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Abstract

In this paper we present a novel surface reconstruction method for particle-based fluid simulators such as
Smoothed Particle Hydrodynamics. In particle-based simulations, fluid surfaces are usually defined as a level
set of an implicit function. We formulate the implicit function as a sum of anisotropic smoothing kernels, and the
direction of anisotropy at a particle is determined by performing Principal Component Analysis (PCA) over the
neighboring particles. In addition, we perform a smoothing step that re-positions the centers of these smoothing
kernels. Since these anisotropic smoothing kernels capture the local particle distributions more accurately, our
method has advantages over existing methods in representing smooth surfaces, thin streams and sharp features of
fluids. Our method is fast, easy to implement, and our results demonstrate a significant improvement in the quality
of reconstructed surfaces as compared to existing methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Realism—Animation

1. Introduction

It is becoming increasingly popular to create animated lig-
uids using physics-based simulation methods for feature film
effects and interactive applications. There exist two broad
categories for simulation methods based on their different
approaches to spatial discretization: mesh-based methods
and mesh-free methods. In mesh-based methods, the sim-
ulation domain is discretized into mesh grids and the val-
ues of physical properties on grid points are determined by
solving the governing equations. In mesh-free methods, on
the other hand, the fluid volume is discretized into sam-
pled particles that carry physical properties and that are ad-
vected in space by the governing equations. In recent years,
mesh-free methods have become a competitive alternative
to mesh-based methods due to various advantages such as
their inherent mass conservation, the flexibility of simula-
tion in unbounded domains, and ease of implementation.
Among various mesh free methods, Smoothed Particle Hy-
drodynamics (SPH) is the most popular approach for simu-
lating fluid since it is computationally simple and efficient
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compared to others. In computer graphics, SPH has been
successfully used for the simulation of free-surface fluids
[MCGO3], fluid interface [MSKGO05, SP08], fluid-solid cou-
pling [MST*04,LAD08,BTT09], deformable body [BIT09],
multi-phase fluid [MKN*04,KAG*05,SSP07] and fluid con-
trol [TKPRO6].

Although SPH has been used to simulate various fluid
phenomena, extracting high quality fluid surfaces from the
particle locations is not straightforward. Classical surface re-
construction methods have difficulties in producing smooth
surfaces due to irregularly placed particles. Few researchers
have successfully addressed this issue of reconstructing
smooth fluid surfaces from particles. In this paper, we pro-
pose a novel surface extraction method that significantly im-
proves the quality of the reconstructed surfaces. Our new
method can create smooth surfaces and thin streams along
with sharp features such as edges and corners. The key to
our method is to use a stretched, anisotropic smoothing ker-
nel to represent each particle in the simulation. The orien-
tation and scale of the anisotropy is determined by captur-
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Figure 1: Water splash.

ing each particle’s neighborhood spatial distribution. We ob-
tain the neighborhood distribution in the form of covariance
tensor and analyze it through Principle Component Analysis
(PCA). We then use these principal components to orient and
scale the anisotropic kernel. We adjust the centers of these
kernels using a variant of Laplacian smoothing to counteract
the irregular placement of particles. A new density field is
then constructed by the weighted mass contribution from the
smoothing kernels. Finally, the renderable surface is recon-
structed from the iso-surface of the given density field. We
show that our new method leads to the realistic visualization
of fluid surfaces and that it outperforms existing methods
for handling smooth and thin surfaces with sharp features.
The simplicity and efficiency of our method facilitates the
incorporation of our method with existing SPH simulation
schemes with little additional effort.

2. Related Work

Because the surface representation of a fluid is crucial for
realistic animation, methods for reconstructing and track-
ing fluid surfaces have been a topic of research since the
fluid simulation was first introduced in computer graphics.
In non-Lagrangian simulation frameworks, numerous meth-
ods has been proposed such as level-set methods [OF02],
particle level-set methods [EFFM02, EMF02, ELFO05], semi-
Lagrangian contouring [StrO1, BGOS06], volume-of-fluid
methods (VOF) [HN81] and explicit surface tracking [BB06,
BB09, WTGT09, Miil09].

In mesh-free (Lagrangian) simulation frameworks,

Blinn [BIli82] introduced the classic blobby spheres ap-
proach. In this method, an isosurface is extracted from a
scalar field that is constructed from a sum of radial basis
functions that are placed at each particle center. One of the
drawbacks of Blinn’s original formulation is that high or low
densities of particles will cause bumps or indentations on
the surface. Noting this problem, Zhu and Bridson [ZB05]
modify this basic algorithm to compensate for local particle
density variations. They calculate a scalar field from the
particle positions that is much like a radial basis function
that is centered at a particle. For a given location in space,
they calculate a scalar value from a basis function whose
center is a weighted sum of nearby particle centers, and
whose radius is a weighted sum of particle radii. They then
sample this scalar distance function on a grid, perform a
smoothing pass over the grid, and then extract an isosur-
face mesh from the grid. Their results are considerably
smoother than the classic blobby spheres surface. Adams et
al. [APKGO7] further improved upon the method of Zhu and
Bridson by tracking the particle-to-surface distances over
time. Specifically, they retain a sampled version of a signed
distance field at each time step, and they use this to adjust
per-particle distances to the surface. They perform particle
redistancing by propagating the distance information from
surface particles to interior particles using a fast marching
scheme. The final surface is from the Zhu and Bridson scalar
field, but calculated using these new per-particle distances.
This method is successful at generating smooth surfaces
both for fixed-radius and adaptively-sized particles.

One drawback of these aforementioned methods is a typ-
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ical assumption that the smoothing kernel of each particle
is isotropic, and the spherical shape of the kernel makes it
difficult to produce flat surfaces and sharp features. In con-
trast to these methods, our approach uses anisotropic kernels
to stretch spheres into ellipsoids in order to alleviate those
limitations.

Desbrun and Cani-Gascuel [DCG98] and Premoze et
al. [PTB*03] use a different surface tracking method in
which a scalar field is advected on a Eulerian grid. Unfor-
tunately this approach is more difficult to use for unbounded
simulations.

Recently, an alternative method of surface reconstruction
was proposed by Williams [Wil08]. In his method, a non-
linear optimization problem is solved iteratively to achieve
global smoothness on surface mesh. The important contri-
bution of the method is that the perfectly flat surfaces can
be generated under certain conditions. Sin et al. [SBH09]
use level-set variants of the original method to alleviate the
problem of temporal coherence.

Our anisotropic kernel approach is inspired by the work
of Owen et al. [OVSM95] and Liu et al. [LLLO6]. They
adapt anisotropic kernels to simulate large deformations of
materials in the SPH framework, and their primary inter-
est is in simulation accuracy. In their approach, the axes
of their anisotropic kernels evolve in time according to the
strain-rate tensor estimates. Our approach is also related
to the work of Kalaiah and Varshney [KVO03] and Dinh
et al. [DTSO1]. Kalaiah and Varshney apply PCA to point
clouds for point-based modeling. Dinh et al. reconstruct sur-
faces from voxel carving data by combining anisotropic ker-
nels with variational implicit surfaces.

3. SPH Framework

In SPH, the fluid volume is described as a set of particles
with prescribed masses. In a given simulation step, physical
quantities such as density and pressure are represented by
values that are associated with each particle. For particle i
at location x;, the density p; is interpolated by a sum of the
weighted contributions of nearby particle masses m;:

pi =Y mW(x;—xi,hj), )
J

where W is the smoothing kernel and #; is the smoothing
radius associated with particle j. The pressure p; of particle i
is typically described as a function of the density of the fluid
such as given by the Tait equation [Mon94], which is

pi\!
pem((E)-1). o
Po

where k and 7y are stiffness parameters and py is the rest den-
sity of the fluid. In the SPH framework, the Navier Stokes
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equation, discretized on particle locations, becomes an Or-
dinary Differential Equation (ODE) of the form:

o 20— (Vp) (s ) () )
where v; is the velocity, £ is an external force (such
as gravity), u is the viscosity constant, and (Vp)(x;) and
(Av)(x;) are approximations of the pressure gradient and the
velocity Laplacian at x; in the SPH framework. For various
approximations of differential operators in SPH framework,
we refer the readers to [AW(09].

In this paper, we simulate all of our examples using the
Weakly Compressible SPH (WCSPH) framework [BTO7].
Note that our method can be used with any SPH frame-
work, as long as the simulator provides particle positions,
radii, masses and densities. In the case that mass and ra-
dius are global constants, our approach can be general-
ized to work with other Lagrangian simulation frameworks
such as Particle-in-Cell (PIC) and Fluid-Implicit Particle
(FLIP) [ZBO5].

4. Surface Reconstruction
4.1. Surface Definition

Our surface definition is based on the approach proposed
in [MCGO03], where the surface is defined as an isosurface
of a scalar field

m
0(x) =}, W (x—x;.h)), )
7 Pj
and W is an isotropic smoothing kernel of the form
o (Il

In the above equation, G is a scaling factor, d is the dimen-
sion of the simulation, r is a radial vector and P is a symmet-
ric decaying spline with finite support. The scalar field ¢(x)
is designed as a normalized density field that smooths out the
scalar value of 1 at each particle’s position over a continuous
domain, and an isosurface from ¢(x) gives a surface repre-
sentation that coats the particles. However, the resulting sur-
faces often have bumps, and there are two reasons for this.
First, the irregular placement of particles makes it difficult to
represent an absolutely flat surface. Although irregular sam-
pling is an essential feature of any Lagrangian scheme, this
irregularity of the positions of the boundary particles can
make surfaces appear blobby. Second, the spherical shape
of the smoothing kernels is not suitable to describe the den-
sity distribution near a surface. That is, in order to correctly
model surface geometry, it is necessary for the density of the
near-surface particles to decrease at different rates in differ-
ent directions.
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To resolve the problem of irregular particle placement, we
apply one step of diffusion smoothing to the location of the
kernel centers. This process can be interpreted as a 3D vari-
ant of Laplacian smoothing as described in [Tau00], and has
an effect of denoising point clouds. The updated kernel cen-
ters X; are calculated by

X =(1 —l)xi+7»ZWinj/ZWijv 6)
Jj J

where w is a suitable finite support weighting function and
A is a constant with 0 < A < 1. We use A between 0.9 and
1 in our examples to maximize the smoothing effect. Note
that this smoothing process is used only for surface recon-
struction, and the averaged positions are not carried back
into the simulation. Typically, Laplacian smoothing results
in volume shrinking, and our approach also shrinks the fluid
volume slightly by moving the kernels for boundary par-
ticles towards the inside. However, in contrast to level-set
methods, our approach does not shrink volume continuously
as the simulation evolves. Furthermore, the analysis in Ap-
pendix A shows that the maximum distance from our recon-
structed surfaces to the original particle positions is within a
small constant of the particle radius scale.

To cope with the problem of density distributions near the
surface, our new approach is designed to capture the den-
sity distribution more accurately by allowing the smoothing
kernels to be anisotropic. By replacing /& with a d X d real
positive definite matrix G, we can simply redefine W to be
an anisotropic kernel

W(r,G) = o||G||P(||Grl). ©)

The linear transformation G rotates and stretches the ra-
dial vector r. Therefore W (r, G) becomes an anisotropic ker-
nel, and isosurfaces of W are ellipsoids instead of spheres.
Note that the isotropic kernel can be treated as a special case
of the anisotropic kernel by letting G = h~'T where I is an
identity matrix. The key idea of our new method is to asso-
ciate an anisotropy matrix G with each particle so that for
particle j, G; describes better the neighborhood density dis-
tribution.

Once All G;’s and X;’s are computed, we extract an iso-
surface from a redefined scalar field

Onew(®) = ¥ LW (x—%;,G)). )
7 Pi
It is necessary to point out that the equation of W is de-
pending on the SPH simulation, since different SPH schemes
can use different W’s for density computation. For our exam-
ples, we use a B-cubic spline kernel from [BT07].

(a) (b)

Figure 2: A comparison between the surface reconstruction
using isotropic kernels (a) and our anisotropic kernels (b).
Top row: the surface of SPH particles from a single dam
break simulation. Bottom row: Illustration of particles at the
top left corner. The shape of a particle in (b) represents the
anisotropy of the corresponding smoothing kernel. Note that
our approach constructs a flat surface with sharp edges and
corners from properly stretched particles.

4.2. Determining the Anisotropy

As mentioned in the previous subsection, our new approach
determines an anisotropy matrix G for each particle in order
to more accurately describe the density distribution around
the particle. For example, in the neighborhood of a parti-
cle that is inside the fluid volume, the density is likely to
be constant in all directions, making the corresponding G a
scalar multiple of an identity matrix to keep the smoothing
kernel W isotropic. On the other hand, around a particle that
is near a flat surface, the particle density will decay faster
along the normal axis than along the tangential axes. Then
G should stretch W along the tangential axes and shrink W
along the normal axis. At a sharp feature, the density will de-
cay sharply in several directions, and G should shrink W in
order to capture the sharp feature. See Figure 2 for a compar-
ison between isotropic and anisotropic kernels that are near
the surface of a region of fluid.

In order to determine G, we apply the weighted version
of Principal Component Analysis (WPCA) that is proposed
in [KCO03] to the neighborhood particle positions. A draw-
back of the conventional PCA is its sensitivity to outliers,
and it often produces inaccurate information when the num-
ber of samples is small and the sample positions are noisy,
which commonly happens in particle-based fluids. In con-
trast, WPCA achieves significant robustness towards outliers
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Figure 3: Melted chocolate falling on a Bunny.

and noisy data by assigning appropriate weights to the data
points. Specifically, WPCA begins by computing a weighted
mean of the data points. Next, WPCA constructs a weighted
covariance matrix C with a zero empirical mean and per-
forms an eigendecomposition on C. The resulting eigenvec-
tors give the principal axes, and the eigenvalues indicates the
variance of points along the corresponding eigenvalues. We
then construct an anisotropy matrix G to match the smooth-
ing kernel W with the output of WPCA.

In our approach, the weighted mean x;” and the covariance
matrix C; of particle i are formulated as follows:

Ci=Y wij(x;—x")(x; —x)" /Y wij, ©)
i j

XIWZZW,']'X]'/ZW,']'. (10)
J J

The function w;; is an isotropic weighting function with
respect to particle i and j with support r;.

WU:{I—mm—MMﬁN it % <ni g

0 otherwise

With the finite support of w;;, the computation is confined
to the neighborhood particles within the radius 7;. In our ex-
amples, we choose r; to be 2h; in order to include enough
neighborhood particles and obtain reasonable anisotropy in-
formation. This kernel is also used to compute the averaged
position of the particles in Equ. 6.

With each particle, the singular value decomposition
(SVD) of the associated C gives the directions of stretch or
compression for deforming the smoothing kernel W in terms
of eigenvectors and eigenvalues. The SVD yields

C=RIR’, (12)
¥ = diag(oy,...,04). (13)
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where R is a rotation matrix with principal axes as col-
umn vectors, and X is a diagonal matrix with eigenvalues
G| > ... > 64. In order to deal with singular matrices and
prevent extreme deformations, we check if 6| > k0, with a
suitable positive constant k, > 1. The condition is true when
the largest variance in one principal axis is much bigger than
the smallest variance in another axis. In this case, we mod-
ify C such that the ratio between any two eigenvalues are
with in k. Also, when the number of particles in the neigh-
borhood is small, we reset W to a spherical shape by setting
G = kyI in order to prevent poor particle deformations for
nearly isolated particles. In addition, we multiply C by scal-
ing factor ks such that ||ksC|| = 1 for the associated parti-
cle inside fluid volume, in order to keep the volume of W
constant for particles with the full neighborhood. The afore-
mentioned processes are formulated as follows to obtain a
modified covariance matrix C.

C=R:R" (14)
S k¢diag(c1,6,,...,64) if N> Ne,
L= { knl otherwise as)

where G6; = max(oy, 61 /k,), N the number of neighboring
particles and N is a threshold constant. In our examples, we
use kr = 4, ks = 1400, k;, = 0.5 and Ng = 25.

In order to make the kernel W of particle i deform accord-
ing to C;, G; must be an inversion of C; and scaled by 1/h;
to reflect the original radius of particle i. Then our approach
produces G; as a symmetric matrix of the form:

Gi= TRE-1RT. (16)
hi

5. Implementation

For the neighborhood search, we use a variation of a hash
grid described in [AW09] to deal with the ellipsoidal support
of the smoothing kernels. At every reconstruction step, we
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Figure 4: Double dam break simulation.

first compute an axis aligned bounding box for the ellipsoid
associated with each particle. We then store an index of the
particle in the hash grid cells that overlap with the bounding
box. In order to find the neighbors for a particle in a grid cell,
we simply examine each particle that is stored in the cell and
tag as a neighbor the ones that are inside the ellipsoid.

Obstacles are represented as tetrahedral volume meshes
for collision detection with particles. We use the Marching
Cubes algorithm [LC87] to create a mesh that represents the
fluid surface from the scalar field of Equation 8.

All of our simulations and surface reconstruction algo-
rithms were run on a 2.4 GHz Intel Core2 Duo CPU with
1.72GB of memory. We use NVIDIA Gelato for rendering
the resulting animations. All of our results were simulated
using the Weekly Compressible SPH (WCSPH) approach of
Becker et al. [BTO7]. We used a fixed time step of 0.0001s
for running our simulations.

6. Results

In this section, we describe three simulations that were used
to evaluate our surface reconstruction method: water crown,
flow on bunny, and double dam break.

Figure 1 is an animation of a small drop of water that
splashes into a larger body of water, causing a water crown.
Only 24k particles were used to create this simulation. Note
that even at this low particle count, the particle-based na-
ture of the simulation is difficult to discern from the images.
Our anisotropic kernel reconstruction of the surface creates a
water crown that is smooth and unbroken near its base, and
produces plausible pinch-off at the top. When the fluid re-
bounds in the center, a thin spike of water is maintained due
to the stretching of the smoothing kernels along the spike’s
axis. When the water settles, the surface is smooth.

Figure 3 shows a viscous fluid that is poured over the
Stanford Bunny. The fluid sheet that falls runs off the bunny
is thin, usually just one particle thick, and yet the sheet is flat
and smooth. In this sheet, the kernels are stretched in the two
dimensions that run parallel to the sheet, and are compressed
perpendicular to the sheet.

Our last simulation is a double dam break (Figure 4), in
which two blocks of water at opposite sides of a tank are
suddenly released. The two parcels of water rush towards
each other, collide in the center of the tank, and this throws
up a thin sheet of water that runs diagonally across the tank.
Similar to the bunny simulation, this thin sheet is often just
one particle thick.

6.1. Comparison and Limitations

Figure 5 shows a comparison between an isotropic surface
reconstruction approach [MCGO3], Zhu and Bridson’s ap-
proach [ZB05], the method of Adams et al. [APKGO07] and
our anisotropic kernel approach. The simulation that is used
for comparison is the double dam break simulation with
140K particles. As the figure shows, the isotropic recon-
struction method produces unacceptably bumpy surfaces.
Zhu and Bridson’s approach creates noticeably smoother
surfaces, but some surface bumps are still apparent. In
fairness to their method, Zhu and Bridson also perform a
small amount of additional grid-based smoothing that we
have omitted. The method of Adams et al. produces a still
smoother surface, and this method creates the highest quality
surfaces from among the prior methods that we have tested.
Our anisotropic kernel method produces surfaces that are
even smoother than the method of Adams et al. Moreover,
our method creates a thin sheet of water in the center of the
image that is largely unbroken, where the method of Adams
et al. creates a sheet with many holes in a lace-like pattern.
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Isotropic Kernel Method [MCGO03]

Method of Adams et al. [APKGO07]

Method of Zhu & Bridson [ZB05]

Our Anisotropic Kernel Method

Figure 5: Comparison between different surface reconstruction approaches on the Double dam break animation.

Tablel shows timings for the double dam break example.
The dimensions of the marching cubes grid for these results
is 230 x 190 x 350. The timings are per-frame averages (in
minutes) across all of the frames of the animation. Our sur-
face reconstruction approach is roughly twice as expensive
as the isotropic kernel method and Zhu and Bridson’s ap-
proach. The method of Adams et al. is the most time con-
suming of the four methods, due to the need to re-calculate
the signed distance field at a rate of 300 frames-per-second.
When we dropped this re-calculation to a lower rate, the sur-
face results from the Adams method became significantly
lower in quality.

There are several limitations to our approach for surface
reconstruction. Perhaps the most important caveat is that the
surfaces that are created using this method contain less vol-
ume than prior approaches. This is due to the averaging of
particle centers. Appendix A gives an analysis of this vol-
ume difference, and demonstrates that a particle near a flat
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surface will move a fraction of the smoothing kernel radius
h;. Unlike mesh-based smoothing approaches, however, our
method does not shrink the surface near thin sheets of fluids.
Also note that this smaller volume is only a side-effect of the
surface reconstruction process, and it is not carried into the
physics of the simulation.

Even though our method produces surfaces that have less
noise than the other methods that we tested, it is still possi-
ble to see small bumps when the surface is magnified. These
slight variations in the surface can be seen in the pattern
of the caustics of the water crown animation when the wa-
ter settles. We think that these slight ripples could easily be
smoothed away using mesh-based smoothing, but we left our
meshes un-altered in order to clarify what can be achieved
using anisotropic kernels alone.
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Reconstruction method | Surface reconstruction | Simulation | Opaque rendering | Transparent rendering
Isotropic 0.39
Zhu and Bridson 0.50
Adams 176 2.19 0.64 20.08
Anisotropic 0.96

Table 1: Average per frame timings (in minutes) for four surface reconstruction methods on the double dam break simulation.

7. Conclusion and Future Work

We have presented a new method of reconstructing surfaces
from particle-based fluid simulations. This method relies on
repositioning and stretching the kernels for each particle ac-
cording to the local distribution of particles in the surround-
ing area. Our method preserves thin fluid sheets, maintains
sharp features, and produces smooth surfaces when the sim-
ulated fluid settles. This method is also competitive in speed
as compared to other recent techniques for SPH surface re-
construction.

There are several avenues for future work using this
method. One possibility is to only create stretched particles
near the surface of the fluid, and not in the fluid bulk, in
order to accelerate the process of surface reconstruction. In
addition, since the approach only depends on local informa-
tion about particle information, it would be possible to paral-
lelize the surface creation process. This approach to surface
creation should be applicable to particle-based simulations
other than SPH, and in particular this approach can be tried
for PIC or FLIP simulations [ZB05]. Finally, it would be
interesting to investigate whether there is a way to carry tex-
ture information along with the surface, as is possible using
Semi-Lagrangian contouring [BGOSO06].
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Appendix A: Analysis of Volume Shrinkage

Our surface reconstruction approach applies a smoothing
step to the positions of the kernel centers, and this pull the
kernels on the boundary towards the bulk of the fluid. Typ-
ically, this results in a slight amount of volume shrinkage
when the fluid surface is reconstructed. In this appendix, we
estimate the maximum distance between the original posi-
tions of the kernel centers and the smoothed positions of the
kernels for particles that are on flat surface. Suppose that
a particle i is located at the origin of an Eulerian coordi-
nate system and the neighboring particles are continuously
located in a hemisphere of radius r; above the xy plane. Due
to the spatial symmetry, the weighted mean is on the pos-
itive z-axis. We compute the length of the weighted mean
||%;|| from Equ. 10 and Equ. 11 using spherical coordinates.
The numerator and the denominator of ||x}’|| are formulated
as

nrE 3 6.3
HZW,-ijH:n/O /0 sin20(r° —r°r; M)drdd,  (17)
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and
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A simple algebraic manipulation yields
[Ix[| = 9ri/28. (19)

Using Equ. 6, we estimate a bound between the kernel cen-
ter position x; and the updated center position X; after the
volume smoothing by

||i,‘ —X,'H = H)\.(XYV —X,')H < 97\,7’,‘/28. (20)

With the values A = 0.9, r; = 2h; that we used in our ex-
amples, we obtain ||X; — x;|| < 0.58A;. Since the extracted
isosurface encloses X;’s, the maximal distance from the re-
constructed surface to simulation particles on the surface is
less than 0.58A;. This analysis shows that the volume shrink-
age effect will not cause significant visual artifacts, since h;
is small compared to the size of simulation domain.
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Figure 6: Water Splash
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