
Painterly Rendering with Coherence for Augmented Reality

Jiajian Chen∗ Greg Turk† Blair MacIntyre‡

School of Interactive Computing
Georgia Institute of Technology

Figure 1: A sequence of painted AR frames. A real green cup, a real black cover book, a virtual teapot and a virtual bunny on a table.

ABSTRACT

A seamless blending of the real and virtual worlds is key to
increased immersion and improved user experiences for augmented
reality (AR). Photorealistic and non-photorealistic rendering (NPR)
are two ways to achieve this goal. Non-photorealistic rendering
creates an abstract version of both the real and virtual world
by stylization to make them indistinguishable. We present a
painterly rendering algorithm for AR applications. This algorithm
paints composed AR video frames with bump-mapping curly
brushstrokes. Tensor fields are created for each frame to define
the direction for the brushstrokes. We use tensor field pyramids
to interpolate sparse tensor field values over the frame to avoid
the numeric problems caused by global radial basis interpolation in
existing algorithms. Due to the characteristics of AR applications
we use only information from the current frame and previous
frame to provide temporal coherence in two ways for the painted
video. First, brushstroke anchors are warped from the previous
frame to the current frame based on their neighbor feature points.
Second, brushstroke appearances are reshaped by blending two
parameterized brushstrokes to achieve better temporal coherence.
The major difference between our algorithm and existing NPR work
in general graphics and AR/VR areas is that we use feature points
across AR frames to maintain coherence in the rendering. The use
of tensor field pyramids and extra properties of brushstrokes, such
as cut-off angles, are also novel features that extend exiting NPR
algorithms.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, Augmented, and
Virtual Realities; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality

1 INTRODUCTION

Photorealistic and non-photorealistic rendering are two major
approaches to seamlessly blend the real and virtual world in AR.

∗e-mail: jchen30@mail.gatech.edu
†e-mail:turk@cc.gatech.edu
‡e-mail:blair@cc.gatech.edu

Compared with photorealistic rendering [24], non-photorealistic
rendering may be more appropriate to some AR applications. For
example, an abstract stylization in AR hides unnecessary and
overwhelming details of the world, and reveals and emphasizes
important information of the scene. This could be particularly
useful in some applications, e.g., AR/VR aided machine repair, or
for virtual medical surgery.

Several NPR algorithms have been proposed for AR/VR. A
major challenge for these rendering algorithms is maintaining
temporal coherence for the composed AR video. Based on the
literature in the AR/VR community we believe that this problem
has not been solved yet. Most NPR techniques for AR/VR simply
render each AR frame independently and do not consider temporal
coherence at all. The resulting videos usually appear to flicker and
are visually distracting.

The remainder of this paper is organized as follows: We briefly
review NPR algorithms with coherence in general graphics and
AR/VR areas in Section 2. We propose the framework of our
algorithm and describe each important step in Section 3. We show
results in Section 4 and we conclude the paper in Section 5.

2 RELATED WORK

There are a large number of NPR algorithms in the general graphics
and AR/VR literature. The most applicable approaches related to
our work are video NPR and real-time NPR, in which coherence
is a key problem. Based on the type of input data and the
solution methods for maintaining coherence, we divide the existing
algorithms in the video and real-time NPR literature into two
categories: algorithms in model space or in image space. In the
image space approach the input is a sequence of camera images
(video) or synthesized images. We do not have much knowledge
about the geometry of the scene. In contrast, we have the 3D
geometry of the scene as input in the model space approach.
Different methods of maintaining temporal coherence are used in
these two categories. We will discuss each of these in turn.

Model space algorithms create NPR effects for 3D models.
There are two major types of algorithms in the model space
approach for maintaining coherence: particle based algorithms
and non-photorealistic textures. Particle based algorithms are
studied by [23, 19, 22, 17]. Barbara Meier first presented an
influential particle based NPR system that achieves high quality
temporal coherence for animation. In her algorithm 3D particles
are selected on the 3D model surfaces. Each particle is associated

103

IEEE International Symposium on Virtual Reality Innovation 2011
19-20 March, Singapore
978-1-4577-0054-5/11/$26.00 ©2011 IEEE

with a 2D brushstroke texture. During rendering, these particles
with brushstrokes are rendered from back to front. Kowalski
et al. extended Meier’s work and uses stroke based procedural
texture (“graftals”) to render fur, grass and trees without full
geometry. Markosian et al. placed static graftals on surfaces
during the modeling phase and the graftals are not redistributed
each frame. Combing the work of Meier and Kowalski, Kaplan
et al. proposed an interactive NPR system for model rendering with
better coherence support.

Pre-built non-photorealistic textures can also be used in the
model space approach when the 3D geometry is given. Klein et al.
used a variation of mip-map texture (“Art Map”) to render a virtual
environment with coherence [18]. Their approach applies NPR
filters to stylize each level of the mip-map texture, and then maps
the pre-built stylized textures on surfaces in rendering. Praun et al.
presented a finer ‘Tonal Art Map’ to extend Klein’s method [25].

In the image space approach, some researchers extended NPR
techniques from still images to video and used optical flow to
achieve temporal coherence [20, 16]. Some other researchers
treated the video as a spatiotemporal volume and analyzed the video
volume globally to obtain better coherence [3].

Litwinowitcz first proposed the use of optical flow to improve
coherence for video NRP. His algorithm uses the optical flow vector
field as a displacement field to move the brushstrokes to new
locations. This algorithm can provide a certain degree of temporal
coherence for video NPR. However, new added strokes can appear
in front of old strokes so the final result may scintillate.

Litwinowitcz’s algorithm is the first approach in the literature
that tries to use optical flow to maintain temporal coherence for
video NRP. In general, this algorithm does fairly well but cannot be
improved further without any advanced knowledge of the scene.
Hertzmann et al. placed varied brushstrokes on still images by
following normals of image gradients [13]. He extended his
algorithm and Litwinowitcz’s work to video and also used optical
flow to maintain temporal coherence [16]. This paper presented
two methods for keeping temporal coherence: a crude region based
paint over method, and an optical flow based improved paint-over
method. He also presented an energy function as a guide to place
brushstrokes on canvas, and used optical flow to warp brushstroke
control points to achieve coherence [14].

Optical flow has inspired many researchers to maintain temporal
coherence for video NPR. Many NPR algorithms involve textures,
such as brushstroke textures, that simulate the appearance of
various NPR effects. Bousseau et al. produced a watercolor effect
for video [1]. It uses two different approaches to achieve temporal
coherence. To preserve coherence of the watercolor texture itself, it
advects a set of pigmentation textures along lines of an optical flow
field computed for the video.

Hays and Essa also used an improved optical flow method
to process video with different artistic styles [12]. The key
difference between their approach and Litwinowicz’s work is they
add more properties such as opacity to the brushstroke. Also, their
approach places temporal constraints on the brushstroke properties
by interpolating gradient values to improve coherence.

Recently, researchers in graphics and computer vision have
treated video sequences as spatiotemporal volumes by stacking
sequential frames along the time-axis for analysis and post-
processing. Video volume is then divided to semantic regions with
coherence which can be further refined by user input. This approach
improves coherence using global optimization, compared to optical
flow that typically finds only pixel motion correlation between
consecutive frames. Comaniciu et al. developed a spatiotemporal
segmentation technique (“kernel mean shift”) for images [4]. Wang
et al. proposed “anisotropic kernel mean shift” to extend this
algorithm to video [26]. The segmentation divides the video
volume into pixel clusters with similar visual properties and these

clusters/regions have a low spatiotemporal coherence. He also
presented a semi-automatic system that can transform a video into
a cartoon-like style [27]. Their approach overcomes coherence
problems by accumulating the video frames to a 3D volume and
cluster pixels in spatiotemporal space. Collomosse et al. improved
Klein and Wang’s approaches and presented a more general NPR
system (“Stroke Surface”) that can create abstract animation from
video with high temporal coherence [3].

NPR has also been studied and used in the AR/VR community.
Fischer et al. presented several NPR styles, such as cartoon style,
for AR applications [6, 5]. Haller et al. compared photorealistic
rendering and NPR for MR [10, 8]. He also presented a sketch style
rendering for AR [9]. Chen et al. presented a watercolor-like style
with some degree of coherence for AR [2]. However, not much
research has been done for providing temporal coherence for real-
time AR NPR. A frame from an AR video is typically a mixture of
3D virtual image and a real world image, so naturally the algorithms
in the image space and model space approaches discussed in section
2 should work. However, there are several differences between
NPR for AR and NPR for video and 3D models. First, AR
applications usually require real-time methods and cannot directly
use the existing video NPR algorithms, which need the information
beyond the current frame. Second, it is difficult to recover the scene
geometry from AR video.

We propose a painterly rendering algorithm that demonstrates
significant coherence for augmented reality. Our algorithm creates
a painterly rendering effect for composed AR video by generating
a tensor field and placing bump-mapping curly brushstrokes on the
frames. It uses the correspondences of feature points across frames
to warp and reshape the brushstrokes to maintain the frame-to-
frame coherence. We choose the painterly rendering style in our
system, but the algorithm of maintaining temporal coherence may
be extended to apply to other NPR styles for AR.

3 PAINTERLY RENDERING WITH COHERENCE

The flowchart of our painterly rendering algorithm is shown in
Figure 2 below.

Figure 2: Algorithm flowchart. Three major steps are enclosed by the
dash lines.

We use multiple layer painting to compose the final result. In
the tensor field creation, we divide the input frame into regions
and label each region as ‘highly-detailed’, ‘middle-detailed’ and
‘texture-less’ based on each region’s overall edge magnitude. We
use different sets of properties for brushstrokes to paint these
regions from the coarse layer to fine layer. During the painting,
we allow a brushstroke from a coarse layer to cut across regions

104

in the fine layer, but do not allow in the opposite direction. In the
following sections, we will discuss the creation of the tensor field,
the warping and the reshaping of brushstrokes in turn.

3.1 Tensor Field Creation

To guide the orientation of brushstrokes, we first compute the tensor
field on a composed AR frame. One of the major advantages of a
tensor field over a vector field is it allows direction ambiguity. The
tensor field at a pixel does not distinguish between the direction
of θ and θ + π [28]. In the vector field, the magnitude P and
orientation θ of a pixel can be computed by the following image
gradient operator:

Gx = 2I(x+1,y)−2I(x−1,y)+ I(x+1,y+1)

−I(x−1,y+1)+ I(x+1,y−1)− I(x−1,y−1) (1)

Gy = I(x−1,y+1)+2I(x,y+1)+ I(x+1,y+1)

−I(x−1,y−1)−2I(x,y−1)− I(x+1,y−1) (2)

P =

√

Gx2 +Gy2 (3)

θ = arctan(Gy/Gx) (4)

I(x,y) is the gray scale intensity of a pixel at (x,y). Note that
many other edge detection algorithms in computer vision literature,
such as the Harris corner detector [11], will also work. In our
experiment, this operator from Canny edge detection is relatively
fast and produces good enough initial tensor fields. Once the edge
magnitude P and orientation θ of a pixel is computed, its tensor
field M is defined as follows:

M = P

[

cos2θ sin2θ

sin2θ −cos2θ

]

(5)

The eigenvector of this matrix M’s major eigenvalue gives the
orientation θ for this pixel.

To reduce the image noise we do a thresholding on pixel edge
magnitude P. After thresholding, we have a tensor field map
associated with the video frame. Each strong edge pixel whose
magnitude is over the threshold has been assigned a tensor field
value M.

For the pixels whose magnitude is below the threshold, we
can use global radial basis interpolation to compute their tensor
fields [12]. A linear interpolation of the vector field usually
generates the singularity points, where the magnitude of the vector
is zero if two vector fields have opposite directions. Tensor fields
can eliminate this problem because the interpolation of two tensor
fields with opposite orientations does not produce zero. The
interpolated tensor field value for a non-edge pixel is computed as
follows:

M = ∑
i∈edge pixels

e−
d
σ Pi

[

cos2θi sin2θi

sin2θi −cos2θi

]

(6)

The exponential component is the weight that controls the
contribution of a strong edge pixel to the tensor field. d is the
Euclidean distance between an edge pixel P(xi,yi) and the non-edge
pixel P(x,y). σ controls the width of the attenuation window. Small
σ makes the tensor field smoother, but it is possible to lose local
details. Also the radial basis interpolation needs to loop through all
strong edge pixels to compute the weighted sum.

Usually this interpolation will become a computational
bottleneck if there are a large amount of edge pixels initially
detected. In practice, it may also give a tensor field of zero for non-
edge pixels due to large textureless regions without strong edges.
For example, if the distance between a non-edge pixel and all edge
pixels is too big, its tensor field M will be zero. In the final painting

these unassigned regions become holes that are not covered by any
brushstrokes. Also, the initial tensor field data usually is non-
uniformly distributed. A region that has dense edge pixels (e.g.,
a tree) may strongly bias the interpolated results.

To address these problems in the global radial basis interpolation,
we borrow an idea from Gortler et al. [7]. In this paper an image
pyramid is built and a pull-push algorithm is used to interpolate the
sparse lumigraph data. Similarly, we build a pyramid of the tensor
field map. The algorithm is listed below.

1 Divide the original video frame to grid-based regions, and
sum and normalize the tensor values in each region.

2 For a region that’s not assigned a tensor value, use radial
basis interpolation to compute its tensor, but we search only a
small 5× 5 window patch centered at this region. Apply low-pass
Gaussian filter to the tensor value, and then sub-sample to create a
new tensor field map at a higher level.

3 Repeat Step 2, until we have reached the top of the pyramid
and built the tensor field of size 1.

Note the difference between our method and Gortler’s original
interpolation method in step 2. Gortler’s original method averages
and normalizes data in regions at each level. In our method at each
level of the tensor field pyramid, first we search a 5× 5 window
centered at a region to compute its tensor field. We then apply
a Gaussian filter to create a new higher level of tensor field map.
The purpose is that we want to keep fine local details for later
painting. Local tensor values near to a strong edge should all follow
the direction of that edge. This makes the brushstrokes in the area
look smoother. Figure 3 illustrates the creation of the tensor field
pyramid.

Figure 3: Three levels of the tensor field pyramid, created from
bottom to top. At each level, blue dots are the tensor fields from
strong edge pixels in regions, and red dots are the tensor fields
created by interpolation in the region’s local patch window. A higher
level is created by applying a Gaussian low pass filter to the lower
level and sub-sampling.

Once the pyramid is created, we can get the tensor field for any
pixel in a frame. During the painting, if we need a tensor field of a
pixel, first we check if it already has a tensor value assigned. If it
does, we just use the local tensor, otherwise we go up in the tensor
field pyramid, and check if the corresponding region containing this
pixel has a tensor value in this upper level.

This tensor field pyramid algorithm has several advantages over
the original global radial basis interpolation. First, we reduce the
influence of non-uniformly distributed data by dividing the tensor
map into regions and normalize the tensor field in each region.
Second, it is much faster than a simple global interpolation, since it
only needs to check a 5× 5 window for the unassigned regions at
each level, instead of all edge pixel/regions. The small window size
also produces better interpolation results for our painting purpose

105

(e.g., the tensor field of pixels that are close to a strong edge will
strictly follow its tensor value). Hence it preserves fine local details
better. Third, it avoids the problem of holes in textureless regions.

In our multi-layer painting, we divide a frame into regions based
on the layer index, and then sum the tensor values in each region.
The sum of the tensor values in a region gives the direction of a
brushstroke across this region.

Figure 4 shows a visualization of the tensor field for a static
image. A short line segment is drawn along the direction of the
tensor field at each anchor point in the image.

Figure 4: Tensor field visualization of an AR frame. There are a
virtual teapot, two real cups and an album on the table.

3.2 Feature Point Based Brushstroke Anchor Warping

In order to maintain coherence we need to move and repaint
brushstrokes based on the correspondences across frames. We
track feature points across frames. For the non-feature pixels
in the frame, we warp the brushstrokes that are located at these
pixels from frame to frame. The warping is done using barycentric
coordinates.

3.2.1 Initialization of Brushstrokes at the First Frame

For multi-layer painting, we place brushstrokes in each layer. The
first frame is evenly divided into M ×N grid regions. The initial
anchor points of the brushstrokes at each layer are the centers of
these regions.

3.2.2 Feature Points Tracking

We use video feature tracking to help produce brushstrokes that
are coherent between frames. In general any tracking methods that
generate feature points across frames can be used. In our system
we use SIFT to build gradient-histogram descriptors for tracking
feature points from frame to frame [21]. The features points we
choose are Harris corners [11].

3.2.3 Brushstroke Anchor Warping

A major constraint for coherence processing due to the
characteristics of AR is we cannot go further beyond the current
frame or apply global coherence optimization for the whole
video [3] . Most of the time we can only use information from
the previous frame and current frame.

To maintain the temporal coherence for brushstrokes we warp
their anchor points from the previous frame to the current frame
in barycentric coordinates. Assume there are a set of matched
feature points between two consecutive frames. For a brushstroke
starting at position P in the previous frame, we find its nearest three
neighbor feature points, and compute P’s barycentric coordinates C
with respect to these three points. We then find the correspondent
matches of these three points in the second frame. We warp

this point P to the current frame, whose position P
′

is given by
[

P
′

1 P
′

2 P
′

3

]

×C. P
′

is the new location of the brushstroke.
The procedure is shown below, assuming the anchor is P and its 3
nearest feature points are P1,P2,P3.

P = uP1 + vP2 +wP3, where u+ v+w = 1 (7)

[

P1 P2 P3

1 1 1

]

u
v
w

=

[

P
1

]

(8)

u
v
w

=

[

P1 P2 P3

1 1 1

]

−1 [
P
1

]

(9)

A close form solution of the barycentric coordinates of P is:

u =
(y2 − y3)(x− x3)+(x3 − x2)(y− y3)

detT
(10)

v =
(y3 − y1)(x− x3)+(x1 − x3)(y− y3)

detT
(11)

w = 1−u− v, where T =

[

x1 − x3 x2 − x3

y1 − y3 y2 − y3

]

(12)

Figure 5 illustrates the warping for a single brushstroke.

Figure 5: Warping of a brushstroke anchor point P (red dot).

When the scene is in motion, the warped brushstrokes could
become over dense or sparse in some area. The over dense
brushstrokes in an area may cause unnecessary repainted in this
area, while the sparse brushstrokes may not cover the area and
produce holes. We need to remove or add new brushstrokes in these
cases. In the multi-layer painting, the frame is divided into regions.
We use an array to record the number of brushstrokes in each
region. If there are not enough brushstrokes we evenly-subdivide

106

Figure 6: Top row: Matched SIFT feature points in two frames. Feature points are Harris corners. 256 features detected in the left frame, and
206 features detected in the right frame. (CornerT hreshold = MaxCornerStrength/5). 80 matches are found. Matched features are linked with
colored lines. Bottom row: Painted results for these two frames. Brushstrokes in four correspondent areas are shown at the bottom. Notice that
in some areas the brushstroke anchors are inside the triangles formed by neighbor feature points, as well in some areas the anchors are outside
the feature point triangles.

this region, and then add new brushstrokes to each sub region, if
needed. Similarly we can remove brushstrokes in over dense areas.
After adding or removing brushstrokes we correspondingly update
the list of brushstroke anchors.

The correctness of the anchor point warping is based on the
following observation: when the camera is far enough from the
scene, if a non-feature point P is co-planar with some feature points
in the previous frame, we can compute the correspondence of P in
the current frame by warping. The warping gives the new anchor
position of an existing brushstroke, and makes it coherent from
frame to frame. Optical flow can also warp brushstroke anchors
by estimating the movement of any individual pixel. Optical flow
based brushstroke anchor warping is suitable for arbitrary video
where precise tracking could be unavailable, as shown in [3, 12].
The feature point tracking based brushstroke anchor warping gives
more stable results in AR applications since we directly have
feature tracking in the scene. In our algorithm, a brushstroke
anchor P could be outside of the triangle formed by its three nearest
neighbor feature points. In this case the warping still works if P is
close to these neighbors (i.e., these four points are approximately
co-planar). Otherwise it may give undesirable results. Figure 6

shows an example from two consecutive AR frames. The matched
SIFT feature points across frames are linked by colored lines. The
anchors of painted brushstrokes are correspondingly warped based
on these matches. Four corresponding areas from the painted
results are shown at the bottom. Notice that in some areas the
brushstroke anchors are inside of the triangle formed by neighbor
feature points, but in some other areas they are outside of the feature
point triangles. Although the later case is undesirable, the warping
still works when the camera is far enough from the scene.

Notice that we use SIFT tracking to find matches feature points
in the previous and current frames. Tracked feature points in frame
n and n+ 1 may disappear in frame n+ 2, but we are still able to
warp brushstroke anchors since we can find another set of matches
in frame n+ 1 and n+ 2. If the tracking is temporarily lost during
the application we can use the latest list of brushstroke anchors
as the starting points to paint the new frames. Once the tracking
works again we continue warping the brushstroke anchors if a large
number of matched feature points are found in the new frame, or
re-initialize all brushstroke anchors and restart warping.

107

3.3 Bump-mapping Curly Brushstroke

We create long curly brushstrokes based on the algorithm of
Hertzmann [13]. The difference between our algorithm and
Hertzmann’s original one is that we use bump mapping to give the
appearance of textured brushstrokes. Hertzmann also proposed to
use a height map to create lighting effects, but it is not directly
used in the creation of a single curly brushstroke [15]. Another
difference is we choose different cut-off angles as the stop condition
for curly brushstrokes in each painting layer, compared to [12].

For each brushstroke we define a set of properties such as the
width, length of a single travel step, minimum and maximum travel
steps, and color difference threshold, similar to [16, 12]. To reduce
the curvature change in the brushstroke we also define a cut-off
angle as an extra property. We start from an anchor point to
compute each curly brushstroke. To elongate a brushstroke we
travel a short distance in the tensor field direction and this brings
us to a new region. The tensor field direction is ambiguous by a
half-turn, so we select the direction that will not cause a kink in
the stroke, thus minimizing stroke curvature. We repeatedly extend
the stroke until the color in the new region varies too much from
the color in the starting region. We also stop if the difference of
two tensor field directions is bigger than the cut-off angle. A coarse
(fine) layer has a smaller (bigger) cut-off angle and bigger (smaller)
color difference threshold. The color difference can be measured in
RGB or HSV space.

In each step along the stroke we record the position of the
regions as control points. Once we have all the control points
C0,C1, . . . ,Cn−1,Cn, we compute a cubic B-spline curve based on
these control points. To force the result curve to interpolate at the
start and end points, we use triple knots at C0 and Cn. As a result,
the input control point set for the cubic B-spline interpolation is
C0,C0,C0,C1,C2, . . . ,Cn−2,Cn−1,Cn,Cn,Cn. Correspondingly we
will get n+2 segments. In each segment we choose 4 sample points

at t = 0, 1
4 ,

1
2 and 3

4 . In the final painting we will have 4(n+2)+1
sample points. We divide the curve to 4(n + 2) subcurves and
draw each subcurve as a quad. Figure 7 shows a parameterized
brushstroke with 11 control points.

Figure 7: Left: A curly brushstroke with 11 control points (triple knots
at two ends). Right: The brushstroke is divided to subcurves and
rendered.

Figure 8 shows two of the various styles of brushstrokes used in
our paper, each of which has an alpha mask and brushstroke texture.

Figure 8: Each column is a type of a brushstroke. From top to
bottom: an alpha mask, brushstroke texture, and example of a final
composed brushstroke on screen.

Figure 9 visualizes the brushstroke skeleton curves. Each
brushstroke is rendered as a colored curve.

Figure 9: Brushstroke skeleton visualization on the coarse layer

To obtain better visual results, we use bump mapping to paint
each brushstroke, instead of texture mapping. Each brushstroke
also has an alpha mask to mimic the smooth and natural brushstroke
shape from a human artist’s painting. This is also used in [12].
Bump-mapping can simulate the subtle lighting effects for the
brushstroke and drastically improves the visual quality of the final
painting. We implement bump mapping using GLSL on the GPU
for speed. To get correct lighting, we pass the orientation of
each painting segments (“subcurve quad”) as a tangent vector to
the vertex shader. In the fragment shader, the surface normal
is estimated from a gray-scale brushstroke texture (e.g., Figure 8
middle row).

vec3 BumpNorm = vec3((left.x - right.x) , (bottom.x - top.x) , 1);

BumpNorm = normalize(BumpNorm);

The ‘left, right, bottom, top’ variables are the colors of the
adjacent pixels in the texture. Multiple brushstrokes could be
placed across a same area on a frame, which causes unnecessary
repainting. To avoid this problem, we choose a proper width for
each brushstroke. Once a brushstroke is drawn, we mark the regions
covered by this brushstrokes as ‘painted’.

Figure 10 shows the result of the final painting. Note bump-
mapping simulates the lighting effect of artistic painting and adds
fine details to the result.

3.4 Coherent Curly Brushstrokes

In order to keep temporal coherence we warp the anchor points of
brushstrokes from the previous frame to current frame. However,
repainting a brushstroke at the corresponding anchor points at
the current frame sometimes produces bad coherent results. The
computation of a brushstroke curve is decided by the local tensor
field and color difference of regions around the anchor. The shape
of a curly brushstroke in two frames could vary significantly, even
if its anchor points are ‘coherent’. Hence it is also necessary to
change the shape of a brushstroke in the current frame to make it
similar to the previous one.

Our assumption is that a coherent brushstroke in two consecutive
frames should have similar shapes that do not vary too much. To
make the shape of a brushstroke in the current frame resemble
the previous one, we first compute a new curly brushstroke in
the current frame, and then we blend it with the corresponding
brushstroke from the previous frame that has the same anchor
point. Both brushstrokes are parameterized. We compute the
average of the two parameterized brushstrokes, and then use the
blended brushstroke for painting in the current frame. If the two

108

Figure 10: Final painting with curly brushstrokes. Note the fine details
in the painting. Three different styles of brushstrokes at the coarse
and fine level are shown at the bottom row.

brushstrokes do not have a same number of control points, we
resample both of them to obtain a same number of sample points,
and then compute the average. Figure 11 shows the blending
method.

Figure 11: Blending of two parameterized brushstrokes. The left
two brushstrokes locate at two correspondent anchors C0 on two
consecutive frames. Each brushstroke has 10 control points.

4 RESULTS

We applied our painterly rendering algorithm to both static images
and AR videos. The results are shown in Figure 12 and Figure 13
in the color plate page at the end. The static images are comparable
to Hays and Essa’s work [12], which is one of the highest quality
methods that we know. We also show a sequence of frames from an
AR video to demonstrate the coherent painting effects.

Currently our algorithm is focused on producing coherent
painterly rendering effects for AR and it is not running in realtime.
In our system the average processing time per AR frame is divided
into four major stages: tensor field creation, Harris corner detection
and SIFT matching, brushstroke anchor warping, and final painting
(placing reshaped bump mapping brushstrokes on to the frame). We
tested the speed on a PC with Core2Duo 2GHz CPU and ATI5730
graphics card. The result is shown in Table 1. The bottleneck
is the SIFT matching where we run ratio test for all detected
corner pairs, and brushstroke anchor warping where we find nearest
neighbors for each brushstroke anchor and compute the barycentric
coordinates. However, the original SIFT ratio test can be replaced
with a faster version. The neighbor finding can also be accelerated

by using KD-tree-like data structure. These improvements may lead
to the realtime performance in the future.

Table 1: Average Processing Time per AR frame. (Unit: ms)

Frame Resolution Stage 1 Stage 2 Stage 3 Stage 4 Total

1440×1050 75 420 215 30 740

1024×768 50 173 125 27 375

5 CONCLUSION

We have presented an NPR algorithm that creates painterly
rendering effect for AR applications. Our method improves the
rendering result by providing visual coherence in two aspects.
The final painting result is created by placing bump-mapping
curly brushstrokes on a composed AR frame. The placement of
brushstrokes is guided by tensor fields for each frame. Temporal
coherence is maintained by warping the brushstroke anchors and
reshaping the brushstrokes from the previous frame to current
frame. We track feature points across frames, and brushstroke
anchor warping is done by using the three nearest neighbor feature
points in barycentric coordinates. To our knowledge this is the first
attempt to achieve coherence of NPR stylization for AR.

The algorithm processes AR video with coherence in image
space, as we categorized in Section 2. We choose painterly
rendering style in our system, but the algorithm may be extended
to apply to other NPR styles for AR. In the future we want to
try methods that operate in model space. This could be done by
recovering simple scene geometry and processing both the real and
virtual scenes in model space. Investigating other NRP styles with
coherence is another possible research direction.

REFERENCES

[1] A. Bousseau, F. Neyret, J. Thollot, and D. Salesin. Video

watercolorization using bidirectional texture advection. ACM

Transaction on Graphics, 26(3):104, 2007.

[2] J. Chen, G. Turk, and B. MacIntyre. Watercolor inspired non-

photorealistic rendering for augmented reality. In VRST, pages 231–

234. ACM, 2008.

[3] J. P. Collomosse, D. Rowntree, and P. M. Hall. Stroke surfaces:

Temporally coherent artistic animations from video. IEEE TVCG,

11(5):540–549, Sept./Oct. 2005.

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach toward

feature space analysis. IEEE PAMI, 24(5):603–619, 2002.

[5] J. F. Dirk and D. Bartz. Real-time cartoon-like stylization of AR video

streams on the GPU. In TR WSI-2005-18, University of Tubingen.

[6] J. Fischer, D. Bartz, and W. Straßer. Artistic reality: fast brush stroke

stylization for augmented reality. In VRST, pages 155–158, 2005.

[7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The

lumigraph. In SIGGRAPH, pages 43–54, 1996.

[8] M. Haller. Photorealism or/and non-photorealism in augmented

reality. In ACM International Conference on Virtual Reality

Continuum and its Applications in Industry, pages 189–196, 2004.

[9] M. Haller and F. Landerl. A mediated reality environment using a

loose and sketchy rendering technique. In ISMAR, pages 184–185,

Washington, DC, USA, 2005. IEEE Computer Society.

[10] M. Haller and D. Sperl. Real-time painterly rendering for mr

applications. In International Conference on Computer Graphics and

Interactive Techniques in Australasia and Southeast Asia, 2004.

[11] C. Harris and M. Stephens. A combined corner and edge detector. 4th

Alvey Vision Conference, pages 147–151, 1988.

[12] J. Hays and I. A. Essa. Image and video based painterly animation. In

NPAR, pages 113–120. ACM, 2004.

[13] A. Hertzmann. Painterly rendering with curved brush strokes of

multiple sizes. In SIGGRAPH, pages 453–460, 1998.

109

Figure 12: Painting results: static images comparable with Hays and Essa’s work [12].

Figure 13: Top row: painted AR frames without coherence processing. Notice the brushstrokes in circled areas appear and then disappear
between frames. Bottom row: the same sequence of frames with coherence processing. Notice coherent brushstrokes in circled areas.

[14] A. Hertzmann. Paint by relaxation. In Proceedings of Computer

Graphics International Conference, pages 47–54, July 3–6 2001.

[15] A. Hertzmann. Fast paint texture. In NPAR, page 91, 2002.

[16] A. Hertzmann and K. Perlin. Painterly rendering for video and

interaction. In NPAR, pages 7–12, 2000.

[17] M. Kaplan, B. Gooch, and E. Cohen. Interactive artistic rendering. In

NPAR, pages 67–74, 2000.

[18] A. Klein, W. Li, M. M. Kazhdan, W. T. Corrêa, A. Finkelstein,

and T. A. Funkhouser. Non-photorealistic virtual environments. In

SIGGRAPH, pages 527–534, 2000.

[19] M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bourdev, R. Barzel,

L. S. Holden, and J. Hughes. Art-based rendering of fur, grass, and

trees. In SIGGRAPH, pages 433–438, 1999.

[20] P. Litwinowicz. Processing images and video for an impressionist

effect. In SIGGRAPH, pages 407–414, 1997.

[21] D. G. Lowe. Object recognition from local scale-invariant features. In

ICCV, pages 1150–1157, 1999.

[22] L. Markosian, B. J. Meier, M. A. Kowalski, L. Holden, J. D. Northrup,

and J. F. Hughes. Art-based rendering with continuous levels of detail.

In NPAR, pages 59–66, 2000.

[23] B. J. Meier. Painterly rendering for animation. In SIGGRAPH, pages

477–484, 1996.

[24] S. A. Pessoa, G. de S. Moura, J. P. S. M. Lima, V. Teichrieb, and

J. Kelner. Photorealistic rendering for augmented reality: A global

illumination and BRDF solution. In IEEE VR, pages 3–10, 2010.

[25] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein. Real-time hatching.

In SIGGRAPH, page 581, 2001.

[26] J. Wang, B. Thiesson, Y. Q. Xu, and M. Cohen. Image and video

segmentation by anisotropic kernel mean shift. In ECCV, pages Vol

II: 238–249, 2004.

[27] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen. Video tooning. ACM

Transactions on Graphics, 23(3):574–583, Aug. 2004.

[28] E. Zhang, J. Hays, and G. Turk. Interactive tensor field design and

visualization on surfaces. IEEE TVCG, 13(1):94–107, 2007.

110

