it allows to handle several complex scenarios
in a single universal routine as shown above. Third, it produces
more clear and elegant code that has less condition branches and
runs faster. The algorithm is illustrated in Figure 4.

Figure 5 visualizes the brush skeletons of AR frames using our
algorithm. In these results the brush skeletons stick to the object
surfaces, which gives a very high degree of coherence for brush
skeletons in the painting. Figure 6 shows another example of
coherent brush skeletons with an animated model.

7 RESULTS AND DISCUSSION

We compare the coherence of rendered AR video produced by an
image space algorithm adopted from our previous work [6], and
by our new model space algorithm. We have tested our results on
both static and animated 3D models. The models we choose to
render are common in many AR applications, such as AR games,
including humans, animals and vehicles.

Figure 4: A general solution for averaging brush stroke skeletons
with different sizes at two consecutive frames. The maximum size
of a brush stroke is 5 segments and 6 control points in this case.
Brush stroke skeleton A is from the previous frame. We force it to
extend to 5 segments, and use only the first 4 segments in painting.
Brush stroke skeleton B is initially created by local tensor fields from
the current frame, and then averaged with A to interpolate C. C is the
brush stroke skeleton we use for the final painting at this anchor point
in the current frame. We also record C into the brush history list for
this anchor in this frame.

Figure 5: Brush stroke skeleton visualization for the alien spaceship
model. Four screens are created at frame 0, 20, 40, 60 from a video
at 30 fps.

Figure 7 shows the rendered results of a static model produced
by our model space algorithm with coherence.

Figure 8, 9 compares the rendered results produced by the image
space algorithm and our new model space algorithm. Note the
extremely stable and coherent brush textures in the model space
images.

Figure 10, 11 gives another example for an animated model.
Note the extremely stable and coherent brush textures in the model
space result.

In our NPR framework we can obtain other NPR effect, such
as sketch and hatching style, by using cross-hatching textures
instead of brush stroke textures. Brush stroke anchors located
on surfaces smoothly transition from frame to frame to provide
temporal coherence. The final rendering is still composed in 2D
since we place curly brush strokes at AR frames. Compared with
painterly rendering algorithms in image space [6], our new model
space framework provides better coherent brush strokes from frame
to frame.

This algorithm can be used to render 3D graphics content in
AR. A problem of using this method in model space is that in
AR we usually do not have the accurate information of the scene

156

Figure 6: Brush stroke skeleton visualization for the running
superhero model. Four screens are created at frame 0, 20, 40, 60
from a video at 30 fps.

Figure 7: An alien spaceship painted with coherence by our new
model space algorithm.

geometry except the 3D graphical models. If we can reconstruct
the 3D scene from the video then this algorithm can be directly
used to render the video content with coherence. However if the
precise reconstruction cannot be done in interactive frame rates then
we can use image space algorithms to process the video content
with coherence, which leads to a hybrid combination for rendering
AR. In this paper we rendered the 3D graphics model with our
new model space method, and rendered video content with an
image space method. Both of them fit into our general rendering
framework with coherence support.

7.1 Performance Analysis

Our algorithm creates NPR effects for AR with a high degree of
coherence. Although our algorithm is currently running offline,
it could be further optimized to achieve interactive frame rates.
We divide the rendering pipeline in our NPR framework into the
following four stages to analyze the bottleneck of the performance:
the tensor field creation, the brush anchor generation on the surface,
the brush stroke averaging and the final rendering. The time cost
of each stage for two scenes with the static models (the dragon

Figure 8: A painted dragon model. While each individual frame
looks acceptable in both image space method (left) and our new
model space method (right), careful examination reveals significantly
greater brush stroke coherence between the model space images.

and the alien spaceship), and one scene with the animated model
(the running superhero) is shown in Table 1. The resolution of AR
frames is 640×480 pixels in these test scenes.

Table 1: Average Processing Time per AR frame (Unit: ms)

Test scene Stage 1 Stage 2 Stage 3 Stage 4 Total

dragon 50 195 200 20 465

alien spaceship 50 210 200 20 480

running superhero 48 195 190 20 453

The final rendering is not the bottleneck of our system. Although
models shown here have different number of triangles, in our model
space algorithm the total number of brush stroke textures placed on
screen is capped by the video frame size (640×480 pixels), the grid
size (8× 8 pixels), and brush density per grid (2 brush strokes per
grid). This is another advantage of our anchor generation method.
The total number of brush strokes is about 9,600 per frame. Each
brush stroke can have up to 20 quads, so the total number of
polygons rendered per frame is about 192,000.

The bottleneck of the performance is the tensor field creation,

157

Figure 9: A zoomed in view of the dragon wing area. (Left: image
space method. Right: our new model space method.) Although both
results look good (the brush strokes in Circle 2 look coherent in the
both methods), the brush strokes in Circle 1 are significantly more
stable in the model space method than in the image space method.

the brush anchor generation and the brush stroke averaging, as
these three stages are currently running on the CPU. The tensor
field creation could be parallelized by CUDA. Similarly the brush
anchor generation and brush stroke averaging methods can also be
parallelized in a straightforward way. The generation of a new
anchor is independent of other anchors. The averaging method for
a single brush stroke on a certain anchor is entirely decided by its
own brush stroke history list, which is also independent of other
brush strokes. The use of parallelization may allow our algorithm
to achieve interactive frame rates in the future.

7.2 Evaluation of Video Quality

In Section 7 we render the same video sequences using our
original image space algorithm and our new model space algorithm.
We mainly use subjective measurements to judge the quality of
coherence in the renderings. Objective measurements are possible
for the anchor distribution: our anchor generation algorithm gives
the ground truth for anchors between frames, and it can be
proven that their projections are evenly distributed in image space,
compared with the basic point sampling algorithm. Given the
3D anchors on the model’s surface, we can precisely compute the
movement of these anchors from frame to frame in our model space
algorithm. On the other hand, we use feature matching to warp
anchors in our original image space algorithm. We used the result
of anchor movement in our model space algorithm as the ground
truth and tested the error rate in anchor warping for three scenes
(the dragon, the alien spaceship and the running superhero). The
comparison is shown in Table 2.

However, it is difficult to create objective measurements to
compare the quality of the final rendering. We visualize the
brush skeletons to show the coherence improvement, but the effect
on human visual perception of coherence in the final painted

Figure 10: A painted running superhero model. (Left: image space
method. Right: our new model space method.)

results is more difficult to quantify. Researchers have been
used various subjective and objective metrics to help evaluate
the perceptual quality of images and video. Traditional error
summation methods have been used as an objective measurement
for image quality by many researchers. Wang and Bovik presented
a universal objective image quality index to assess the various
image processing applications without employing the human visual
system [33]. Claypool and Tanner asked test subjects to rate a
quality opinion score ranging from 1 to 1000 after watching a video
clip to measure the effects of jitter and packet loss on perceptual
quality of streaming video [7]. Winkler and Mohandas gave
a comprehensive review of subjective experiments and objective
metrics of video quality and their uses [35].

We are focused on the perceptual quality and coherence of videos
that are rendered by NPR algorithms. Many objective metrics such
as the error summation cannot be used in NPR, as we usually do
not have a corresponding stylized image or video to use as a ground
truth to compare with our rendered results. Subjective experiments
may be more useful to evaluate the quality of stylized videos in
NPR. We used informal methods to compare the video quality in
this comparison section, but a formal user study would be useful
to better quantify the quality and coherence of our results. For
example, a questionnaire or survey could be used to collect scores
for perceived video quality and level of coherence of videos that are
rendered by different algorithms with different settings. Interviews
could be conducted after the study to collect user’s feedback and

158

Figure 11: A zoomed in view of the chest area of the animated model.
(Left: image space method. Right: our new model space method.)

Table 2: Comparison of Anchor Warping

Tested algorithms (scenes:

dragon, alien spaceship

and superhero)

Average

number of

anchors

Incorrectly

warped

anchors

Error rate

in warping

(%)

Image Space Algorithm 4300 1105 25.7

Model Space Algorithm 4300 0 0

comments. In addition to the subjective scores and comments,
objective measurements such as the movement of a subject’s eye
gaze when they are watching rendered videos may be recorded
to help evaluate which parts of the video sequence are attracting
the user’s attention (and thus may exhibit distracting artifacts).
Although most of the collected data would still be subjective, this
information may be useful to help better understand and evaluate
the coherence problem in NPR for AR.

8 CONCLUSION AND FUTURE WORK

Our new model model space NPR algorithm provides better
coherent results than image space methods. Brush strokes located
on polygons smoothly transition from frame to frame. However,
the final rendering is still performed in 2D since we create a long
curly brush strokes at AR frames. A problem of using this method
as well as any other model space NPR algorithm is that in AR we
usually do not have the accurate information of the scene geometry,
except for the 3D graphical models. This algorithm will achieve the
best coherence if it could be integrated with a scene reconstruction
algorithm running at interactive frame rates.

We have proposed a general NPR framework with support of
coherence for AR applications. Our method improves the rendering
result by providing visual coherence. The final painting result is
created by placing bump-mapping curly brush strokes on each AR
frame. The placement of brush strokes is guided by tensor fields

for each frame. Temporal coherence is maintained by moving
the brush anchors with the model and reshaping the brush strokes
from the previous frame to the current frame. The contribution
of our algorithm has two parts. The first part is the anchor
sampling algorithm. This algorithm maintains proper density of
brush anchors on the screen, which is a desired feature for many
NPR algorithms. It is also particularly suitable for AR, as we
do not know the camera motion in advance. By controlling the
brush anchor density from 2D and then back-projecting the 3D
anchors onto surfaces, our algorithm achieves better coherence for
the brush stroke placement. The second contribution is our method
of averaging brush properties, including their skeletons and colors,
to achieve better coherence in the final rendering. Compared with
existing methods, our method allows us to smoothly blend curly
brush strokes with a cubic B-spline representation. Our method can
be extended to average other high dimension data as well.

Currently our algorithm creates a painterly rendering effect for
AR with a high degree of coherence, but it renders the sequences
offline. As we discussed in the previous section the rendering
is not the bottleneck of our system. Our algorithm can be
further optimized to achieve interactive frame rates. We analyzed
the performance of our current algorithm. There are several
improvements that can be done to speed up the rendering to achieve
interactive frame rates in the future. For example, we can accelerate
the creation of the initial tensor field and final tensor pyramid by
using GPU-based parallelization such as CUDA. Another direction
to explore is to study how to make better use of the information
extracted from the video and graphics content. In this paper we
use an image space algorithm to render the background video. The
information extracted from video can be potentially useful to refine
coherence for the graphics content, and vice versa. We would like
to explore these two directions in the future.

REFERENCES

[1] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry remeshing.

In Proceedings of the 29th annual conference on Computer graphics

and interactive techniques, SIGGRAPH ’02, pages 347–354, New

York, NY, USA, 2002. ACM.

[2] J. Bowers, R. Wang, L.-Y. Wei, and D. Maletz. Parallel poisson disk

sampling with spectrum analysis on surfaces. ACM Trans. Graph.,

29(6):166:1–166:10, Dec. 2010.

[3] I. Buck, A. Finkelstein, C. Jacobs, A. Klein, D. H. Salesin, J. Seims,

R. Szeliski, and K. Toyama. Performance-driven hand-drawn

animation. In Proceedings of the 1st international symposium on Non-

photorealistic animation and rendering, NPAR ’00, pages 101–108,

New York, NY, USA, 2000. ACM.

[4] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang. Interactive

procedural street modeling. In ACM SIGGRAPH 2008 papers,

SIGGRAPH ’08, pages 103:1–103:10, New York, NY, USA, 2008.

ACM.

[5] J. Chen, G. Turk, and B. MacIntyre. Watercolor inspired non-

photorealistic rendering for augmented reality. In Proceedings of the

ACM Symposium on Virtual Reality Software and Technology, VRST

2008, Bordeaux, France, October 27-29, 2008, pages 231–234, 2008.

[6] J. Chen, G. Turk, and B. MacIntyre. Painterly rendering with

coherence for augmented reality. In IEEE ISVRI, 2011.

[7] M. Claypool and J. Tanner. The effects of jitter on the peceptual

quality of video. In Proceedings of the seventh ACM international

conference on Multimedia (Part 2), MULTIMEDIA ’99, pages 115–

118, New York, NY, USA, 1999. ACM.

[8] J. Fischer and D. Bartz. Real-time cartoon-like stylization of AR video

streams on the GPU. In Technical Report WSI-2005-18, University of

Tubingen, 2005.

[9] J. Fischer, D. Bartz, and W. Straßer. Artistic reality: fast brush stroke

stylization for augmented reality. In VRST, pages 155–158, 2005.

[10] B. Gooch and A. Gooch. Non-Photorealistic Rendering. AK Peters

Ltd, july 2001. ISBN: 1-56881-133-0.

159

[11] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The

lumigraph. In SIGGRAPH, pages 43–54, 1996.

[12] J. P. Grossman and W. J. Dally. Point sample rendering. In Rendering

Techniques 1998, pages 181–192. Springer, 1998.

[13] M. Haller. Photorealism or/and non-photorealism in augmented

reality. In ACM International Conference on Virtual Reality

Continuum and its Applications in Industry, pages 189–196, 2004.

[14] M. Haller and F. Landerl. A mediated reality environment using a

loose and sketchy rendering technique. In ISMAR, pages 184–185,

Washington, DC, USA, 2005. IEEE Computer Society.

[15] M. Haller and D. Sperl. Real-time painterly rendering for mr

applications. In International Conference on Computer Graphics and

Interactive Techniques in Australasia and Southeast Asia, 2004.

[16] J. Hays and I. A. Essa. Image and video based painterly animation. In

NPAR, pages 113–120. ACM, 2004.

[17] A. Hertzmann. Painterly rendering with curved brush strokes of

multiple sizes. In SIGGRAPH, pages 453–460, 1998.

[18] A. Hertzmann. Fast paint texture. In NPAR, page 91, 2002.

[19] Y. Horry, K.-I. Anjyo, and K. Arai. Tour into the picture: using a

spidery mesh interface to make animation from a single image. In

Proceedings of the 24th annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’97, pages 225–232, New York,

NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[20] M. Kagaya, W. Brendel, Q. Deng, T. Kesterson, S. Todorovic,

P. J. Neill, and E. Zhang. Video painting with space-time-varying

style parameters. IEEE Transactions on Visualization and Computer

Graphics, 17(1):74–87, Jan. 2011.

[21] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee,

P. L. Davidson, M. Webb, J. F. Hughes, and A. Finkelstein. Wysiwyg

npr: drawing strokes directly on 3d models. In Proceedings of the 29th

annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’02, pages 755–762, New York, NY, USA, 2002. ACM.

[22] M. Kaplan, B. Gooch, and E. Cohen. Interactive artistic rendering. In

NPAR, pages 67–74, 2000.

[23] A. Klein, W. Li, M. M. Kazhdan, W. T. Corrêa, A. Finkelstein,

and T. A. Funkhouser. Non-photorealistic virtual environments. In

SIGGRAPH, pages 527–534, 2000.

[24] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev, R. Barzel,

L. S. Holden, and J. Hughes. Art-based rendering of fur, grass, and

trees. In SIGGRAPH, pages 433–438, 1999.

[25] H. Li, K.-Y. Lo, M.-K. Leung, and C.-W. Fu. Dual poisson-disk

tiling: An efficient method for distributing features on arbitrary

surfaces. IEEE Transactions on Visualization and Computer

Graphics, 14(5):982–998, Sept. 2008.

[26] J. Lu, P. V. Sander, and A. Finkelstein. Interactive painterly stylization

of images, videos and 3D animations. In Proceedings of I3D 2010, feb

2010.

[27] L. Markosian, B. J. Meier, M. A. Kowalski, L. Holden, J. D. Northrup,

and J. F. Hughes. Art-based rendering with continuous levels of detail.

In NPAR, pages 59–66, 2000.

[28] B. J. Meier. Painterly rendering for animation. In SIGGRAPH, pages

477–484, 1996.

[29] O. M. Pastor, B. Freudenberg, and T. Strothotte. Real-time animated

stippling. IEEE Comput. Graph. Appl., 23(4):62–68, July 2003.

[30] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching.

In SIGGRAPH, page 581, 2001.

[31] G. Turk. Re-tiling polygonal surfaces. In Proceedings of the 19th

annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’92, pages 55–64, New York, NY, USA, 1992. ACM.

[32] G. Turk. Texture synthesis on surfaces. In Proceedings of the 28th

annual conference on Computer graphics and interactive techniques,

SIGGRAPH ’01, pages 347–354, New York, NY, USA, 2001. ACM.

[33] Z. Wang and A. Bovik. A universal image quality index. IEEE Signal

Processing Letters, 9:81 – 84, 2002.

[34] L.-Y. Wei. Parallel poisson disk sampling. In ACM SIGGRAPH

2008 papers, SIGGRAPH ’08, pages 20:1–20:9, New York, NY, USA,

2008. ACM.

[35] S. Winkler and P. Mohandas. The evolution of video quality

measurement: From PSNR to hybrid metrics. IEEE Transactions on

Broadcasting, 54(3):660–668, Sept. 2008.

[36] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and

D. H. Salesin. Multiperspective panoramas for cel animation. In

Proceedings of the 24th annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’97, pages 243–250, New York,

NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[37] E. Zhang, J. Hays, and G. Turk. Interactive tensor field design and

visualization on surfaces. IEEE TVCG, 13(1):94–107, 2007.

160

